Skip to main content

Anomalous Decoupling of Translational and Rotational Motion Under 1D Confinement, Evidences from Crystallization and Diffusion Experiments

  • Chapter
  • First Online:
Dynamics in Geometrical Confinement

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

The molecular diffusion is intrinsically bound to the viscosity of the environment via the Stokes–Einstein (SE) relation, fixing an equality between the energetic barrier for translational motion and that for rotational motion. This relation, valid for melts at equilibrium, usually breaks down upon supercooling in proximity of the glass transition. As a common feature of the glassy dynamics, diffusion is enhanced compared to the viscosity and the segmental relaxation. In this chapter, we revise recent experimental evidence on the anomalous decoupling between rotational and translation motion in thin polymer films. While the segmental relaxation is almost unperturbed down to few tens of nanometers, diffusion of small molecules and cold crystallization kinetics tremendously slow down already at thicknesses exceeding by several folds the macromolecular size. After reviewing experimental methods permitting to assess the dynamics in confinement, we propose a unifying picture on the anomaly in the SE relation based on the different impact of irreversible chain adsorption on the rotational and translation motion. In particular, we experimentally verified the validity of a relation to predict the crystallization time of thin polymer films based on finite size effects and the slowing down in the dynamics scaling according to the SE relation. Remarkably, such expression fails in correspondence of a critical size comparable to the thickness of the layer irreversibly adsorbed within the timeframe of the experiment. Similarly, we observe a severe drop in tracer diffusivity of dielectric probes into apolar matrices, not explainable in terms of perturbations in the segmental dynamics, but ascribable to the presence of adsorbed layers, limiting the Brownian movements, precursors of molecular diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(\alpha \)–:

Structural (segmental) process

\(\alpha ^{\prime }\)–:

Constraint structural (segmental) process

\(\beta \) :

Avrami exponent

\(\Gamma \) :

Drop in \(\Delta \varepsilon \) due to crystallization

\(\delta \) :

Drop in \(\Delta \varepsilon \) due to adsorption

\(\Delta \varepsilon \) :

Dielectric strength

\(\Delta \)E:

Transport energy barrier to the growth front

\(\Delta \)F*:

Barrier for nucleation

\(\varepsilon _{\infty }\) :

Instantaneous dielectric constant

\(\eta \) :

Viscosity

\(\mu \) :

Dipole moment

\(\Lambda \) :

Nucleation term of the crystallization rate

\(\xi \) :

Fractional coefficient

\(\tau \) :

Segmental relaxation time

\(\tau _{D}\) :

Diffusion time

1D:

1-dimensional

a :

Radius

AFM:

Atomic force microscopy

Al:

Aluminum

BDS:

Broadband dielectric spectroscopy

C:

Crystallization rate

D:

Diffusion term of the crystallization rate

DSC:

Differential scanning calorimetry

\(\mathrm{D}_\mathrm{tr}\) :

Tracer diffusion coefficient

g:

Kirkwood factor

G:

Crystal growth rate

\(\mathrm{G}_{1}\) :

Linear crystal growth rate

h:

Film thickness

\(\mathrm{h}_\mathrm{ads}\) :

Thickness of the irreversibly adsorbed layer

\(\mathrm{k}_\mathrm{B}\) :

Boltzmann constant

L:

Diffusive length

l-PS:

Polystyrene labeled with 4-[(4-cyanophenyl) diazenyl] phenyl}(methyl) amino

\(\mathrm{M}_\mathrm{w}\) :

Weight average molecular weight

Ñ:

Density of dipole moments

p:

Pressure

PDI:

Polydispersity index

PHB:

Poly(hydroxy butyrate)

PET:

Poly(ethylene terephthalate)

PS:

Polystyrene

SE:

Stokes–Einstein

t:

Time

T:

Temperature

\(\mathrm{T}_{0}\) :

Temperature where molecular motion would cease

\({ t}_\mathrm{{tads}}\) :

Characteristic adsorption time

\({ t}_\mathrm{{CRY}}\) :

Crystallization time

\(\mathrm{t}_\mathrm{{N}}\) :

Induction time

\(\mathrm{t}_\mathrm{{P}}\) :

Characteristic time

\(\mathrm{T}_\mathrm{{g}}\) :

