Skip to main content

Heterogeneous Dynamics of Multilayered Thin Polymer Films

  • Chapter
  • First Online:
Dynamics in Geometrical Confinement

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

The glass transition and related dynamics of two types of multilayered thin films were investigated using differential scanning calorimetry and dielectric relaxation spectroscopy, to clarify the nature of heterogeneous dynamics in thin polymer films. First, the \(\alpha \)-process of multilayered thin films of poly(2-chlorostyrene) (P2CS) and polystyrene (PS) with various geometries was investigated during annealing process. The relaxation rate of the P2CS layer increases near the upper electrode with annealing, while that near the bottom electrode remains almost constant or slightly decreases with annealing. The relaxation strength for the \(\alpha \)-process of the P2CS layer increases with annealing near the upper electrode, while it decreases near the bottom electrode. A distinct positional dependence of the \(\alpha \)-process could be observed in the multilayered films. Second, the glass transition temperature, \(T_\mathrm{g}\), and the dynamics of the \(\alpha \)- and \(\beta \)-processes for stacked thin films of poly(methyl methacrylate) (PMMA) were investigated during the annealing process. The \(T_\mathrm{g}\) and the dynamics of the \(\alpha \)-process of as-stacked PMMA thin films exhibit thin-film-like behavior. Annealing at high temperature causes the \(T_\mathrm{g}\) to increase from the reduced value, and causes the dynamics of the \(\alpha \)-process to become slower approaching those of the bulk. Contrary to the \(\alpha \)-process, the relaxation time of the \(\beta \)-process is almost equal to that of the bulk PMMA, and is unaffected by the annealing process. The fragility index increases with annealing, which suggests that the glassy state of the stacked thin films changes from strong to fragile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Al:

Aluminum

\(\alpha _{ps}\) :

Shape parameter of dielectric spectrum of PS

\(\alpha _{p2cs}\) :

Shape parameter of dielectric spectrum of P2CS

\(\beta _{ps}\) :

Shape parameter of dielectric spectrum of PS

\(\beta _{p2cs}\) :

Shape parameter of dielectric spectrum of P2CS

\(\beta _{K}\) :

Stretching parameter of KWW function

\(C^*\) :

Complex electric capacitance

\(C'\) :

Real part of \(C^*\)

\(C''\) :

Imaginary part of \(C^*\)

\(C^*_{ps}\) :

Complex electric capacitances of PS layer

\(C^*_{p2cs}\) :

Complex electric capacitances of P2CS layer

DRS:

Dielectric relaxation spectroscopy

DSC:

Differential scanning calorimetry

\(d\) :

Thickness

\(\varDelta C_{ps}\) :

\(\varDelta \varepsilon _{ps}\) multiplied by geometrical capacitance of PS

\(\varDelta C_{p2cs}\) :

\(\varDelta \varepsilon _{p2cs}\) multiplied by geometrical capacitance of P2CS

\(\varDelta \varepsilon _{\alpha }\) :

Dielectric relaxation strength of \(\alpha \)-process

\(\varDelta \varepsilon _{\beta }\) :

Dielectric relaxation strength of \(\beta \)-process

\(\varDelta \varepsilon _{ps}\) :

Dielectric relaxation strength of \(\alpha \)-process of PS

\(\varDelta \varepsilon _{p2cs}\) :

Dielectric relaxation strength of \(\alpha \)-process of P2CS

\(\varDelta T_{\alpha }\) :

Width of dielectric loss peak of \(\alpha \)-process

\(\varDelta T_{\beta }\) :

Width of dielectric loss peak of \(\beta \)-process

\(\varDelta T_{\beta }^l\) :

Value of low temperature side of \(\varDelta T_{\beta }\)

\(\varDelta T_{\beta }^r\) :

Value of high temperature side of \(\varDelta T_{\beta }\)

\(\varepsilon ^*\) :

Complex dielectric constant

\(\varepsilon '\) :

Real part of \(\varepsilon ^*\)

\(\varepsilon ''\) :

Imaginary part of \(\varepsilon ^*\)

\(\varepsilon ''_\mathrm{max}\) :

Peak height of dielectric loss of \(\alpha \)-process

\(\varepsilon _0\) :

Permittivity of a vacuum

\(\varepsilon ^*_{ps}\) :

Complex dielectric constant of PS layer

\(\varepsilon _{p2cs}^*\) :

Complex dielectric constant of P2CS layer

\(\varepsilon _{ps,\infty }\) :

Dielectric permittivity at very high frequency of PS

\(\varepsilon _{p2cs,\infty }\) :

Dielectric permittivity at very high frequency of P2CS

\(f\) :

