Skip to main content

Three Little Pieces for Computer and Relativity

  • Chapter
  • First Online:
General Relativity, Cosmology and Astrophysics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 177))

Abstract

Numerical relativity has made big strides over the last decade. A number of problems that have plagued the field for years have now been mostly solved. This progress has transformed numerical relativity into a powerful tool to explore fundamental problems in physics and astrophysics, and I present here three representative examples. These “three little pieces” reflect a personal choice and describe work that I am particularly familiar with. However, many more examples could be made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Much of what follows is taken from the discussion presented in Ref. [42].

  2. 2.

    The use of a simplified EOS does not influence particularly the results besides determining the precise time when the HMNS collapses to a black hole.

  3. 3.

    Turbulence in relativistic flows is an extremely challenging problem that is also essentially unexplored. Also in this case, the first relativistic simulations have been performed only recently [63, 64].

  4. 4.

    A similar magnetic-field configuration has been recently reproduced also when simulating the merger of a magnetised neutron star onto a black hole [65].

  5. 5.

    Much of what follows is taken from the discussion presented in Ref. [96].

  6. 6.

    Much of what follows is taken from the discussion presented in Refs. [128130].

  7. 7.

    I should remark that other explanations have also been suggested. One of them makes use of the Landau-Lifshitz pseudotensor and explains the recoil in terms of the cancellation of large and opposite fluxes of momentum, part of which are “swallowed” by the black hole [131]. Another one is even more essential and explains the antikick is in terms of the spectral features of the signal at large distances, quite independently of the presence of a black-hole horizon [132]. All of these views serve the scope of providing an intuitive description and are in my view equally valid and useful.

  8. 8.

    Another appealing approach that has a similar goal of correlating strong-fields effects with (the visualization of) spacetime curvature has been proposed recently by the group in Caltech [145, 146].

  9. 9.

    Note that the meaningful definition of timeseries cross-correlations requires the introduction of a (gauge-dependent) relation between advanced and retarded time coordinates \(v\) and \(u\). In an initial value problem this is naturally provided by the \(3+1\) spacetime slicing by time \(t\).

  10. 10.

    The latter would properly require either characteristic or a hyperboloidal evolution approach.

References

  1. Pretorius, F.: Evolution of binary black hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005). doi:10.1103/PhysRevLett.95.121101

  2. Campanelli, M., Lousto, C.O., Marronetti, P., Zlochower, Y.: Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006). doi:10.1103/PhysRevLett.96.111101

    ADS  Google Scholar 

  3. Baker, J.G., Centrella, J., Choi, D.I., Koppitz, M., van Meter, J.: Gravitational wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006). doi:10.1103/PhysRevLett.96.111102

    ADS  Google Scholar 

  4. Baiotti, L., Rezzolla, L.: Challenging the paradigm of singularity excision in gravitational collapse. Phys. Rev. Lett. 97, 141101 (2006). doi:10.1103/PhysRevLett.97.141101

    ADS  MathSciNet  Google Scholar 

  5. Chu, T., Pfeiffer, H.P., Scheel, M.A.: High accuracy simulations of black hole binaries: spins anti-aligned with the orbital angular momentum. Phys. Rev. D 80(12), 124051 (2009). doi:10.1103/PhysRevD.80.124051

    ADS  Google Scholar 

  6. Baiotti, L., Giacomazzo, B., Rezzolla, L.: Accurate evolutions of inspiralling neutron-star binaries: prompt and delayed collapse to a black hole. Phys. Rev. D 78(8), 084033 (2008). doi:10.1103/PhysRevD.78.084033

    ADS  Google Scholar 

  7. Centrella, J., Baker, J.G., Kelly, B.J., van Meter, J.R.: Black-hole binaries, gravitational waves, and numerical relativity. Rev. Mod. Phys. 82, 3069 (2010). doi:10.1103/RevModPhys.82.3069

    ADS  MATH  Google Scholar 

  8. Pfeiffer, H.P.: Numerical simulations of compact object binaries. Class. Quant. Grav. 29(12), 124004 (2012). doi:10.1088/0264-9381/29/12/124004

    ADS  MathSciNet  Google Scholar 

  9. Radice, D., Rezzolla, L.: Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes. Phys. Rev. D 84(2), 024010 (2011). doi:10.1103/PhysRevD.84.024010

    ADS  Google Scholar 

  10. Radice, D., Rezzolla, L.: THC: a new high-order finite-difference high-resolution shock-capturing code for special-relativistic hydrodynamics. Astron. Astrophys. 547, A26 (2012). doi:10.1051/0004-6361/201219735

    ADS  Google Scholar 

  11. Nakamura, T., Oohara, K., Kojima, Y.: General relativistic collapse to black holes and gravitational waves from black holes. Prog. Theor. Phys. Suppl. 90, 1 (1987)

    ADS  MathSciNet  Google Scholar 

  12. Bona, C., Massó, J., Seidel, E., Stela, J.: New formalism for numerical relativity. Phys. Rev. Lett. 75, 600 (1995). doi:10.1103/PhysRevLett.75.600

    ADS  Google Scholar 

  13. Shibata, M., Nakamura, T.: Evolution of three-dimensional gravitational waves: harmonic slicing case. Phys. Rev. D 52, 5428 (1995). doi:10.1103/PhysRevD.52.5428