Glass transition temperature

\(\mathrm{T}_\mathrm{{M}}\) :

Melting point

\(\mathrm{X}_\mathrm{{C}}\) :

Crystallinity

\(\mathrm{T}_\mathrm{{CC}}\) :

Cold crystallization temperature

\(< {\ldots } >\) :

Statistical average

References

  1. Napolitano S, Capponi S, Vanroy B (2013) Glassy dynamics of soft matter under 1D confinement: how irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur Phys J E 36:61

    Article  Google Scholar 

  2. Adam G, Gibbs JH (1965) On temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139

    Article  CAS  Google Scholar 

  3. Watanabe K, Kawasaki T, Tanaka H (2011) Structural origin of enhanced slow dynamics near a wall in glass-forming systems. Nat Mater 10:512–520

    Article  CAS  Google Scholar 

  4. Arndt M, Stannarius R, Groothues H, Hempel E, Kremer F (1997) Length scale of cooperativity in the dynamic glass transition. Phys Rev Lett 79:2077–2080

    Article  CAS  Google Scholar 

  5. Napolitano S, Wubbenhorst M (2011) The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat Commun 2:260

    Article  Google Scholar 

  6. Koga T, Jiang N, Gin P, Endoh MK, Narayanan S, Lurio LB, Sinha SK (2011) Impact of an irreversibly adsorbed layer on local viscosity of nanoconfined polymer melts. Phys Rev Lett 107:225901

    Article  Google Scholar 

  7. Gin P, Jiang N, Liang C, Taniguchi T, Akgun B, Satija SK, Endoh MK, Koga T (2012) Revealed architectures of adsorbed polymer chains at solid-polymer melt interfaces. Phys Rev Lett 109:265501. doi:10.1103/PhysRevLett. 109.265501

    Article  Google Scholar 

  8. Nguyen HK, Labardi M, Lucchesi M, Rolla P, Prevosto D (2013) Plasticization in ultrathin polymer films: the role of supporting substrate and annealing. Macromolecules 46:555–561

    Article  CAS  Google Scholar 

  9. Nguyen HK, Labardi M, Capaccioli S, Lucchesi M, Rolla P, Prevosto D (2012) Prevosto Interfacial and annealing effects on primary \(\alpha \)-relaxation of ultrathin polymer films investigated at nanoscale. Macromolecules 45:2138–2144

    Article  CAS  Google Scholar 

  10. Krutyeva M, Wischnewski A, Monkenbusch M, Willner L, Maiz J, Mijangos C, Arbe A, Colmenero J, Radulescu A, Holderer O, Ohl M, Richter D (2013) Effect of nanoconfinement on polymer dynamics: surface layers and interphases. Phys Rev Lett 110:108303

    Article  CAS  Google Scholar 

  11. Napolitano S, Rotella C, Wubbenhorst M (2012) Can thickness and interfacial interactions univocally determine the behavior of polymers confined at the nanoscale? Acs Macro Lett 1:1189–1193

    Article  CAS  Google Scholar 

  12. Reiter G, Napolitano S (2010) Possible origin of thickness-dependent deviations from bulk properties of thin polymer films. J Polym Sci Part B-Polym Phys 48:2544–2547

    Article  CAS  Google Scholar 

  13. Napolitano S, Cangialosi D (2013) Interfacial free volume and vitrification: reduction in tg in proximity of an adsorbing interface explained by the free volume holes diffusion model. Macromolecules 46:8051–8053

    Article  CAS  Google Scholar 

  14. Fukao K, Miyamoto Y (2000) Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene. Phys Rev E 61:1743–1754

    Article  CAS  Google Scholar 

  15. Napolitano S, Pilleri A, Rolla P, Wubbenhorst M (2010) Unusual deviations from bulk behavior in ultrathin films of poly(tert-butylstyrene): can dead layers induce a reduction of t-g? ACS Nano 4:841–848

    Article  CAS  Google Scholar 

  16. Lu HY, Chen W, Russell TP (2009) Relaxation of thin films of polystyrene floating on ionic liquid surface. Macromolecules 42:9111–9117

    Article  CAS  Google Scholar 

  17. Thomas KR, Chenneviere A, Reiter G, Steiner U (2011) Nonequilibrium behavior of thin polymer films. Phys Rev E 83:021804

