Skip to main content

Inverse Scattering and Aperture Synthesis in OCT

  • Reference work entry
Optical Coherence Tomography
  • 9786 Accesses

Abstract

Inverse scattering and aperture synthesis are closely related: In both cases sample structure is computationally derived from data collected outside the sample. This chapter treats with inverse scattering techniques in optical diffraction tomography, and with optical aperture synthesis as a basis in OCT techniques. The techniques described here are based on linearized inverse scattering. In a mathematical linear imaging system there is an object function and an image function; both are elements of the same or of different Euklidian spaces. Usually, the object function is the sample source strength S(r), the image function is the scattered wave spectrum Û (S) (K). A linear mapping is assumed which associates the two functions: Û (S) (K) = O · S(r). In the first section the basic optical diffraction tomography theorem, formulated by E. Wolf, is presented together with its variations and basic properties. The second section demonstrates the large flexibility of inverse scattering based on the ODT theorem.

In the third section aperture synthesis (AS) based inverse scattering is discussed. AS in imaging means to synthesize a large aperture by a series of smaller and more easily accessible apertures. Techniques like B‐scan based AS connect the acquired OCT A‐scan signal with the three-dimensional object structure. Microscopy usually requires high NA optics. Hence, Ralston et al. [68] have resolved the inverse scattering problem analytically relying on a scalar wave model without resorting to the paraxial approximation. Spatially invariant resolution has been confirmed. Interferometric synthetic aperture microscopy (ISAM) has been shown to resolve features in the tissue that are not decipherable from the unprocessed data observed in human breast tumour tissue. Furthermore, Adie et al. [70] have demonstrated that ISAM, with computational adaptive optics correction of aberrations, yields high‐resolution reconstructions of highly scattering rabbit muscle tissue: Astigmatism correction in ISAM not only provides high-resolution reconstruction of tissue structures but, additionally, a significant increase in signal-to-noise ratio of point-like scatterers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Wolf, Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1, 153–156 (1969)

    Article  ADS  Google Scholar 

  2. W. Carter, Computational reconstruction of scattering objects from holograms. J. Opt. Soc. Am. 60, 306–314 (1970)

    Article  ADS  Google Scholar 

  3. A.F. Fercher, H. Bartelt, H. Becker, E. Wiltschko, Image formation by inversion of scattered field data: experiments and computational simulation. Appl. Opt. 18, 2427–2439 (1979)

    Article  ADS  Google Scholar 

  4. A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988)

    MATH  Google Scholar 

  5. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  6. P.S. Carney, E. Wolf, Power-excitation diffraction tomography with partially coherent light. Opt. Lett. 26, 1770–1772 (2001)

    Article  ADS  Google Scholar 

  7. E. Wolf, D.F.V. James, Correlation-induced spectral changes. Rep. Prog. Phys. 59(1996), 771–818 (1996)

    Article  ADS  Google Scholar 

  8. J.C. Schotland, Quantum imaging and inverse scattering. Opt. Lett. 35, 3309–3311 (2010)

    Article  ADS  Google Scholar 

  9. G. Bao, P. Li, Numerical solution of inverse scattering for near-field optics. Opt. Lett. 32, 1465–1467 (2007)

    Article  ADS  Google Scholar 

  10. S.D. Konecky, G.Y. Panasyuk, K. Lee, V. Markel, A.G. Yodh, J.C. Schotland, Imaging complex structures with diffuse light. Opt. Express 16, 5048–5060 (2008)

    Article  ADS  Google Scholar 

  11. Y.L. Kim, V.M. Turzhitsky, Y. Liu, H.K. Roy, R.K. Wali, H. Subramanian, P. Pradhan, V. Backman, Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening. J. Biomed. Opt. 11(4), 041125–1–041125–10 (2006)

    Google Scholar 

  12. D. Petrov, Y. Shkuratov, G. Videen, Optimized matrix inversion technique for the T-matrix method. Opt. Lett. 32, 1168–1170 (2007)

    Article  ADS  Google Scholar 

  13. A.F. Fercher, Optical coherence tomography – development, principles, applications. Z. Med. Phys. 20, 251–276 (2010)

    Article  Google Scholar 

  14. E.L. Miller, A.S. Willsky, Multiscale, statistical anomaly detection analysis and algorithms for linearized inverse scattering problems. Multidim. Syst. Sign. Process. 8, 151–184 (1997)