Frequency of applied electric field

\(f_{\alpha }\) :

Relaxation rate of \(\alpha \)-process

\(f_{\beta }\) :

Relaxation rate of \(\beta \)-process

\(f_\mathrm{g}\) :

Relaxation rate of \(\alpha \)-process at \(T_\mathrm{g}\)

\(f_\mathrm{max}\) :

Peak frequency at which dielectric loss shows a maximum

HN eq.:

Havriliak-Negami equation

KWW:

Kohlrauch-Williams-Watts relaxation function

\(k_{B}\) :

Boltzmann constant

LCST:

Lower critical solution temperature

\(\ell \) :

Total thickness

\(\ell _{ps}\) :

Thickness of PS layer

\(\ell _{p2cs}\) :

Thickness of P2CS layer

\(M_\mathrm{w}\) :

Weight-averaged molecular weight

\(M_\mathrm{n}\) :

Number-averaged molecular weight

\(m\) :

Fragility index

\(\mu \) :

Effective dipole moment

\(N\) :

Number density of relaxing dipoles

P2CS:

Poly(2-chlorostyrene)

PS:

Polystyrene

PMMA:

Poly(methyl methacrylate)

\(R\) :

Equivalent electrical resistance in sample

\(S\) :

Area of electrode

\(\sigma _{dc}\) :

Electric conductivity

\(t_a\) :

Effective annealing time

\(\tau \) :

Characteristic time of temporal change in \(T_{\alpha }\)

\(\tau _{\alpha }\) :

Relaxation time of \(\alpha \)-process

\(\tau _\mathrm{g}\) :

Relaxation time of \(\alpha \)-process at \(T_\mathrm{g}\)

\(\tau _{ps}\) :

Relaxation time of \(\alpha \)-process of PS

\(\tau _{p2cs}\) :

Relaxation time of \(\beta \)-process of P2CS

\(\tau _{K}\) :

Relaxation time of KWW function

\(T_a\) :

Annealing temperature

\(T_{\alpha }\) :

Temperature at which the dielectric loss shows a peak due to \(\alpha \)-process

\(T_{\beta }\) :

Temperature at which the dielectric loss shows a peak due to \(\beta \)-process

\(T_\mathrm{g}\) :

Glass transition temperature

\(T_{\alpha }^0\) :

Initial value of \(T_{\alpha }\)

\(T_{\alpha }^{\infty }\) :

Final value of \(T_{\alpha }\)

\(T_{V}\) :

Vogel temperature

\(U\) :

Apparent activation energy

VFT law:

Vogel-Fulcher-Tammann law

\(\phi (t)\) :

Relaxation function

\(\omega \) :

Angular frequency

References

  1. Ngai KL (2004) In: Mark J (ed) Physical properties of polymers. Cambridge University Press, pp 72–152. http://dx.doi.org/10.1017/CBO9781139165167

  2. Sillescu H (1999) J Non-Cryst Solids 243:81

    Article  CAS  Google Scholar 

  3. Berthier L, Biroli G, Bouchaud J-P, Cipelletti L, van Saarloos W (2011) Dynamical heterogeneities in glasses, colloids, and granular media. Oxford University Press, New York

    Book  Google Scholar 

  4. Muranaka T, Hiwatari Y (1995) Phys Rev E 51:R2735

    Article  CAS  Google Scholar 

  5. Yamamoto R, Onuki A (1998) Phys Rev E 58:3515

    Article  CAS  Google Scholar 

  6. Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000) Science 287:627

    Article  CAS  Google Scholar 

  7. Adam G, Gibbs JH (1965) J Chem Phys 43:139

    Article  CAS  Google Scholar 

  8. Keddie JL, Jones RAL, Cory RA (1994) EPL Europhys Lett 27: 59

    Google Scholar 

  9. Alcoutlabi M, McKenna GB (2005) J Phys: Condens Matter 17:R461

    CAS  Google Scholar 

  10. Napolitano S, Capponi S, Vanroy B (2013) Eur Phys J E 36:61

    Article  Google Scholar 

  11. Efremov MY, Kiyanova AV, Last J, Soofi SS, Thode C, Nealey PF (2012) Phys Rev E 86:021501

    Article  Google Scholar 

  12. Tress M, Erber M, Mapesa EU, Huth H, Müller J, Serghei A, Schick C, Eichhorn K-J, Voit B, Kremer F (2010) Macromolecules 43:9937