    Article  Google Scholar 

  18. Barbero DR, Steiner U (2009) Nonequilibrium polymer rheology in spin-cast films. Phys Rev Lett 102:248303

    Article  Google Scholar 

  19. Vanroy B, Wubbenhorst M, Napolitano S (2013) Crystallization of thin polymer layers confined between two adsorbing walls. Acs Macro Lett 2:168–172

    Article  CAS  Google Scholar 

  20. Napolitano S, Rotella C, Wuebbenhorst M (2011) Is the reduction in tracer diffusivity under nanoscopic confinement related to a frustrated segmental mobility? Macromol Rapid Commun 32:844–848

    Article  CAS  Google Scholar 

  21. Hu W (2013) Polymer physics. Springer, Vienna

    Google Scholar 

  22. Grigoriadis C, Duran H, Steinhart M, Kappl M, Butt HJ, Floudas G (2011) Suppression of phase transitions in a confined rodlike liquid crystal. ACS Nano 5:9208–9215

    Article  CAS  Google Scholar 

  23. Liu YX, Chen EQ (2010) Polymer crystallization of ultrathin films on solid substrates. Coord Chem Rev 254:1011–1037

    Article  CAS  Google Scholar 

  24. Frank CW, Rao V, Despotopoulou MM, Pease RFW, Hinsberg WD, Miller RD, Rabolt JF (1996) Structure in thin and ultrathin spin-cast polymer films. Science 273:912–915

    Article  CAS  Google Scholar 

  25. Zhang Y, Lu YL, Duan YX, Zhang JM, Yan SK, Shen DY (2004) Reflection-absorption infrared spectroscopy investigation of the crystallization kinetics of poly(ethylene terephthalate) ultrathin films. J PolymSci Part B Polym Phys 42:4440–4447

    Article  CAS  Google Scholar 

  26. Nascimento MLF, Souza LA, Ferreira EB, Zanotto ED (2005) Can glass stability parameters infer glass forming ability? J Non-Cryst Solids 351:3296–3308

    Article  CAS  Google Scholar 

  27. Capitan MJ, Rueda DR, Ezquerra TA (2004) Inhibition of the crystallization in nanofilms of poly(3-hydroxybutyrate). Macromolecules 37:5653–5659

    Article  CAS  Google Scholar 

  28. Hu WB, Cai T, Ma Y, Hobbs JK, Farrance O, Reiter G (2009) Polymer crystallization under nano-confinement of droplets studied by molecular simulations. Faraday Discuss 143:129–141

    Article  CAS  Google Scholar 

  29. Sommer JU, Reiter G (2000) Polymer crystallization in quasi-two dimensions. Ii. Kinetic models and computer simulations. J Chem Phys 112:4384–4393

    Article  CAS  Google Scholar 

  30. Sommer JU, Reiter G (2005) Crystallization in ultra-thin polymer films-morphogenesis and thermodynamical aspects. Thermochim Acta 432:135–147

    Article  CAS  Google Scholar 

  31. Schultz JM (1996) Effect of specimen thickness on crystallization rate. Macromolecules 29:3022–3024

    Article  CAS  Google Scholar 

  32. Napolitano S, Wubbenhorst M (2006) Slowing down of the crystallization kinetics in ultrathin polymer films: a size or an interface effect? Macromolecules 39:5967–5970

    Article  CAS  Google Scholar 

  33. Bottcher C (1973) Theory of dielectric polarization. Elsevier, Amsterdam

    Google Scholar 

  34. Capponi S, Napolitano S, Wubbenhorst M (2012) Supercooled liquids with enhanced orientational order. Nat Commun 3:1233

    Article  Google Scholar 

  35. Massalska-Arodz M, Williams G, Thomas DK, Jones WJ, Dabrowski R (1999) Molecular dynamics and crystallization behavior of chiral isooctyloxycyanobiphenyl as studied by dielectric relaxation spectroscopy. J Phys Chem B 103:4197–4205

    Article  CAS  Google Scholar 

  36. Nogales A, Denchev Z, Sics I, Ezquerra TA (2000) Influence of the crystalline structure in the segmental mobility of semicrystalline polymers: poly(ethylene, naphthalene-2,6-dicarboxylate). Macromolecules 33:9367–9375