    Article  MATH  Google Scholar 

  15. M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging (IOP Publishing, Bristol, 1998)

    Book  MATH  Google Scholar 

  16. G.-V.Y. Tikhonov-AN, Solutions of Ill-Posed Problems (Winston, Washington, DC, 1977)

    Google Scholar 

  17. H.G. Schmidt-Weinmar, Spatial distribution of magnitude and phase of optical-wave fields. J. Opt. Soc. Am. 63, 547–555 (1973)

    Article  ADS  Google Scholar 

  18. H.G. Schmidt-Weinmar, Optical-wave near field specified from far-field data. J. Opt. Soc. Am. 65, 1059–1066 (1975)

    Article  ADS  Google Scholar 

  19. W.H. Carter, P.C. Ho, Reconstruction of inhomogeneous scattering objects from holograms. Appl. Opt. 13, 162–172 (1974)

    Article  ADS  Google Scholar 

  20. D.L. Marks, A family of approximations spanning the Born and Rytov scattering series. Opt. Express 14, 8837–8848 (2006)

    Article  ADS  Google Scholar 

  21. G. Beylkin, R. Burridger, Linearized inverse scattering problems in acoustics and elasticity. Wave Motion 12, 15–52 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. V. Lauer, A new approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope. J. Microsc. 205, 165–176 (2002)

    Article  MathSciNet  Google Scholar 

  23. T.S. Ralston, D.L. Marks, P.S. Carney, S.A. Boppart, Interferometric synthetic aperture microscopy. Nat. Phys. 3, 129–134 (2007)

    Article  Google Scholar 

  24. C.J.R. Sheppard, S.S. Kou, C. Depeursinge, Reconstruction in interferometric synthetic aperture microscopy: comparison with optical coherence tomography and digital holographic microscopy. J. Opt. Soc. Am. A29, 244–250 (2012)

    Article  ADS  Google Scholar 

  25. E. Evans, Comparison of the diffraction theory of image formation with the three-dimensional, first Born scattering approximation in lens systems. Opt. Commun. 2, 317–320 (1970)

    Article  ADS  Google Scholar 

  26. A.F. Fercher, C.K. Hitzenberger, Optical coherence tomography, in Progress in Optics, vol. 44 (Elsevier, Amsterdam, 2002), pp. 215–302

    Google Scholar 

  27. M. Villiger, T. Lasser, Image formation and tomogram reconstruction in optical coherence tomography. J. Opt. Soc. Am. A27, 2216–2228 (2010)

    Article  ADS  Google Scholar 

  28. A.F. Fercher, OCT techniques. Proc. SPIE 2930, 164–175 (1996)

    Article  ADS  Google Scholar 

  29. A.F. Fercher, Inverse scattering, dispersion, and speckle in optical coherence tomography, in Optical Coherence Tomography, ed. by W. Drexler, J.G. Fujimoto (Springer, Berlin, 2008)

    Google Scholar 

  30. R. Dändliker, K. Weiss, Reconstruction of the three-dimensional refractive index from scattered waves. Opt. Commun. 1, 323–328 (1970)

    Article  ADS  Google Scholar 

  31. J. Schwider, Phase shifting interferometry: reference phase error reduction. Appl. Opt. 28, 3889–3892 (1989)

    Article  ADS  Google Scholar 

  32. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, T. Bajraszewski, Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography. Opt. Lett. 28, 2201–2203 (2003)

    Article  ADS  Google Scholar 

  33. P. Hariharan, Optical Interferometry (Academic, Salt Lake City, 2003)

    Book  Google Scholar 

  34. P. Hlubina, D. Ciprian, J. Lunacek, M. Lesnak, Dispersive white-light spectral interferometry with absolute phase retrieval to measure thin film. Opt. Express 14, 7678–7685 (2006)

    Article  ADS  Google Scholar 

  35. J. Bethge, C. Grebing, G. Steinmeyer, A fast Gabor wavelet transform for high-precision phase retrieval in spectral interferometry. Opt. Express 15, 14313–14321 (2007)

    Article  ADS  Google Scholar 

  36. M.L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xe, J.S. Schuman, Optical coherence tomography: history, current status, and laboratory work. Invest. Ophthalmol. Vis. Sci. 52, 2425–2436 (2011)