    ADS  MATH  MathSciNet  Google Scholar 

  14. Baumgarte, T.W., Shapiro, S.L.: On the numerical integration of Einstein’s field equations. Phys. Rev. D 59, 024007 (1999). doi:10.1103/PhysRevD.59.024007

    ADS  MathSciNet  Google Scholar 

  15. Alcubierre, M., Brügmann, B., Diener, P., et al.: Gauge conditions for long-term numerical black hole evolutions without excision. Phys. Rev. D 67, 084023 (2003). doi:10.1103/PhysRevD.67.084023

    ADS  MathSciNet  Google Scholar 

  16. Pretorius, F.: Numerical relativity using a generalized harmonic decomposition. Class. Quant. Grav. 22, 425 (2005). doi:10.1088/0264-9381/22/2/014

    ADS  MATH  MathSciNet  Google Scholar 

  17. Alic, D., Bona, C., Bona-Casas, C.: Towards a gauge-polyvalent numerical relativity code. Phys. Rev. D 79(4), 044026 (2009). doi:10.1103/PhysRevD.79.044026

    ADS  Google Scholar 

  18. Bernuzzi, S., Hilditch, D.: Constraint violation in free evolution schemes: comparing BSSNOK with a conformal decomposition of Z4. Phys. Rev. D 81, 084003 (2010). doi:10.1103/PhysRevD.81.084003

    ADS  Google Scholar 

  19. Müller, D., Grigsby, J., Brügmann, B.: Dynamical shift condition for unequal mass black hole binaries. Phys. Rev. D 82, 064004 (2010). doi:10.1103/PhysRevD.82.064004

    ADS  Google Scholar 

  20. Schnetter, E.: Time step size limitation introduced by the BSSN Gamma driver. Class. Quant. Grav. 27, 167001 (2010). doi:10.1088/0264-9381/27/16/167001

    ADS  MathSciNet  Google Scholar 

  21. Alic, D., Bona-Casas, C., Bona, C., Rezzolla, L., Palenzuela, C.: Conformal and covariant formulation of the Z4 system with constraint-violation damping. Phys. Rev. D 85, 064040 (2012)

    ADS  Google Scholar 

  22. Shibata, M., Taniguchi, K.: Merger of binary neutron stars to a black hole: disk mass, short gamma-ray bursts, and quasinormal mode ringing. Phys. Rev. D 73, 064027 (2006). doi:10.1103/PhysRevD.73.064027

    ADS  Google Scholar 

  23. Anderson, M., Hirschmann, E.W., Lehner, L., et al.: Magnetized neutron star mergers and gravitational wave signals. Phys. Rev. Lett. 100, 191101 (2008)

    ADS  Google Scholar 

  24. Liu, Y.T., Shapiro, S.L., Etienne, Z.B., Taniguchi, K.: General relativistic simulations of magnetized binary neutron star mergers. Phys. Rev. D 78, 024012 (2008). doi:10.1103/PhysRevD.78.024012

    ADS  Google Scholar 

  25. Giacomazzo, B., Rezzolla, L., Baiotti, L.: Can magnetic fields be detected during the inspiral of binary neutron stars? Mon. Not. R. Astron. Soc. 399, L164 (2009). doi:10.1111/j.1745-3933.2009.00745.x

    ADS  Google Scholar 

  26. Giacomazzo, B., Rezzolla, L., Stergioulas, N.: Collapse of differentially rotating neutron stars and cosmic censorship. Phys. Rev. D 84(2), 024022 (2011). doi:10.1103/PhysRevD.84.024022

    ADS  Google Scholar 

  27. Rezzolla, L., Baiotti, L., Giacomazzo, B., Link, D., Font, J.A.: Accurate evolutions of unequal-mass neutron-star binaries: properties of the torus and short GRB engines. Class. Quant. Grav. 27(11), 114105 (2010). doi:10.1088/0264-9381/27/11/114105

    ADS  Google Scholar 

  28. Kiuchi, K., Sekiguchi, Y., Shibata, M., Taniguchi, K.: Exploring binary-neutron-star-merger scenario of short-gamma-ray bursts by gravitational-wave observation. Phys. Rev. Lett. 104(14), 141101 (2010). doi:10.1103/PhysRevLett.104.141101

    ADS  Google Scholar 

  29. Baiotti, L., Damour, T., Giacomazzo, B., Nagar, A., Rezzolla, L.: Analytic modelling of tidal effects in the relativistic inspiral of binary neutron stars. Phys. Rev. Lett. 105, 261101 (2010). doi:10.1103/PhysRevLett.105.261101

    ADS  Google Scholar 

  30. Bernuzzi, S., Nagar, A., Thierfelder, M., Brügmann, B.: Tidal effects in binary neutron star coalescence. Phys. Rev. D 86(4), 044030 (2012). doi:10.1103/PhysRevD.86.044030

    ADS  Google Scholar 

  31. Hotokezaka, K., Kyutoku, K., Shibata, M.: Exploring tidal effects of coalescing binary neutron stars in numerical relativity. Phys. Rev. D 87(4), 044001 (2013). doi:10.1103/PhysRevD.87.044001