    Google Scholar 

  37. Ezquerra TA, Majszczyk J, Baltacalleja FJ, Lopezcabarcos E, Gardner KH, Hsiao BS (1994) Molecular-dynamics of polymers during crystallization as revealed by dielectric-spectroscopy. Phys Scripta 55:212–215

    Article  Google Scholar 

  38. Ezquerra TA, Liu F, Boyd RH, Hsiao BS (1997) Crystallization of poly(aryl ether ketone) polymers as revealed by time domain dielectric spectroscopy. Polymer 38:5793–5800

    Article  CAS  Google Scholar 

  39. Alvarez C, Sics I, Nogales A, Denchev Z, Funari SS, Ezquerra TA (2004) Structure-dynamics relationship in crystallizing poly(ethylene terephthalate) as revealed by time-resolved x-ray and dielectric methods. Polymer 45:3953–3959

    Article  CAS  Google Scholar 

  40. Fukao K, Miyamoto M (1997) Dynamical transition and crystallization of polymers. Phys Rev Lett 79:4613–4616

    Article  CAS  Google Scholar 

  41. Napolitano S, Wubbenhorst M (2007) Deviation from bulk behaviour in the cold crystallization kinetics of ultrathin films of poly(3-hydroxybutyrate). J Phys Condens Matter 19:205121

    Article  Google Scholar 

  42. Napolitano S, Wubbenhorst M (2007) Effect of a reduced mobility layer on the interplay between molecular relaxations and diffusion-limited crystallization rate in ultrathin polymer films. J Phys Chem B 111:5775–5780

    Article  CAS  Google Scholar 

  43. Napolitano S, Wubbenhorst M (2007) Monitoring the cold crystallization of poly(3-hydroxy butyrate) via dielectric spectroscopy. J Non-Cryst Solids 353:4357–4361

    Article  CAS  Google Scholar 

  44. Bebin P, Prud’homme RE (2003) Comparative xps study of copper, nickel, and aluminum coatings on polymer surfaces. Chem Mater 15:965–973

    Article  CAS  Google Scholar 

  45. Rotella C, Napolitano S, De Cremer L, Koeckelberghs G, Wubbenhorst M (2010) Distribution of segmental mobility in ultrathin polymer films. Macromolecules 43:8686–8691

    Article  CAS  Google Scholar 

  46. Avrami M (1940) Kinetics of phase change. Ii transformation-time relations for random distribution of nuclei. J Chem Phys 8:212

    Article  CAS  Google Scholar 

  47. Rotella C, Napolitano S, Vandendriessche S, Valev VK, Verbiest T, Larkowska M, Kucharski S, Wubbenhorst M (2011) Adsorption kinetics of ultrathin polymer films in the melt probed by dielectric spectroscopy and second-harmonic generation. Langmuir 27:13533–13538

    Google Scholar 

  48. Rotella C, Wubbenhorst M, Napolitano S (2011) Probing interfacial mobility profiles via the impact of nanoscopic confinement on the strength of the dynamic glass transition. Soft Matter 7:5260–5266

    Article  CAS  Google Scholar 

  49. Yin H, Napolitano S, Schoenhals A (2012) Molecular mobility and glass transition of thin films of poly(bisphenol a carbonate). Macromolecules 45:1652–1662

    Article  CAS  Google Scholar 

  50. Granick S (2002) Perspective: kinetic and mechanical properties of adsorbed polymer layers. Eur Phys J E 9:421–424

    Article  CAS  Google Scholar 

  51. Duran H, Steinhart M, Butt HJ, Floudas G (2011) From heterogeneous to homogeneous nucleation of isotactic poly(propylene) confined to nanoporous alumina. Nano Lett 11:1671–1675

    Article  CAS  Google Scholar 

  52. Massa MV, Carvalho JL, Dalnoki-Veress K (2006) Confinement effects in polymer crystal nucleation from bulk to few-chain systems. Phys Rev Lett 97:247802

    Google Scholar 

  53. Massa MV, Dalnoki-Veress K (2004) Homogeneous crystallization of poly(ethylene oxide) confined to droplets: the dependence of the crystal nucleation rate on length scale and temperature. Phys Rev Lett 92:255509