    Article  Google Scholar 

  37. B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, W. Drexler, Full-field time-encoded frequency-domain optical coherence tomography. Opt. Express 14, 7661–7669 (2006)

    Article  ADS  Google Scholar 

  38. R. Bracewell, The Fourier Integral and its Applications (Mc Graw Hill, New York, 2000)

    Google Scholar 

  39. B. Grajciar, M. Pircher, A.F. Fercher, R.L. Leitgeb, Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye. Opt. Express 13, 1131–1137 (2005)

    Article  ADS  Google Scholar 

  40. A.F. Zuluaga, R. Richards-Kortum, Spatially resolved spectral interferometry for determination of subsurface structure. Opt. Lett. 24, 519–521 (1999)

    Article  ADS  Google Scholar 

  41. A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43–48 (1995)

    Article  ADS  Google Scholar 

  42. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003)

    Article  ADS  Google Scholar 

  43. J. deBoer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28, 2067–2069 (2003)

    Article  ADS  Google Scholar 

  44. M.A. Choma, M.V. Sarunic, C. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003)

    Article  ADS  Google Scholar 

  45. A.F. Fercher, Ophthalmic laser interferometry. Proc. SPIE 658, 48–51 (1986)

    Article  ADS  Google Scholar 

  46. A.F. Fercher, K. Mengedoht, W. Werner, Eye-length measurement by interferometry with partially coherent light. Opt. Lett. 13, 186–188 (1988)

    Article  ADS  Google Scholar 

  47. A.F. Fercher, Measurement of intraocular optical distances using partially coherent laser light. J. Microw. Optoelectron. 38, 1327–1333 (1991)

    Google Scholar 

  48. D. Huang, J. Wang, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Micron-resolution ranging of cornea anterior chamber by optical reflectometry. Lasers Surg. Med. 11, 419–425 (1991)

    Article  Google Scholar 

  49. A.F. Fercher, Ophthalmic interferometry, in Optics in Medicine, Biology and Environmental Research. Selected Contributions to the First International Conference on Optics Within Life Sciences (OWLS I), Garmisch-Partenkirchen, Germany, 12-16 August 1990 (ICO-15 SAT), ed. by G. von Bally, S. Khanna (Elsevier, Amsterdam/London/New York/Tokyo, 1993), pp. 221–228

    Google Scholar 

  50. A.F. Fercher, C.K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, In vivo optical coherence tomography. Am. J. Ophthalmol. 116, 113–114 (1993)

    Article  Google Scholar 

  51. E.A. Swanson, J.A. Izatt, M.R. Hee, D. Huang, C.P. Lin, J.S. Schuman, C.A. Pulliafito, J.G. Fujimoto, In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18, 1864–1866 (1993)

    Article  ADS  Google Scholar 

  52. S.R. Chinn, E.A. Swanson, J.G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source. Opt. Lett. 22, 340–342 (1997)

    Article  ADS  Google Scholar 

  53. F. Lexer, C.K. Hitzenberger, A.F. Fercher, M. Kulhavy, Wavelength-tuning interferometry of intraocular distances. Appl. Opt. 36, 6548–6553 (1997)

    Article  ADS  Google Scholar 

  54. B. Golubovic, B.E. Bouma, G.J. Tearney, J.G. Fujimoto, Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr/sup 4+/:forsterite laser, 1997. Opt. Lett. 22, 1704–1706 (1997)

    Article  ADS  Google Scholar 

  55. R. Huber, M.W. Wojtkowski, K. Taira, J.G. Fujimoto, Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express 13, 3513–3528 (2005)

    Article  ADS  Google Scholar 

  56. W.Y. Oh, S.H. Yun, G.J. Tearney, B.E. Bouma, 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Opt. Lett. 30, 3159–3161 (2005)

    Article  ADS  Google Scholar 

  57. T.H. Tsai, C. Zhou, D.C. Adler, J.G. Fujimoto, Frequency comb swept lasers. Opt. Express 17, 21257–21270 (2009)

    Article  ADS  Google Scholar 

  58. J. Goodman, Introduction to Fourier Optics (Robert & Company, Colorado, 2005)

    Google Scholar 

  59. P.S. Carney, R.A. Frazin, S.I. Bozhevolnyi, V.S. Volkov, V. Boltasseva, J.C. Schotland, A computational lens for the near-field. Phys. Rev. Lett. 92, 163903–1–163903–4 (2004)

