Skip to main content

Reduced-Order Modelling Strategies for the Finite Element Approximation of the Incompressible Navier-Stokes Equations

  • Chapter
  • First Online:
Numerical Simulations of Coupled Problems in Engineering

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 33))

Abstract

In this chapter we present some Reduced-Order Modelling methods we have developed for the stabilized incompressible Navier-Stokes equations. In the first part of the chapter, we depart from the stabilized finite element approximation of incompressible flow equations and we build an explicit proper-orthogonal decomposition based reduced-order model. To do this, we treat the pressure and all the non-linear terms in an explicit way in the time integration scheme. This is possible due to the fact that the reduced model snapshots and basis functions do already fulfill an incompressibility constraint weakly. This allows a hyper-reduction approach in which only the right-hand-side vector needs to be reconstructed. In the second part of the chapter we present a domain decomposition approach for reduced-order models. The method consists in restricting the reduced-order basis functions to the nodes belonging to each of the subdomains. The method is extended to the particular case in which one of the subdomains is solved by using the high-fidelity, full-order model, while the other ones are solved by using the low-cost, reduced-order equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhtar I, Borggaard J, Hay A (2010) Shape sensitivity analysis in flow models using a finite-difference approach. Math Probl Eng 1–23:2010

    MathSciNet  Google Scholar 

  2. Antil H, Heinkenschloss M, Hoppe RHW, Sorensen DC (2010) Domain decomposition and model reduction for the numerical solution of pde constrained optimization problems with localized optimization variables. Comput Vis Sci 13(6):249–264

    Article  MATH  MathSciNet  Google Scholar 

  3. Arian E, Fahl M, Sachs EW (2000). Trust-Region proper orthogonal decomposition for flow control. Institute for computers, pp 2000–2101

    Google Scholar 

  4. Astrid P (2004). Reduction of process simulation models: a proper orthogonal decomposition approach. PhD thesis, Department of Electrical Engineering, Eindhoven University of Technology

    Google Scholar 

  5. Astrid P, Weiland S, Willcox K, Backx T (2008) Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans Autom Control 53:2237–2251

    Article  MathSciNet  Google Scholar 

  6. Baiges J, Codina R, Idelsohn S (2013) A domain decomposition strategy for reduced order models. Application to the incompressible Navier-Stokes equations. Comput Meth Appl Mech Eng 267:23–42

    Article  MathSciNet  Google Scholar 

  7. Baiges J, Codina R, Idelsohn S (2013) Explicit Reduced Order Models for the stabilized finite element approximation of the incompressible Navier-Stokes equations. Int J Numer Meth Fluids 72:1219–1243

    Article  MathSciNet  Google Scholar 

  8. Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique 339(9):667–672

    Article  MATH  MathSciNet  Google Scholar 

  9. Bergmann M, Cordier L, Brancher JP (2007) Drag minimization of the cylinder wake by trust-region proper orthogonal decomposition. Notes on numerical fluid mechanics and multidisciplinary design 95:19

    Google Scholar 

  10. Buffoni M, Telib H, Iollo A (2009) Iterative methods for model reduction by domain decomposition. Comput Fluids 38(6):1160–1167

    Article  MATH  MathSciNet  Google Scholar 

  11. Bui-Thanh T, Willcox K, Ghattas O (2008) Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J Sci Comput 30(6):3270

    Article  MATH  MathSciNet  Google Scholar 

  12. Burkardt J, Gunzburger M, Lee H (2006) POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput Meth Appl Mech Eng 196(1–3):337–355

    Article  MATH  MathSciNet  Google Scholar 

  13. Carlberg K, Bou-Mosleh C, Farhat C (2011) Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. Int J Numer Meth Eng 86(2):155–181

    Article  MATH  MathSciNet  Google Scholar 

  14. Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78(7):808–817

    Google Scholar 

  15. Chaturantabut S, Sorensen DC (2009). Discrete empirical interpolation for nonlinear model reduction. Technical Report TR09-05, Rice University, Houston, Texas

    Google Scholar 

  16. Codina R (2001) A stabilized finite element method for generalized stationary incompressible flows. Comput Meth Appl Mech Eng 190:2681–2706

    Article  MATH  MathSciNet  Google Scholar 

  17. Drohmann M, Haasdonk B, Ohlberger M (2012) Reduced basis approximation for nonlinear parameterized evolution equations based on empirical operator interpolation. SIAM J Sci Comput 34:937–962

    Article  MathSciNet  Google Scholar 

  18. Everson R, Sirovich L (1995) Karhunen-Loève procedure for gappy data. J Opt Soc Am A 12:1657–1664

    Article  Google Scholar 

  19. Galletti B, Bruneau CH, Zannetti L, Iollo A (2004) Low-order modelling of laminar flow regimes past a confined square cylinder. J Fluid Mech 503:161–170