    Google Scholar 

  54. Mapes MK, Swallen SF, Ediger MD (2006) Ediger Self-diffusion of supercooled o-terphenyl near the glass transition temperature. J Phys Chem B 110:507–511

    Article  CAS  Google Scholar 

  55. Ngai KL, Magill JH, Plazek DJ (2000) Flow, diffusion and crystallization of supercooled liquids: revisited. J Chem Phys 112:1887–1892

    Article  CAS  Google Scholar 

  56. Ngai KL (1999) Alternative explanation of the difference between translational diffusion and rotational diffusion in supercooled liquids. J Phys Chem B 103:10684–10694

    Article  CAS  Google Scholar 

  57. Hall DB, Dhinojwala A, Torkelson JM (1997) Translation-rotation paradox for diffusion in glass-forming polymers: the role of the temperature dependence of the relaxation time distribution. Phys Rev Lett 79:103–106

    Article  CAS  Google Scholar 

  58. Napolitano S, Prevosto D, Lucchesi M, Pingue P, D’Acunto M, Rolla P (2007) Influence of a reduced mobility layer on the structural relaxation dynamics of aluminum capped ultrathin films of poly(ethylene terephthalate). Langmuir 23:2103–2109

    Article  CAS  Google Scholar 

  59. Palys LH, Phillips PJ (1980) Microkinetics of crystallization of poly(ethylene terephthalate). J Polym Sci Part B Polym Phys 18:829–852

    Article  CAS  Google Scholar 

  60. Zhang Y, Zhang JM, Lu YL, Duan YX, Yan SK, Shen DY (2004) Glass transition temperature determination of poly(ethylene terephthalate) thin films using reflection-absorption FTIR. Macromolecules. 37:2532–2537

    Google Scholar 

  61. Mapesa EU, Tress M, Schulz G, Huth H, Schick C, Reiche M, Kremer F (2013) Segmental and chain dynamics in nanometric layers of poly(cis-1,4-isoprene) as studied by broadband dielectric spectroscopy and temperature-modulated calorimetry. Soft Matter 9:10592–10598

    Article  CAS  Google Scholar 

  62. Koga T, Li C, Endoh MK, Koo J, Rafailovich M, Narayanan S, Lee DR, Lurio LB, Sinha SK (2010) Reduced viscosity of the free surface in entangled polymer melt films. Phys Rev Lett 104:066101

    Article  Google Scholar 

  63. Forrest JA (2002) A decade of dynamics in thin films of polystyrene: where are we now? Eur Phys J E 8:261–266

    Article  CAS  Google Scholar 

  64. Zheng X, Rafailovich MH, Sokolov J, Strzhemechny Y, Schwarz SA, Sauer BB, Rubinstein M (1997) Long-range effects on polymer diffusion induced by a bounding interface. Phys Rev Lett 79:241–244

    Google Scholar 

  65. Forrest JA, Dalnoki-Veress K, Stevens JR, Dutcher JR (1996) Effect of free surfaces on the glass transition temperature of thin polymer films. Phys Rev Lett 77:2002–2005

    Article  CAS  Google Scholar 

  66. Rotella C, Napolitano S, Wuebbenhorst M (2009) Segmental mobility and glass transition temperature of freely suspended ultrathin polymer membranes. Macromolecules 42: 1415–1417

    Google Scholar 

  67. Pu Y, White H, Rafailovich MH, Sokolov J, Patel A, White C, Wu WL, Zaitsev V, Schwarz SA (2001) Probe diffusion in thin ps free-standing films. Macromolecules 34:8518–8522

    Google Scholar 

  68. Hall DB, Torkelson JM (1998) Small molecule probe diffusion in thin and ultrathin supported polymer films. Macromolecules 31:8817–8825

    Article  CAS  Google Scholar 

  69. Guiselin O (1991) Irreversible adsorption of a concentrated polymer solution. Europh Lett 17:225–230

    Article  Google Scholar 

  70. Tress M, Erber M, Mapesa EU, Huth H, Muller J, Serghei A, Schick C, Eichhorn K-J, Voit B, Kremer F (2010) Glassy dynamics and glass transition in nanometric thin layers of polystyrene. Macromolecules 43:9937–9944