    Article  CAS  Google Scholar 

  13. Jérôme B, Commandeur J (1997) Nature 386:589

    Article  Google Scholar 

  14. Fakhraai Z, Forrest JA (2008) Science 319:600

    Article  CAS  Google Scholar 

  15. Yang Z, Fujii Y, Lee FK, Lam C-H, Tsui OKC (2010) Science 328:1676

    Article  CAS  Google Scholar 

  16. Schwab AD, Agra DMG, Kim J-H, Kumar S, Dhinojwala A (2000) Macromolecules 33:4903

    Article  CAS  Google Scholar 

  17. Tanaka K, Hashimoto K, Kajiyama T, Takahara A (2003) Langmuir 19:6573

    Article  CAS  Google Scholar 

  18. Kawaguchi D, Tanaka K, Kajiyama T, Takahara A, Tasaki S (2003) Macromolecules 36:1235

    Article  CAS  Google Scholar 

  19. Kajiyama T, Tanaka K, Takahara A (1997) Macromolecules 30:280

    Article  CAS  Google Scholar 

  20. Ellison CJ, Torkelson JM (2003) Nat Mater 2:695

    Article  CAS  Google Scholar 

  21. Priestley RD, Ellison CJ, Broadbelt LJ, Torkelson JM (2005) Science 309:456

    Article  CAS  Google Scholar 

  22. Roth CB, McNerny KL, Jager WF, Torkelson JM (2007) Macromolecules 40:2568

    Article  CAS  Google Scholar 

  23. Inoue R, Kawashima K, Matsui K, Kanaya T, Nishida K, Matsuba G, Hino M (2011) Phys Rev E 83:021801

    Article  Google Scholar 

  24. Inoue R, Kawashima K, Matsui K, Nakamura M, Nishida K, Kanaya T, Yamada NL (2011) Phys Rev E 84:031802

    Article  Google Scholar 

  25. Inoue R, Nakamura M, Matsui K, Kanaya T, Nishida K, Hino M (2013) Phys Rev E 88:032601

    Article  Google Scholar 

  26. Rotella C, Napolitano S, De Cremer L, Koeckelberghs G, Wübbenhorst M (2010) Macromolecules 43:8686

    Article  CAS  Google Scholar 

  27. Koh YP, McKenna GB, Simon SL (2006) J Polym Sci Part B: Polym Phys 44:3518

    Article  CAS  Google Scholar 

  28. Koh YP, Simon SL (2008) J Polym Sci Part B: Polym Phys 46:2741

    Article  CAS  Google Scholar 

  29. Fukao K, Oda Y, Nakamura K, Tahara D (2010) Eur Phys J Special Topics 189:165

    Article  CAS  Google Scholar 

  30. Fukao K, Terasawa T, Oda Y, Nakamura K, Tahara D (2011) Phys Rev E 84:041808

    Article  Google Scholar 

  31. Fukao K, Terasawa T, Nakamura K, Tahara D (2013) In: Kanaya T (ed) Glass transition, dynamics and heterogeneity of polymer thin films, Advances in polymer science, vol 252. Springer, Berlin. pp 65–106, ISBN 978-3-642-34338-4

    Google Scholar 

  32. Fukao K, Miyamoto Y (2000) Phys Rev E 61:1743

    Article  CAS  Google Scholar 

  33. Priestley RD, Broadbelt LJ, Torkelson JM, Fukao K (2007) Phys Rev E 75:061806

    Article  Google Scholar 

  34. Schmidt-Rohr K, Kulik AS, Beckham HW, Ohlemacher A, Pawelzik U, Boeffel C, Spiess HW (1994) Macromolecules 27:4733

    Article  CAS  Google Scholar 

  35. Fytas G, Wang CH, Fischer EW, Mehler K (1986) J Polym Sci Part B: Polym Phys 24:1859

    Article  CAS  Google Scholar 

  36. Sasabe H, Saito S (1968) J Polym Sci Part A-2: Polym Phys 6: 1401

    Google Scholar 

  37. McCrum NG, Read BE, Williams G (1967) Anelastic and dielectric effects in polymeric solids. Wiley, London

    Google Scholar 

  38. Ardi M, Dick W, Kubát J (1993) Colloid Polym Sci 271:739

    Article  CAS  Google Scholar 

  39. Ribelles JLG, Calleja RD (1985) J Polym Sci: Polym Phys Ed 23: 1297

    Google Scholar 

  40. Bergman R, Alvarez F, Alegria A, Colmenero J (1998) J Chem Phys 109:7546

    Google Scholar 

  41. Paeng K, Ediger MD (2011) Macromolecules 44:7034

    Article  CAS  Google Scholar 

  42. Paeng K, Richert R, Ediger MD (2012) Soft Matter 8:819

    Article  CAS  Google Scholar 

  43. Takaki H, Fukao K Phys Rev E (submitted)

    Google Scholar 

  44. Hayashi T, Fukao K (2014) Phys Rev E 89:022602

    Article  Google Scholar 

  45. Fukao K, Miyamoto Y (1999) EPL Europhys Lett 46: 649

    Google Scholar 

  46. Havriliak S, Negami S (1967) Polymer 8:161

    Article  CAS  Google Scholar 

  47. Alvarez F, Alegría A, Colmenero J (1991) Phys Rev B 44:7306

    Article  Google Scholar 

  48. Schönhals A, Kremer F (2003) In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin, pp 59–98. ISBN 978-3-642-62809-2