    Article  MATH  MathSciNet  Google Scholar 

  20. Glaz B, Liu L, Friedmann PP (2010) Reduced-Order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework. AIAA J 48(10):2418–2429

    Article  Google Scholar 

  21. Graham WR, Peraire J, Tang KY (1999) Optimal control of vortex shedding using low-order models. Part i-open-loop model development. Int J Numer Meth Eng 44(7):945–972

    Article  MATH  MathSciNet  Google Scholar 

  22. Grepl MA, Maday Y, Nguyen NC, Patera AT (2007) Efficient Reduced-Basis treatment of nonaffine and nonlinear partial differential equations. ESAIM. Math Model Numer Anal 41(03):575–605

    Article  MATH  MathSciNet  Google Scholar 

  23. Holmes P, Lumley JL, Berkooz G (1998) Turbulence, coherent structures. Dynamical systems and symmetry. Cambridge University Press, New York

    MATH  Google Scholar 

  24. Jacobs EN, Ward KE, Pinkerton RM (1933). The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel. NACA report, 460

    Google Scholar 

  25. Kalashnikova I, Barone MF (2011). Stable and efficient galerkin reduced order models for non-linear fluid flow. In: AIAA-2011-3110, 6th AIAA theoretical fluid mechanics conference, Honolulu

    Google Scholar 

  26. Kosambi DD (1943) Statistics in function space. J Indian Math Soc 7:76–88

    MATH  MathSciNet  Google Scholar 

  27. Lassila T, Rozza G (2010) Parametric free-form shape design with PDE models and reduced basis method. Comput Meth Appl Mech Eng 199(23–24):1583–1592

    Article  MATH  MathSciNet  Google Scholar 

  28. LeGresley PA (2005). Application of proper orthogonal decomposition to design decomposition methods. PhD thesis, Department of Aeronautics and Astronautics, Stanford University

    Google Scholar 

  29. Lucia DJ, Beran PS (2003) Projection methods for reduced order models of compressible flows. J Comput Phys 188(1):252–280

    Article  MATH  MathSciNet  Google Scholar 

  30. Lucia DJ, King PI, Beran PS (2003) Reduced order modeling of a two-dimensional flow with moving shocks. Comput Fluids 32(7):917–938

    Article  MATH  Google Scholar 

  31. Nguyen NC, Peraire J (2008) An efficient reduced-order modeling approach for non-linear parametrized partial differential equations. Int J Numer Meth Eng 76(1):27–55

    Article  MATH  MathSciNet  Google Scholar 

  32. Noack BR, Morzynski M, Tadmor G (2011) Reduced-Order modelling for flow control. Springer, Berlin

    Book  MATH  Google Scholar 

  33. Rabczuk T, Bordas SPA, Kerfriden P, Goury O (2012). A partitioned model order reduction approach to rationalise computational expenses in multiscale fracture mechanics

    Google Scholar 

  34. Rozza G, Lassila T, Manzoni A (2011) Reduced basis approximation for shape optimization in thermal flows with a parametrized polynomial geometric map. In: Hesthaven JS, Ranquist EM (eds) Spectral and high order methods for partial differential equations., vol 76Springer, Berlin, pp 307–315

    Chapter  Google Scholar 

  35. Ryckelynck D (2005) A priori hyperreduction method: an adaptive approach. J Comput Phys 202(1):346–366

    Article  MATH  MathSciNet  Google Scholar 

  36. Ryckelynck D (2009) Hyper-reduction of mechanical models involving internal variables. Int J Numer Meth Eng 77(1):75–89

    Article  MATH  MathSciNet  Google Scholar 

  37. Verhoeven A, Voss T, Astrid P, ter Maten EJW, Bechtold T (2007) Model order reduction for nonlinear problems in circuit simulation. PAMM 7(1):1021603–1021604

    Article  Google Scholar 

  38. Verhoeven A, Maten J, Striebel M, Mattheij R (2009) Model order reduction for nonlinear ic models. In: Korytowski A, Malanowski K, Mitkowski W, Szymkat M (eds) System modeling and optimization, vol 312, IFIP advances in information and communication technology, Springer, Berlin, pp 476–491

    Google Scholar 

  39. Veroy K, Patera AT (2005). Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int J Numer Meth Fluids, 47(8–9):773–788

    Google Scholar 

  40. Wang Z, Akhtar I, Borggaard J, Iliescu T (2011). Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison. arXiv:1106.3585

  41. Wicke M, Stanton M, Treuille A. Modular bases for fluid dynamics. ACM Trans Graph, 28(3):39:1–39:8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Baiges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baiges, J., Codina, R., Idelsohn, S.R. (2014). Reduced-Order Modelling Strategies for the Finite Element Approximation of the Incompressible Navier-Stokes Equations. In: Idelsohn, S. (eds) Numerical Simulations of Coupled Problems in Engineering. Computational Methods in Applied Sciences, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-06136-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06136-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06135-1

  • Online ISBN: 978-3-319-06136-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics