Skip to main content

Cropping Systems to Improve Soil Biodiversity and Ecosystem Services: The Outlook and Lines of Research

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 14

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 14))

Abstract

The intensive farming practices that have been developed over the past 60 years are based mainly on the use of chemical inputs such as fertilisers and pesticides, mechanical tillage and monoculture. The limitations of these methods are now clear: long-term degradation of soil fertility, impacts on the environment and human health, high consumption of fossil fuels, low efficiency of inputs and threats to food security in a context of climate change. Would farming practices that rely on the activation of ecological processes be an alternative to achieve a balance between high productivity and environmental preservation? While many studies suggest a positive relationship between soil biodiversity and ecosystem services, there is considerable debate on the form such agricultural systems should take. This study reviewed the state of current knowledge and identified aspects requiring further research to achieve the aim of sustainable intensification of agriculture. The following major points emerged:

  1. (i)

    Most studies focused on the evaluation of individual practices. However, changes in farmers’ cropping practices to take advantage of soil biodiversity services would need to manage not only the interactions between various practices but also the trade-off between the technical and socio economic constraints of cropping systems. Advances in agricultural system design approaches may help to ensure appropriate trade-offs.

  2. (ii)

    More attention should be given to drawing on knowledge from different sources: laboratory studies focusing on the ecological functions of soil biodiversity, experimental surveys on farmers’ fields to rank the farming practices and processes to be included in site-specific models, and on- station experiments to test hypotheses and acquire additional reference material.

  3. (iii)

    Whereas advances in technical and scientific knowledge provide an increasing number of relevant indicators for characterizing biodiversity and ecological functions, studies are rarely targeted at the development of indicators that are accessible to farmers or their technical advisors. The lack of indicators accessible to grassroots players for evaluating the impacts of their decisions on soil biodiversity remains a serious obstacle to the development of innovative agro-ecological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen MF, Lansing J, Allen EB (2002) The role of mycorrhizal fungi in the composition and dynamics of plant communities: a scaling issue. In: Esser K et al (eds) Progress in botany. Springer, Berlin, pp 344–367

    Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31. doi:10.1016/S0167-8809(99)00028-6

    Google Scholar 

  • Altieri MA (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric Ecosyst Environ 93:1–24. doi:10.1016/S0167-8809(02)00085-3

    Google Scholar 

  • Altieri MA, Funes-Monzote FR, Petersen P (2012) Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron Sustain Dev 32:1–13. doi:10.1007/s13593-011-0065-6

    Google Scholar 

  • Amador JA, Görres JH (2007) Microbiological characterization of the structures built by earthworms and ants in an agricultural field. Soil Biol Biochem 39:2070–2077. doi:10.1016/j.soilbio.2007.03.010

    CAS  Google Scholar 

  • Anderson JM (1995) Soil organisms as engineers: microsite modulation of macroscale processes. In: Jones CG, Lawton JH (eds) Linking species and ecosystems. Chapman & Hall, London, pp 94–106

    Google Scholar 

  • Angers DA, Pesant A, Vigneux J (1992) Early cropping-induced changes in soil aggregation, organic matter and microbial biomass. Soil Sci Soc Am J 56:115–119. doi:10.2136/sssaj1992.03615995005600010018x

    Google Scholar 

  • Arancon NQ, Galvis P, Edwards CA, Yardim EN (2003) The trophic diversity of nematode communities in soils treated with vermicompost. Pedobiologia 47:736–740. doi:10.1016/S0031-4056(04)70261-9

    Google Scholar 

  • Arancon NQ, Edwards CA, Yardim EN et al (2007) Suppression of two-spotted spider mite (tetranychus urticae), mealybugs (pseudococcus) and aphid (myzus persicae) populations and damage by vermicomposts. Crop Prot 26:26–39. doi:10.1016/j.cropro.2006.03.013

    Google Scholar 

  • Asuming-Brempong S, Gantner S, Adiku SGK et al (2008) Changes in the biodiversity of microbial populations in tropical soils under different fallow treatments. Soil Biol Biochem 40:2811–2818. doi:10.1016/j.soilbio.2008.08.010

    CAS  Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285. doi:10.1016/j.ecolecon.2007.03.004

    Google Scholar 

  • Barros E, Curmi P, Hallaire V (2001) The role of macrofauna in the transformation and reversibility of soil structure of an oxisol in the process of forest to pasture conversion. Geoderma 100:193–213. doi:10.1016/S0016-7061(00)00086-0

    Google Scholar 

  • Beauchamp EG, Hume DJ (1997) Agricultural soil manipulation: the use of bacteria, manuring, and ploughing. In: Van Elsas JD (ed) Modern soil microbiology. Marcel Dekker, New York, pp 643–664

    Google Scholar 

  • Bellande A, Paul JL, Cabidoche YM (1994) Paysans, systèmes et crise: travaux sur l’agraire haïtien. Tome 3 : dynamique de l’exploitation paysanne. SACAD/FAMV, Pointe à Pitre/Port Au Prince, 476 pp

    Google Scholar 

  • Bengtsson J (1998) Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Appl Soil Ecol 10:191–199. doi:10.1016/S0929-1393(98)00120-6

    Google Scholar 

  • Bergez JE, Colbach N, Crespo O et al (2010) Designing crop management systems by simulation. Eur J Agron 32:3–9. doi:10.1016/j.eja.2009.06.001