    ADS  Google Scholar 

  32. Abadie, J., Abbott, B.P., Abbott, R., et al.: Topical review: predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class. Quant. Grav. 27(17), 173001 (2010). doi:10.1088/0264-9381/27/17/173001

    ADS  Google Scholar 

  33. Paczynski, B.: Gamma-ray bursters at cosmological distances. Astrophys. J. Lett. 308, L43 (1986). doi:10.1086/184740

    ADS  Google Scholar 

  34. Eichler, D., Livio, M., Piran, T., Schramm, D.N.: Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 340, 126 (1989). doi:10.1038/340126a0

    ADS  Google Scholar 

  35. Narayan, R., Paczynski, B., Piran, T.: Gamma-ray bursts as the death throes of massive binary stars. Astrophys. J. 395, L83 (1992)

    ADS  Google Scholar 

  36. Ruffert, M., Janka, H.T.: Gamma-ray bursts from accreting black holes in neutron star mergers. Astron. Astrophys. 344, 573 (1999)

    ADS  Google Scholar 

  37. Rosswog, S., Ramirez-Ruiz, E., Davies, M.B.: High-resolution calculations of merging neutron stars - III. Gamma-ray bursts. Mon. Not. R. Astron. Soc. 345, 1077 (2003). doi:10.1046/j.1365-2966.2003.07032.x

    ADS  Google Scholar 

  38. Nakar, E.: Short-hard gamma-ray bursts. Phys. Rep. 442, 166 (2007). doi:10.1016/j.physrep.2007.02.005

    ADS  Google Scholar 

  39. Lee, W.H., Ramirez-Ruiz, E.: The progenitors of short gamma-ray bursts. New J. Phys. 9, 17 (2007). doi:10.1088/1367-2630/9/1/017

    ADS  Google Scholar 

  40. Fox, D.B., Frail, D.A., Price, P.A., et al.: The afterglow of GRB050709 and the nature of the short-hard gamma-ray bursts. Nature 437, 845 (2005). doi:10.1038/nature04189

    ADS  Google Scholar 

  41. Prochaska, J.X., Bloom, J.S., Chen, H.W., et al.: The galaxy hosts and large-scale environments of short-hard gamma-ray bursts. Astrophys. J. 642, 989 (2006). doi:10.1086/501160

    ADS  Google Scholar 

  42. Rezzolla, L., Giacomazzo, B., Baiotti, L., et al.: The missing link: merging neutron stars naturally produce jet-like structures and can power short gamma-ray bursts. Astrophys. J. 732(11), L6 (2011). doi:10.1088/2041-8205/732/1/L6

    ADS  Google Scholar 

  43. Giacomazzo, B., Rezzolla, L.: WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics. Class. Quant. Grav. 24, S235 (2007). doi:10.1088/0264-9381/24/12/S16

    ADS  MATH  MathSciNet  Google Scholar 

  44. Pollney, D., Reisswig, C., Rezzolla, L., et al.: Recoil velocities from equal-mass binary black-hole mergers: a systematic investigation of spin-orbit aligned configurations. Phys. Rev. D 76, 124002 (2007)

    ADS  Google Scholar 

  45. Baiotti, L., Hawke, I., Montero, P., Rezzolla, L.: A new three-dimensional general-relativistic hydrodynamics code. In: Capuzzo-Dolcetta R. (ed.) Computational Astrophysics in Italy: Methods and Tools, vol. 1, p. 210. MSAIt, Trieste (2003)

    Google Scholar 

  46. Baiotti, L., Hawke, I., Montero, P.J., et al.: Three-dimensional relativistic simulations of rotating neutron star collapse to a Kerr black hole. Phys. Rev. D 71, 024035 (2005)

    ADS  Google Scholar 

  47. Antón, L., Zanotti, O., Miralles, J.A., et al.: Numerical 3+1 general relativistic magnetohydrodynamics: a local characteristic approach. Astrophys. J. 637, 296 (2006). doi:10.1086/498238

    ADS  Google Scholar 

  48. Toth, G.: The div \(B=0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605 (2000). doi: 10.1006/jcph.2000.6519

    ADS  MATH  MathSciNet  Google Scholar 

  49. Schnetter, E., Hawley, S.H., Hawke, I.: Evolutions in 3D numerical relativity using fixed mesh refinement. Class. Quant. Grav. 21(6), 1465 (2004). doi:10.1088/0264-9381/21/6/014

    ADS  MATH  MathSciNet  Google Scholar 

  50. Kouveliotou, C., Meegan, C.A., Fishman, G.J., et al.: Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101 (1993). doi:10.1086/186969

    ADS  Google Scholar 

  51. Dessart, L., Ott, C.D., Burrows, A., Rosswog, S., Livne, E.: Neutrino signatures and the neutrino-driven wind in binary neutron star mergers. Astrophys. J. 690, 1681 (2009). doi:10.1088/0004-637X/690/2/1681

    ADS  Google Scholar 

  52. Setiawan, S., Ruffert, M., Janka, H.: Non-stationary hyperaccretion of stellar-mass black holes in three dimensions: torus evolution and neutrino emission. Mon. Not. R. Astron. Soc. 352, 753 (2004). doi:10.1111/j.1365-2966.2004.07974.x

    ADS  Google Scholar 

  53. McKinney, J.C., Uzdensky, D.A.: A reconnection switch to trigger gamma-ray burst jet dissipation. Mon. Not. R. Astron. Soc. 419, 573 (2012). doi:10.1111/j.1365-2966.2011.19721.x

    ADS  Google Scholar 

  54. Price, R.H., Rosswog, S.: Producing ultrastrong magnetic fields in neutron star mergers. Science 312, 719 (2006). doi:10.1126/science.1125201

    ADS  Google Scholar 

  55. Aloy, M.A., Janka, H., Müller, E.: Relativistic outflows from remnants of compact object mergers and their viability for short gamma-ray bursts. Astron. Astrophys. 436, 273 (2005). doi:10.1051/0004-6361:20041865

    ADS  Google Scholar 

  56. Komissarov, S.S., Vlahakis, N., Königl, A., Barkov, M.V.: Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources. Mon. Not. R. Astron. Soc. 394, 1182 (2009). doi:10.1111/j.1365-2966.2009.14410.x

    ADS  Google Scholar 

  57. Balbus, S.A., Hawley, J.F.: Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1 (1998). doi:10.1103/RevModPhys.70.1

    ADS  Google Scholar 

  58. Siegel, D.M., Ciolfi, R., Harte, A.I., Rezzolla, L.: On the magnetorotational instability in relativistic hypermassive neutron stars. ArXiv e-prints [ arXiv:1302.4368[gr-qc]] (2013)

  59. Giacomazzo, B., Rezzolla, L., Baiotti, L.: Accurate evolutions of inspiralling and magnetized neutron stars: equal-mass binaries. Phys. Rev. D 83(4), 044014 (2011). doi:10.1103/PhysRevD.83.044014

    ADS  Google Scholar 

  60. Obergaulinger, M., Cerdá-Durán, P., Müller, E., Aloy, M.A.: Semi-global simulations of the magneto-rotational instability in core collapse supernovae. Astron. Astrophys. 498, 241 (2009). doi:10.1051/0004-6361/200811323

    ADS  Google Scholar 

  61. Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433 (1977)

    ADS  Google Scholar 

  62. Komissarov, S.S., Barkov, M.V.: Activation of the Blandford-Znajek mechanism in collapsing stars. Mon. Not. R. Astron. Soc. 397, 1153 (2009). doi:10.1111/j.1365-2966.2009.14831.x

    ADS  Google Scholar 

  63. Radice, D., Rezzolla, L.: Universality and intermittency in relativistic turbulent flows of a hot plasma. Astrophys. J. 766, L10 (2013). doi:10.1088/2041-8205/766/1/L10

    ADS  Google Scholar 

  64. Zrake, J., MacFadyen, A.I.: Spectral and intermittency properties of relativistic turbulence. Astrophys. J. 763, L12 (2013). doi:10.1088/2041-8205/763/1/L12

    ADS  Google Scholar 

  65. Etienne, Z.B., Paschalidis, V., Shapiro, S.L.: General-relativistic simulations of black-hole-neutron-star mergers: effects of tilted magnetic fields. Phys. Rev. D 86(8), 084026 (2012). doi:10.1103/PhysRevD.86.084026

    ADS  Google Scholar 

  66. Lesur, G., Ogilvie, G.I.: Localized magnetorotational instability and its role in the accretion disc dynamo. Mon. Not. R. Astron. Soc. 391, 1437 (2008). doi:10.1111/j.1365-2966.2008.13993.x

    ADS  Google Scholar 

  67. Aloy, M.A., Rezzolla, L.: A powerful hydrodynamic booster for relativistic jets. Astrophys. J. 640, L115 (2006). doi:10.1086/503608

    ADS  Google Scholar 

  68. Granot, J., Komissarov, S.S., Spitkovsky, A.: Impulsive acceleration of strongly magnetized relativistic flows. Mon. Not. R. Astron. Soc. 411, 1323 (2011). doi:10.1111/j.1365-2966.2010.17770.x

    ADS  Google Scholar 

  69. Dionysopoulou, K., Alic, D., Palenzuela, C., Rezzolla, L., Giacomazzo, B.: General-relativistic resistive magnetohydrodynamics in three dimensions: formulation and tests. ArXiv e-prints 1208.3487 [gr-qc] (2012)

  70. Bloom, J.S., Prochaska, J.X., Pooley, D., et al.: Closing in on a short-hard burst progenitor: constraints from early-time optical imaging and spectroscopy of a possible host galaxy of GRB 050509b. Astrophys. J. 638, 354 (2006). doi:10.1086/498107

    ADS  Google Scholar 

  71. Ackermann, M., Asano, K., Atwood, W.B., et al.: Fermi observations of GRB 090510: a short-hard gamma-ray burst with an additional, hard power-law component from 10 keV TO GeV energies. Astrophys. J. 716, 1178 (2010). doi:10.1088/0004-637X/716/2/1178

    ADS  Google Scholar 

  72. Oechslin, R., Janka, H.T.: Torus formation in neutron star mergers and well-localized short gamma-ray burst. Mon. Not. R. Astron. Soc. 368, 1489 (2006)