    Google Scholar 

  49. Chu B, Linliu K, Ying Q, Nose T, Okada M (1992) Phys Rev Lett 68:3184

    Article  CAS  Google Scholar 

  50. Alexandrovich PS, Karasz FE, Macknight WJ (1980) J Macromol Sci Part B 17:501

    Article  Google Scholar 

  51. Keddie JL, Jones RAL, Cory RA (1994) Faraday Discuss 98:219

    Article  CAS  Google Scholar 

  52. Fukao K, Uno S, Miyamoto Y, Hoshino A, Miyaji H (2001) Phys Rev E 64:051807

    Article  CAS  Google Scholar 

  53. Kuebler SC, Schaefer DJ, Boeffel C, Pawelzik U, Spiess HW (1997) Macromolecules 30:6597

    Article  CAS  Google Scholar 

  54. Ménégotto J, Demont P, Lacabanne C (2001) Polymer 42:4375

    Article  Google Scholar 

  55. Doulut S, Bacharan C, Demont P, Bernès A, Lacabanne C, Non-Cryst J (1998) Solids 235–237:645

    Google Scholar 

  56. Vogel H (1921) Phys Z 22:645

    CAS  Google Scholar 

  57. Fulcher GS (1925) J Am Ceram Soc 8:339

    Article  CAS  Google Scholar 

  58. Fulcher GS (1925) J Am Ceram Soc 8:789

    Article  CAS  Google Scholar 

  59. Tammann G, Hesse W, Anorg Z (1926) Allg Chem 156:245

    Article  Google Scholar 

  60. Böhmer R, Angell CA (1992) Phys Rev B 45:10091

    Google Scholar 

  61. Fukao K, Miyamoto Y (2001) Phys Rev E 64:011803

    Article  CAS  Google Scholar 

  62. Zhang C, Guo Y, Shepard KB, Priestley RD (2013) J Phys Chem Lett 4:431

    Article  CAS  Google Scholar 

  63. Napolitano S, Wübbenhorst M (2010) Polymer 51:5309

    Article  CAS  Google Scholar 

  64. Yin H, Napolitano S, Schönhals A (2012) Macromolecules 45:1652

    Article  CAS  Google Scholar 

  65. Huwe A, Kremer F, Behrens P, Schwieger W (1999) Phys Rev Lett 82:2338

    Article  CAS  Google Scholar 

  66. Riggleman RA, Yoshimoto K, Douglas JF, de Pablo JJ (2006) Phys Rev Lett 97:045502

    Article  Google Scholar 

  67. Jain TS, de Pablo JJ (2004) J Chem Phys 120:9371

    Article  CAS  Google Scholar 

  68. Pu Y, White H, Rafailovich MH, Sokolov J, Patel A, White C, Wu W-L, Zaitsev V, Schwarz SA (2001) Macromolecules 34:8518

    Article  CAS  Google Scholar 

  69. Forrest JA, Dalnoki-Veress K, Stevens JR, Dutcher JR (1996) Phys Rev Lett 77:2002

    Article  CAS  Google Scholar 

  70. Napolitano S, Rotella C, Wübbenhorst M (2011) Macromol Rapid Commun 32:844

    Article  CAS  Google Scholar 

  71. Serghei A, Kremer F (2008) Rev Sci Inst 79:026101

    Article  CAS  Google Scholar 

  72. Evans CM, Deng H, Jager WF, Torkelson JM (2013) Macromolecules 46:6091

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (B) (No. 25287108) and Exploratory Research (No. 25610127, No. 23654154) from the Japan Society for the Promotion of Science. The authors would like to thank Prof. Friedrich Kremer for giving them an opportunity to publish the present article in this book. One of the authors (KF) would like to express his cordial thanks to Dr. Didier Long for giving him an opportunity to stay in his laboratory in Lyon as a visiting professor of CNRS, where half of the present article has been written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Fukao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fukao, K., Takaki, H., Hayashi, T. (2014). Heterogeneous Dynamics of Multilayered Thin Polymer Films. In: Kremer, F. (eds) Dynamics in Geometrical Confinement. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-06100-9_8

Download citation

Publish with us

Policies and ethics