Skip to main content

Towards the Information-Theoretic Construction of an Orbital-Free Kinetic-Energy Functional

  • Chapter
  • First Online:
Many-Electron Approaches in Physics, Chemistry and Mathematics

Part of the book series: Mathematical Physics Studies ((MPST))

  • 1967 Accesses

Abstract

The connection between information theory and quantum mechanics is strengthened using a dequantization procedure whereby quantum fluctuations latent in the quantum momentum are suppressed. The dequantization procedure results in a decomposition of the quantum kinetic energy as the sum of a classical term and a purely quantum term. The purely quantum term, which results from the quantum fluctuations, is essentially identical to the Fisher information. The classical term is complementary to the purely quantum term and, in this sense, plays a role analogous to that of the Shannon information. This kinetic energy decomposition is a first step towards the information-theoretic construction of an orbital-free kinetic-energy functional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Madelung, E.: Zeit. F. Phys 40, 322 (1927)

    Article  ADS  Google Scholar 

  2. Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge & Chapman & Hall, New York (1993)

    Google Scholar 

  3. Chan, W.-T., Hamilton, I.P.: J. Chem. Phys. 108, 2473 (1998)

    Article  ADS  Google Scholar 

  4. Levit, C., Sarfatti, J.: Chem. Phys. Lett. 281, 157 (1997)

    Article  ADS  Google Scholar 

  5. Hamilton, I.P.: Chem. Phys. Lett. 297, 261 (1998)

    Article  Google Scholar 

  6. Levit, C., Sarfatti, J.: Chem. Phys. Lett. 297, 263 (1998)

    Article  Google Scholar 

  7. Chan, W.-T., Hamilton, I.P.: Chem. Phys. Lett. 301, 53 (1999)

    Article  ADS  Google Scholar 

  8. Ghose, P.: Found. Phys. 32, 871 (2002). (quant-ph/0104104)

    Google Scholar 

  9. Ghose, P., Samal, M.K.: Found. Phys. 32, 893 (2002). (quant-ph/0104105)

    Google Scholar 

  10. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  11. Gosh, S.K., Deb, B.M.: Phys. Rep. 92, 1 (1982)

    Article  ADS  Google Scholar 

  12. Mosna, R.A., Hamilton, I.P., Delle, L.: Site. J. Phys. A 39, 3869 (2005)

    Article  ADS  Google Scholar 

  13. Mosna, R.A., Hamilton, I.P., Delle, L.: Site. J. Phys. A 39, L229 (2006)

    Article  ADS  MATH  Google Scholar 

  14. Hamilton, I.P., Mosna, R.A., Delle, L.: Site. Theor. Chem. Acc. 118, 407 (2007)

    Article  Google Scholar 

  15. Hamilton, I.P., Mosna, R.A.: J. Comp. Appl. Math. 233, 1542 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Hamilton, I.P., Mosna, R.A., Delle Site, L.: In: Wang, A., Wesolowski, T. (eds.) Recent Progress in Orbital-free Density Functional Theory. World Scientific Review (2013)

    Google Scholar 

  17. Herschbach, D., Avery, J., Goscinski, O.: Dimensional Scaling in Chemical Physics. Kluwer, Dordrecht (1992)

    Google Scholar 

  18. Witten, E.: Physics Today 33, 38 (1980)

    Article  Google Scholar 

  19. Witten, E., Diff, J.: Geo. 17, 661 (1982)

    MATH  Google Scholar 

  20. Reginatto, M.: Phys. Rev. A 58, 1775 (1998)

    Article  ADS  Google Scholar 

  21. Fisher, R.A.: Proc. Cambridge Philos. Soc. 22, 700 (1925)

    Article  ADS  MATH  Google Scholar 

  22. ’t Hooft, G.: Nucl. Phys. B72, 461 (1974)

    Google Scholar 

  23. Herrik, D., Stillinger, F.: Phys. Rev. A 11, 42 (1975)

    Article  ADS  Google Scholar 

  24. Mlodinow, L., Papanicolaou, N.: Ann. Phys. 128, 314 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  25. Mlodinow, L., Papanicolaou, N.: Ann. Phys. 1, 314 (1981)

    MathSciNet  Google Scholar 

  26. Herschbach, D.R.: J. Chem. Phys. 84, 838 (1986)

    Article  ADS  Google Scholar 

  27. Goodson, D.Z., Lopez-Cabrera, M., Herschbach, D.R., Morgani III, J.D.: J. Chem. Phys. 97, 8491 (1992)

    Article  ADS  Google Scholar 

  28. Chen, G., Ding, Z., Lin, C.-S., Herschbach, D., Scully, M.: J. Math. Chem. 48, 791 (2010)

    Google Scholar 

  29. Ding, Z., Chen, G., Lin, C.-S.: J. Math. Chem. 51, 123508 (2010)

    Google Scholar 

  30. Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, New York (1980)

    MATH  Google Scholar 

  31. Thomas, L.H.: Proc. Camb. Phil. Soc. 23, 542 (1927)

    Article  ADS  MATH  Google Scholar 

  32. Fermi, E.: Rend. Accad. Lincei 6, 602 (1927)

    Google Scholar 

  33. Weizsäcker, C.F.: Z. Phys. 96, 431 (1935)

    Google Scholar 

  34. Nagy, A.: J. Chem. Phys. 119, 9401 (2003)

    Article  ADS  Google Scholar 

  35. Shannon, C.E.: Bell Syst. Tech. J. 27, 623 (1948)

    Article  MathSciNet  Google Scholar 

  36. Nelson, E.:Quantum Fluctions, Princeton University Press, New Jersey (1985)

    Google Scholar 

  37. Sears, S.B., Parr, R.G., Dinur, U.: Isr. J. Chem. 19, 165 (1980)

    Article  Google Scholar 

  38. Ghiringhelli, L.M., Delle, L.: Site. Phys. Rev. B 77, 073104 (2009)

    Article  ADS  Google Scholar 

  39. Ghiringhelli, L.M., Delle, L.: Site, R.A. Mosna and I.P. Hamilton. J. Math. Chem. 48, 78 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ghiringhelli, L.M., Hamilton, I.P., Delle, L.: Site. J. Chem. Phys. 132, 014106 (2010)

    Article  ADS  Google Scholar 

  41. Gadre, S.R.: Adv. Quantum Chem. 22, 1 (1991)

    Article  Google Scholar 

  42. Romera, E., Dehesa, J.S.: Phys. Rev. A 50, 256 (1994)

    Article  ADS  Google Scholar 

  43. Romera, E., Dehesa, J.S.: J. Chem. Phys. 120, 8906 (2004)

    Article  ADS  Google Scholar 

  44. Sagar, R.P., Guevara, N.L.: J. Chem. Phys. 123, 044108 (2005)

    Article  ADS  Google Scholar 

  45. Herring, C.: Phys. Rev. A 34, 2614 (1986)

    Article  ADS  Google Scholar 

  46. Luo, S.: J. Phys. A 35, 5181 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Delle Site, L.: J. Phys. A 38, 7893 (2005)

    Google Scholar 

  48. Hellmann, H.: Acta Physicochem USSR 4, 225 (1936)

    Google Scholar 

  49. Siedentop, H.K.H., Phys, Z., Siedentop, H.K.H.: Phys, Z.: A 302, 213 (1981)

    Article  Google Scholar 

  50. Kemister, G., Nordholm, S.: J. Chem. Phys. 76, 5043 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian P. Hamilton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hamilton, I.P. (2014). Towards the Information-Theoretic Construction of an Orbital-Free Kinetic-Energy Functional. In: Bach, V., Delle Site, L. (eds) Many-Electron Approaches in Physics, Chemistry and Mathematics. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-06379-9_16

Download citation

Publish with us

Policies and ethics