    Article  CAS  Google Scholar 

  71. Tress M, Mapesa EU, Kossack W, Kipnusu WK, Reiche M, Kremer F (2013) Glassy dynamics in condensed isolated polymer chains. Science 341:1371–1374

    Google Scholar 

  72. Green P, Kramer E (1986) Temperature dependence of tracer diffusion coefficients in polystyrene. J Mater Res 202–204

    Google Scholar 

  73. Napolitano S, Wubbenhorst M (2007) Dielectric signature of a dead layer in ultrathin films of a nonpolar polymer. J Phys Chem B 111:9197–9199

    Article  CAS  Google Scholar 

  74. Ligoure C, Leibler L (1990) Thermodynamics and kinetics of grafting end-functionalized polymers to an interface. J De Phys 51:1313–1328

    Article  CAS  Google Scholar 

  75. Zajac R, Chakrabarti A (1995) Irreversible polymer adsorption from semidilute and moderately dense solutions. Phys Rev E 52:6536–6549

    Article  CAS  Google Scholar 

  76. Napolitano S, Wubbenhorst M (2010) Structural relaxation and dynamic fragility of freely standing polymer films. Polymer. 51:5309–5312

    Article  CAS  Google Scholar 

  77. Tito NB, Lipson JEG, Milner ST (2013) Lattice model of dynamic heterogeneity and kinetic arrest in glass-forming liquids. Soft Matter. 9:3173–3180

    Article  CAS  Google Scholar 

  78. Tito NB, Lipson JEG, Milner ST (2013) Lattice model of mobility at interfaces: free surfaces, substrates, and bilayers. Soft Matter 9:9403–9413

    Article  CAS  Google Scholar 

  79. de Gennes PG (2000) Glass transitions in thin polymer films. Eur Phys J E 2:201–203

    Article  Google Scholar 

  80. Lipson JEG, Milner ST (2009) Percolation model of interfacial effects in polymeric glasses. Eur Phys J B 72:133–137

    Article  CAS  Google Scholar 

  81. Glynos E, Frieberg B, Oh H, Liu M, Gidley DW, Green PF (2011) Role of molecular architecture on the vitrification of polymer thin films. Phys Rev Lett 106:128301

    Article  Google Scholar 

  82. Boucher VM, Cangialosi D, Alegria A, Colmenero J, Pastoriza-Santos I, Liz-Marzan LM (2011) Physical aging of polystyrene/gold nanocomposites and its relation to the calorimetric t-g depression. Soft Matter 7:3607–3620

    Article  CAS  Google Scholar 

  83. Cangialosi D, Boucher VM, Alegria A, Colmenero J (2011) Free volume holes diffusion to describe physical aging in poly(mehtyl methacrylate)/silica nanocomposites. J Chem Phys 135:014901

    Article  Google Scholar 

  84. Boucher VM, Cangialosi D, Alegria A, Colmenero J (2012) Enthalpy recovery in nanometer to micrometer thick polystyrene films. Macromolecules 45:5296–5306

    Article  CAS  Google Scholar 

  85. Boucher VM, Cangialosi D, Yin HJ, Schonhals A, Alegria A, Colmenero J (2012) T-g depression and invariant segmental dynamics in polystyrene thin films. Soft Matter 8:5119–5122

    Article  CAS  Google Scholar 

  86. Cangialosi D, Boucher VM, Alegria A, Colmenero J (2012) Enhanced physical aging of polymer nanocomposites: the key role of the area to volume ratio. Polymer 53:1362–1372

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.N. acknowledges financial support from the funds FER of the Université Libre de Bruxelles. M.W. acknowledge financial support from the Research Council of the KU Leuven, Project No. OT/11/065, and financial support from FWO (Fonds Wetenschappelijk Onderzoeks-Vlaanderen), Project G.0642.08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Napolitano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Napolitano, S., Wübbenhorst, M. (2014). Anomalous Decoupling of Translational and Rotational Motion Under 1D Confinement, Evidences from Crystallization and Diffusion Experiments. In: Kremer, F. (eds) Dynamics in Geometrical Confinement. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-06100-9_11

Download citation

Publish with us

Policies and ethics