    Article  ADS  Google Scholar 

  60. M. Ryle, The mullard radio astronomy observatory, Cambridge. Nature 180, 110–112 (1957)

    Article  ADS  Google Scholar 

  61. C. van der Avoort, S.F. Pereira, J.J.M. Braat, J.-W. den Herder, Optimum synthetic-aperture imaging of extended astronomical objects. J. Opt. Soc. Am. A24, 1042–1052 (1970)

    Google Scholar 

  62. T.S. Lewis, H.S. Hutchins, A synthetic aperture at 10.6 microns. Proc. IEEE 58, 1781–1782 (1970)

    Article  Google Scholar 

  63. S.M. Beck, J.R. Buck, W.F. Buell, R.P. Dickinson, D.A. Kozlowski, N.J. Marechal, T.J. Wright, Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing. Appl. Opt. 44, 7621–7629 (2005)

    Article  ADS  Google Scholar 

  64. T.S. Ralston, D.L. Marks, P.S. Carney, S.A. Boppart, Inverse scattering for optical coherence tomography. J. Opt. Soc. Am. A 23, 1027–1037 (2006)

    Article  ADS  Google Scholar 

  65. M.S. Heimbeck, D.L. Marks, D. Brady, H.O. Everitt, Terahertz interferometric synthetic aperture tomography for confocal imaging systems. Opt. Lett. 37, 1316–1318 (2012)

    Article  ADS  Google Scholar 

  66. A.N. Tikhonov, On the stability of inverse problems. Dokl. Akad. Nauk SSSR 39, 195–198 (1943)

    MathSciNet  Google Scholar 

  67. T.S. Ralston, D.L. Marks, P.S. Carney, S.A. Boppart, Real-time interferometric synthetic aperture microscopy. Opt. Express 16, 2555–2569 (2008)

    Article  ADS  Google Scholar 

  68. T.S. Ralston, D.L. Marks, S.A. Boppart, P.S. Carney, Inverse scattering for high-resolution interferometric microscopy. Opt. Lett. 31, 3585–3587 (2006)

    Article  ADS  Google Scholar 

  69. B.J. Davis, S.C. Schlachter, D.L. Marks, T.S. Ralston, S.A. Boppart, P.S. Carney, Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy. J. Opt. Soc. Am. A24, 2527–2542 (2007)

    Article  ADS  Google Scholar 

  70. S.G. Adie, A. Ahmad, N. Shemonski, B.W. Graf, H. Kim, W.-M.W. Hwu, P.S. Carney, S.A. Boppart, (2012) Interferometric Synthetic Aperture Microscopy with Computational Adaptive Optics for High-Resolution Tomography of Scattering Tissue. Paper BW2A.1. OSA Conference on Biomedical Optics and 3D Imaging OSA 2012, Miami, 28 April 2012.

    Google Scholar 

  71. B.J. Davis, T.S. Ralston, D.L. Marks, S.A. Boppart, P.S. Carney, Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy. Opt. Lett. 32, 1441–1443 (2007)

    Article  ADS  Google Scholar 

  72. D.L. Marks, T.S. Ralston, P.S. Carney, S.A. Boppart, Inverse scattering for rotationally scanned optical coherence tomography. J. Opt. Soc. Am. A23, 2433–2439 (2006)

    Article  ADS  Google Scholar 

  73. D.L. Marks, B.J. Davis, S.A. Boppart, P.S. Carney, Partially coherent illumination in full-field interferometric synthetic aperture microscopy. J. Opt. Soc. Am. A26, 376–386 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgment

The author thanks primarily his colleagues at the former Institute of Medical Physics at the Medical University of Vienna, in particular W. Drexler, C. K. Hitzenberger, M. Pircher, and B. Grajciar as well as M. Wojtkowski and R. Zawadzki (then) from the University of Torun/Poland.

The author is furthermore indebted to Tyler Ralston, Steven G. Adie, and Stephen A. Boppart from the University of Illinois at Urbana-Champaign, USA, for permission to reproduce Figs. 4.7 and 4.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolf F. Fercher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Fercher, A.F. (2015). Inverse Scattering and Aperture Synthesis in OCT. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_5

Download citation

Publish with us

Policies and ethics