    ADS  Google Scholar 

  73. Birkl, R., Aloy, M.A., Janka, H.T., Müller, E.: Neutrino pair annihilation near accreting, stellar-mass black holes. Astron. Astrophys. 463, 51 (2007). doi:10.1051/0004-6361:20066293

    ADS  Google Scholar 

  74. Lee, H.K., Wijers, R.A.M.J., Brown, G.E.: The Blandford-Znajek process as a central engine for a gamma-ray burst. Phys. Rep. 325, 83 (2000). doi:10.1016/S0370-1573(99)00084-8

    ADS  Google Scholar 

  75. Granot, J., Königl, A., Piran, T.: Implications of the early X-ray afterglow light curves of Swift gamma-ray bursts. Mon. Not. R. Astron. Soc. 370, 1946 (2006). doi:10.1111/j.1365-2966.2006.10621.x

    ADS  Google Scholar 

  76. Abdo, A.A., Ackermann, M., Asano, K., et al.: Fermi observations of high-energy gamma-ray emission from GRB 080825C. Astrophys. J. 707, 580 (2009). doi:10.1088/0004-637X/707/1/580

    ADS  Google Scholar 

  77. Granot, J., Cohen-Tanugi, J., do Couto e Silva, E.: Opacity buildup in impulsive relativistic sources. Astrophys. J. 677, 92 (2008). doi:10.1086/526414

    ADS  Google Scholar 

  78. De Pasquale, M., Schady, P., Kuin, N.P.M., et al.: Swift and Fermi observations of the early afterglow of the short gamma-ray burst 090510. Astrophys. J. 709, L146 (2010). doi:10.1088/2041-8205/709/2/L146

    ADS  Google Scholar 

  79. Rossi, E., Lazzati, D., Rees, M.J.: Afterglow light curves, viewing angle and the jet structure of \(\gamma \)-ray bursts. Mon. Not. R. Astron. Soc. 332, 945 (2002). doi: 10.1046/j.1365-8711.2002.05363.x

    ADS  Google Scholar 

  80. Peng, F., Königl, A., Granot, J.: Two-component jet models of gamma-ray burst sources. Astrophys. J. 626, 966 (2005). doi:10.1086/430045

    ADS  Google Scholar 

  81. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  82. Thorne, K.: Nonspherical gravitational collapse: a short review. In: Klauder, J. (ed.) Magic Without Magic: John Archibald Wheeler, p. 231. Freeman, San Francisco (1972)

    Google Scholar 

  83. Senovilla, J.M.M.: A reformulation of the hoop conjecture. Europhys. Lett. 81, 20004 (2008). doi:10.1209/0295-5075/81/20004

    ADS  MathSciNet  Google Scholar 

  84. Argyres, P.C., Dimopoulos, S., March-Russell, J.: Black holes and sub-millimeter dimensions. Phys. Lett. B 441, 96 (1998). doi:10.1016/S0370-2693(98)01184-8

    ADS  MathSciNet  Google Scholar 

  85. Yoshino, H., Nambu, Y.: Black hole formation in the grazing collision of high-energy particles. Phys. Rev. D 67(2), 024009 (2003). doi:10.1103/PhysRevD.67.024009

    ADS  Google Scholar 

  86. Yoo, C.M., Ishihara, H., Kimura, M., Tanzawa, S.: Hoop conjecture and the horizon formation cross section in Kaluza-Klein spacetimes. Phys. Rev. D 81(2), 024020 (2010). doi:10.1103/PhysRevD.81.024020

    ADS  MathSciNet  Google Scholar 

  87. Dimopoulos, S., Landsberg, G.: Black holes at the Large Hadron Collider. Phys. Rev. Lett. 87(16), 161602 (2001). doi:10.1103/PhysRevLett.87.161602

    ADS  Google Scholar 

  88. Sperhake, U., Cardoso, V., Pretorius, F., Berti, E., Gonzalez, J.A.: The high-energy collision of two black holes. Phys. Rev. Lett. 101, 161101 (2008). doi:10.1103/PhysRevLett.101.161101

    ADS  Google Scholar 

  89. Shibata, M., Okawa, H., Yamamoto, T.: High-velocity collision of two black holes. Phys. Rev. D 78(10), 101501 (2008). doi:10.1103/PhysRevD.78.101501

    ADS  Google Scholar 

  90. Sperhake, U., Cardoso, V., Pretorius, F., et al.: Cross section, final spin, and zoom-whirl behavior in high-energy black-hole collisions. Phys. Rev. Lett. 103(13), 131102 (2009). doi:10.1103/PhysRevLett.103.131102

    ADS  Google Scholar 

  91. Eardley, D.M., Giddings, S.B.: Classical black hole production in high-energy collisions. Phys. Rev. D 66(4), 044011 (2002). doi:10.1103/PhysRevD.66.044011

    ADS  MathSciNet  Google Scholar 

  92. D’Eath, P.D., Payne, P.N.: Gravitational radiation in black-hole collisions at the speed of light. I. Perturbation treatment of the axisymmetric collision. Phys. Rev. D 46, 658 (1992). doi:10.1103/PhysRevD.46.658

  93. D’Eath, P.D., Payne, P.N.: Gravitational radiation in black-hole collisions at the speed of light. II. Reduction to two independent variables and calculation of the second-order news function. Phys. Rev. D 46, 675 (1992). doi:10.1103/PhysRevD.46.675

  94. D’Eath, P.D., Payne, P.N.: Gravitational radiation in black-hole collisions at the speed of light. III. Results and conclusions. Phys. Rev. D 46, 694 (1992). doi:10.1103/PhysRevD.46.694

  95. Choptuik, M.W., Pretorius, F.: Ultrarelativistic particle collisions. Phys. Rev. Lett. 104(11), 111101 (2010). doi:10.1103/PhysRevLett.104.111101

    ADS  Google Scholar 

  96. Rezzolla, L., Takami, K.: Black-hole production from ultrarelativistic collisions. Class. Quant. Grav. 30(1), 012001 (2013). doi:10.1088/0264-9381/30/1/012001

    ADS  Google Scholar 

  97. East, W.E., Pretorius, F.: Ultrarelativistic black hole formation. ArXiv e-prints 1210.0443 [gr-qc] (2012)

  98. Rischke, D.H., Bernard, S., Maruhn, J.A.: Relativistic hydrodynamics for heavy-ion collisions. I. General aspects and expansion into vacuum. Nucl. Phys. A 595, 346 (1995). doi:10.1016/0375-9474(95)00355-1

    ADS  Google Scholar 

  99. Kellerman, T., Rezzolla, L., Radice, D.: Critical phenomena in neutron stars: II. Head-on collisions. Class. Quant. Grav. 27(23), 235016 (2010). doi:10.1088/0264-9381/27/23/235016

    ADS  MathSciNet  Google Scholar 

  100. Kellerman, T., Baiotti, L., Giacomazzo, B., Rezzolla, L.: An improved formulation of the relativistic hydrodynamics equations in 2D Cartesian coordinates. Class. Quant. Grav. 25(22), 225007 (2008). doi:10.1088/0264-9381/25/22/225007

    ADS  MathSciNet  Google Scholar 

  101. Radice, D., Rezzolla, L., Kellerman, T.: Critical phenomena in neutron stars: I. Linearly unstable nonrotating models. Class. Quant. Grav. 27(23), 235015 (2010). doi:10.1088/0264-9381/27/23/235015

    ADS  MathSciNet  Google Scholar 

  102. Bjorken, J.D.: Highly relativistic nucleus-nucleus collisions: the central rapidity region. Phys. Rev. D 27, 140 (1983). doi:10.1103/PhysRevD.27.140

    ADS  Google Scholar 

  103. Huovinen, P., Ruuskanen, P.V.: Hydrodynamic models for heavy ion collisions. Annu. Rev. Nucl. Part. Sci. 56, 163 (2006). doi:10.1146/annurev.nucl.54.070103.181236

    ADS  Google Scholar 

  104. Jin, K.J., Suen, W.M., et al.: Critical phenomena in head-on collision of neutron stars. Phys. Rev. Lett. 98, 131101 (2007)

    ADS  Google Scholar 

  105. Wan, M.B.: Universality and properties of neutron star type I critical collapses. Class. Quant. Grav. 28(15), 155002 (2011). doi:10.1088/0264-9381/28/15/155002

    ADS  Google Scholar 

  106. Heuer, R.D.: News from CERN, LHC status and strategy for linear colliders. ArXiv e-prints [arXiv:1202.5860 physics.acc-ph] (2012)

  107. Blasi, P.: On the origin of very high energy cosmic rays. Mod. Phys. Lett. A20, 3055 (2005)

    ADS  MathSciNet  Google Scholar 

  108. Peres, A.: Classical radiation recoil. Phys. Rev. 128, 2471 (1962). doi:10.1103/PhysRev.128.2471

    ADS  MATH  MathSciNet  Google Scholar 

  109. Fitchett, M.J., Detweiler, S.: Linear momentum and gravitational waves - circular orbits around a Schwarzschild black hole. Mon. Not. R. Astron. Soc. 211, 933 (1984)

    ADS  Google Scholar 

  110. Wiseman, A.G.: Coalescing binary systems of compact objects to (post)5/2 Newtonian order. 2. Higher order wave forms and radiation recoil. Phys. Rev. D 46, 1517 (1992). doi:10.1103/PhysRevD.46.1517

    ADS  Google Scholar 

  111. Andrade, Z., Price, R.H.: Head-on collisions of unequal mass black holes: close-limit predictions. Phys. Rev. D 56, 6336 (1997). doi:10.1103/PhysRevD.56.6336

    ADS  Google Scholar 

  112. Baker, J.G., Centrella, J., Choi, D.I., et al.: Getting a kick out of numerical relativity. Astrophys. J. 653, L93 (2006). doi:10.1086/510448

    ADS  Google Scholar 

  113. Gonzalez, J.A., Sperhake, U., Bruegmann, B., Hannam, M., Husa, S.: Total recoil: the maximum kick from nonspinning black-hole binary inspiral. Phys. Rev. Lett. 98, 091101 (2007)

    ADS  MathSciNet  Google Scholar 

  114. Campanelli, M., Lousto, C.O., Zlochower, Y., Merritt, D.: Maximum gravitational recoil. Phys. Rev. Lett. 98, 231102 (2007). doi:10.1103/PhysRevLett.98.231102

    ADS  Google Scholar 

  115. Herrmann, F., Hinder, I., Shoemaker, D., Laguna, P., Matzner, R.A.: Gravitational recoil from spinning binary black hole mergers. Astrophys. J. 661, 430 (2007). doi:10.1086/513603

    ADS  Google Scholar 

  116. Koppitz, M., et al.: Recoil velocities from equal-mass binary-black-hole mergers. Phys. Rev. Lett. 99, 041102 (2007). doi:10.1103/PhysRevLett.99.041102

  117. Lousto, C.O., Zlochower, Y.: Further insight into gravitational recoil. Phys. Rev. D 77, 044028 (2008). doi:10.1103/PhysRevD.77.044028

    ADS  Google Scholar 

  118. Pollney, D., et al.: Recoil velocities from equal-mass binary black-hole mergers: a systematic investigation of spin-orbit aligned configurations. Phys. Rev. D 76, 124002 (2007). doi:10.1103/PhysRevD.76.124002

    ADS  Google Scholar 

  119. Healy, J., et al.: Superkicks in hyperbolic encounters of binary black holes. Phys. Rev. Lett. 102, 041101 (2009). doi:10.1103/PhysRevLett.102.041101

    ADS  MathSciNet  Google Scholar 

  120. Lousto, C.O., Zlochower, Y.: Hangup kicks: still larger recoils by partial spin-orbit alignment of black-hole binaries. Phys. Rev. Lett. 107(23), 231102 (2011). doi:10.1103/PhysRevLett.107.231102

    ADS  Google Scholar 

  121. Campanelli, M., Lousto, C.O., Zlochower, Y., Merritt, D.: Large merger recoils and spin flips from generic black-hole binaries. Astrophys. J. 659, L5 (2007)

    ADS  Google Scholar 

  122. Gonzalez, J.A., Hannam, M.D., Sperhake, U., Bruegmann, B., Husa, S.: Supermassive kicks for spinning black holes. Phys. Rev. Lett. 98, 231101 (2007). doi:10.1103/PhysRevLett.98.231101

    ADS  Google Scholar 

  123. Rezzolla, L.: Modelling the final state from binary black-hole coalescences. Class. Quant. Grav. 26, 094023 (2009). doi:10.1088/0264-9381/26/9/094023

    ADS  MathSciNet  Google Scholar 

  124. Lousto, C.O., Zlochower, Y.: Nonlinear gravitational recoil from the mergers of precessing black-hole binaries. ArXiv e-prints 1211.7099 [gr-qc] (2012)

  125. Schnittman, J.D., Buonanno, A., van Meter, J.R., et al.: Anatomy of the binary black hole recoil: a multipolar analysis. Phys. Rev. D 77(4), 044031 (2008). doi:10.1103/PhysRevD.77.044031

    ADS  Google Scholar 

  126. Mino, Y., Brink, J.: Gravitational radiation from plunging orbits—perturbative study. Phys. Rev. D 78, 124015 (2008). doi:10.1103/PhysRevD.78.124015

    ADS  Google Scholar 

  127. Le Tiec, A., Blanchet, L., Will, C.M.: Gravitational-wave recoil from the ringdown phase of coalescing black hole binaries. Class. Quant. Grav. 27, 012001 (2010). doi:10.1088/0264-9381/27/1/012001

    ADS  Google Scholar 

  128. Rezzolla, L., Macedo, R.P., Jaramillo, J.L.: Understanding the ’anti-kick’ in the merger of binary black holes. Phys. Rev. Lett. 104, 221101 (2010). doi:10.1103/PhysRevLett.104.221101

    ADS  Google Scholar 

  129. Jaramillo, J.L., Macedo, R.P., Moesta, P., Rezzolla, L.: Black-hole horizons as probes of black-hole dynamics. I. Post-merger recoil in head-on collisions. Phys. Rev. D 85, 084030 (2012). doi:10.1103/PhysRevD.85.084030

    ADS  Google Scholar 

  130. Jaramillo, J.L., Macedo, R.P., Moesta, P., Rezzolla, L.: Black-hole horizons as probes of black-hole dynamics. II. Geometrical insights. Phys. Rev. D 85, 084031 (2012). doi:10.1103/PhysRevD.85.084031

    ADS  Google Scholar 

  131. Lovelace, G., et al.: Momentum flow in black-hole binaries: II. Numerical simulations of equal-mass, head-on mergers with antiparallel spins. Phys. Rev. D 82, 064031 (2010). doi:10.1103/PhysRevD.82.064031

    ADS  Google Scholar 

  132. Price, R.H., Khanna, G., Hughes, S.A.: Systematics of black hole binary inspiral kicks and the slowness approximation. Phys. Rev. D 83(12), 124002 (2011). doi:10.1103/PhysRevD.83.124002

    ADS  Google Scholar 

  133. Robinson, I., Trautman, A.: Some spherical gravitational waves in general relativity. Proc. Roy. Soc. Lond. A265, 463 (1962). doi:10.1098/rspa.1962.0036

    ADS  MathSciNet  Google Scholar 

  134. Penrose, R.: Naked singularities. Ann. N.Y. Acad. Sci. 224, 125 (1973). doi:10.1111/j.1749-6632.1973.tb41447.x

    ADS  Google Scholar 

  135. Tod, K.P.: Analogue of the past horizon in the Robinson-Trautman metrics. Class. Quant. Grav. 6, 1159 (1989). doi:10.1088/0264-9381/6/8/015

    ADS  MATH  MathSciNet  Google Scholar 

  136. Chow, E.W.M., Lun, A.W.C.: Apparent horizons in vacuum Robinson-Trautman space-times. J. Austral. Math. Soc. Serv. B 41, 217 (1999)

    MATH  MathSciNet  Google Scholar 

  137. Natorf, W., Tafel, J.: Horizons in Robinson-Trautman space-times. Class. Quant. Grav. 25, 195012 (2008). doi:10.1088/0264-9381/25/19/195012

    ADS  MathSciNet  Google Scholar 

  138. Podolsky, J., Svitek, O.: Past horizons in Robinson-Trautman spacetimes with a cosmological constant. Phys. Rev. D 80, 124042 (2009). doi:10.1103/PhysRevD.80.124042

    ADS  MathSciNet  Google Scholar 

  139. Macedo, R.P., Saa, A.: Gravitational wave recoil in Robinson-Trautman spacetimes. Phys. Rev. D 78, 104025 (2008). doi:10.1103/PhysRevD.78.104025

    ADS  MathSciNet  Google Scholar 

  140. Chrusciel, P.T.: Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation. Commun. Math. Phys. 137, 289 (1991). doi:10.1007/BF02431882

    ADS  MATH  MathSciNet  Google Scholar 

  141. de Oliveira, H.P., Damiao, I.: Soares, gravitational wave emission from a bounded source: the nonlinear regime. Phys. Rev. D 70, 084041 (2004). doi:10.1103/PhysRevD.70.084041

    ADS  MathSciNet  Google Scholar 

  142. Aranha, R.F., de Oliveira, H.P., Soares, I.D., Tonini, E.V.: The efficiency of gravitational bremsstrahlung production in the collision of two Schwarzschild black holes. Int. J. Mod. Phys. D 17, 2049 (2008). doi:10.1142/S0218271808013704

    ADS  MATH  Google Scholar 

  143. Aranha, R.F., Soares, I.D., Tonini, E.V.: Mass-energy and momentum extraction by gravitational wave emission in the merger of two colliding black holes: the non-head-on case. Phys. Rev. D 85(2), 024003 (2012). doi:10.1103/PhysRevD.85.024003

    ADS  Google Scholar 

  144. Ashtekar, A., Engle, J., Pawlowski, T., Van Den Broeck, C.: Multipole moments of isolated horizons. Class. Quant. Grav. 21, 2549 (2004). doi:10.1088/0264-9381/21/11/003

    ADS  MATH  Google Scholar 

  145. Owen, R., Brink, J., Chen, Y., et al.: Frame-dragging vortexes and tidal tendexes attached to colliding black holes: visualizing the curvature of spacetime. Phys. Rev. Lett. 106(15), 151101 (2011). doi:10.1103/PhysRevLett.106.151101

    ADS  Google Scholar 

  146. Nichols, D.A., Owen, R., Zhang, F., et al.: Visualizing spacetime curvature via frame-drag vortexes and tidal tendexes: general theory and weak-gravity applications. Phys. Rev. D 84, 124014 (2011). doi:10.1103/PhysRevD.84.124014

    ADS  Google Scholar 

  147. Hayward, S.A.: General laws of black hole dynamics. Phys. Rev. D 49(12), 6467 (1994). doi:10.1103/PhysRevD.49.6467

    ADS  MathSciNet  Google Scholar 

  148. Ashtekar, A., Krishnan, B.: Dynamical horizons and their properties. Phys. Rev. D 68, 104030 (2003). doi:10.1103/PhysRevD.68.104030

    ADS  MathSciNet  Google Scholar 

  149. Ashtekar, A., Krishnan, B.: Isolated and dynamical horizons and their applications. Living Rev. Relativ. 7, 10 (2004)

    ADS  Google Scholar 

  150. Sperhake, U., Berti, E., Cardoso, V., Pretorius, F., Yunes, N.: Superkicks in ultrarelativistic encounters of spinning black holes. Phys. Rev. D 83, 024037 (2011). doi:10.1103/PhysRevD.83.024037

    ADS  Google Scholar 

Download references

Acknowledgments

The work discussed here has been carried out in collaboration with M. A. Aloy, L. Baiotti, B. Giacomazzo, J. Granot, J. L. Jaramillo, C. Kouveliotou, R. P. Macedo K. Takami, whom I am indebted with. My thanks go also to the numerical-relativity group of the AEI for providing such a stimulating and productive environment. Support comes through the DFG grant SFB/Trans-regio 7 and “CompStar”, a Research Networking Programme of the ESF. The calculations have been performed on the clusters at the AEI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Rezzolla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rezzolla, L. (2014). Three Little Pieces for Computer and Relativity. In: Bičák, J., Ledvinka, T. (eds) General Relativity, Cosmology and Astrophysics. Fundamental Theories of Physics, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-06349-2_19

Download citation

Publish with us

Policies and ethics