    Google Scholar 

  • Bernard L, Chapuis-Lardy L, Razafimbelo T et al (2012) Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME J 6:213–222. doi:10.1038/ismej.2011.87

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bispo A, Blanchart E, Delmas AB, Laval K (2011) Indicateurs de la qualité des sols. In: Girard MC et al (eds) Sols et environnement, 2nd edn. Dunod, Paris, pp 509–527

    Google Scholar 

  • Blanchart E, Lavelle P, Braudeau E et al (1997) Regulation of soil structure by geophagous earthworm activities in humid savannas of Côte d’Ivoire. Soil Biol Biochem 29:431–439. doi:10.1016/S0038-0717(96)00042-9

    CAS  Google Scholar 

  • Blanchart E, Bernoux M, Sarda X et al (2007) Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agric Conspec Sci 72:81–87

    Google Scholar 

  • Blanchart E, Marilleau N, Chotte JL et al (2009) SWORM: an agent-based model to simulate the effect of earthworms on soil structure. Eur J Soil Sci 60:13–21. doi:10.1111/j.1365-2389.2008.01091.x

    Google Scholar 

  • Blouin M, Zuily-Fodil Y, Pham-Thi AT et al (2005) Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecol Lett 8:202–208. doi:10.1111/j.1461-0248.2004.00711.x

    Google Scholar 

  • Bongers T, Bongers M (1998) Functional diversity of nematodes. Appl Soil Ecol 10:239–251. doi:10.1016/S0929-1393(98)00123-1

    Google Scholar 

  • Bossio DA, Scow KM, Gunapala N et al (1998) Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol 36:1–12. doi:10.1007/s002489900087

    CAS  PubMed  Google Scholar 

  • Boswell EP, Koide RT, Shumway DL et al (1998) Winter wheat cover cropping, VA mycorrhizal fungi and maize growth and yield. Agric Ecosyst Environ 67:55–65. doi:10.1016/S0167-8809(97)00094-7

    Google Scholar 

  • Brussaard L (1998) Soil fauna, guilds, functional groups and ecosystem processes. Appl Soil Ecol 9:123–135. doi:10.1016/S0929-1393(98)00066-3

    Google Scholar 

  • Brussaard L, Behan-Pelletier VM, Bignell DE et al (1997) Biodiversity and ecosystem functioning in soil. AMBIO 26:563–570

    Google Scholar 

  • Brussaard L, de Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244. doi:10.1016/j.agee.2006.12.013

    Google Scholar 

  • Cadet P, Floret C (1999) Effect of plant parasitic nematodes on the sustainability of a natural fellow cultural system in the Sudano-Sahelian area in Senegal. Eur J Soil Biol 35:91–97. doi:10.1016/S1164-5563(99)00208-3

    Google Scholar 

  • Cadet P, Spaull VW, McArthur DG (2002) Role of plant parasitic nematodes and abiotic soil factors in growth heterogeneity of sugarcane on a sandy soil in South Africa. Plant Soil 246:259–271. doi:10.1023/A:1020624114434

    CAS  Google Scholar 

  • Cairns J (2000) Setting ecological restoration goals for technical feasibility and scientific validity. Ecol Eng 15:171–180. doi:10.1016/S0925-8574(00)00068-9

    Google Scholar 

  • Capowiez Y, Cadoux S, Bouchant P et al (2009) The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration. Soil Tillage Res 105:209–216. doi:10.1016/j.still.2009.09.002

    Google Scholar 

  • Carter MR (1986) Microbial biomass as an index for tillage-induced changes in soil biological properties. Soil Tillage Res 7:29–40. doi:10.1016/0167-1987(86)90005-X

    Google Scholar 

  • Chan KY (2001) An overview of some tillage impacts on earthworm population and diversity–implications for functioning in soils. Soil Tillage Res 57:179–191. doi:10.1016/S0167-1987(00)00173-2

    Google Scholar 

  • Chapuis-Lardy L, Brauman A, Bernard L et al (2010) Effect of the endogeic earthworm pontoscolex corethrurus on the microbial structure and activity related to CO2 and N2O fluxes from a tropical soil (Madagascar). Appl Soil Ecol 45:201–208. doi:10.1016/j.apsoil.2010.04.006

    Google Scholar 

  • Chauvel A, Grimaldi M, Barros E et al (1999) Pasture damage by an Amazonian earthworm. Nature 398:32–33. doi:10.1038/17946

    CAS  Google Scholar 

  • Chen M, Chen B, Marschner P (2008) Plant growth and soil microbial community structure of legumes and grasses grown in monoculture or mixture. J Environ Sci 20:1231–1237. doi:10.1016/S1001-0742(08)62214-7

    CAS  Google Scholar 

  • Clapperton MJ, Miller JJ, Larney FJ et al (1997) Earthworm populations as affected by longterm tillage practices in southern Alberta, Canada. Soil Biol Biochem 29:631–633

    CAS  Google Scholar 

  • Clermont-Dauphin C, Meynard JM, Cabidoche YM (2003) Devising fertiliser recommendations for diverse cropping systems in a region: the case of bean maize intercropping in a tropical highland of Haiti. Agronomie 23:673–681. doi:10.1051/agro:2003046

    Google Scholar 

  • Clermont-Dauphin C, Cabidoche YM, Meynard JM (2004) Effects of intensive monocropping of bananas on properties of volcanic soils in the uplands of the French West Indies. Soil Use Manag 20:105–113. doi:10.1079/SUM2003231

    Google Scholar 

  • Clermont-Dauphin C, Cabidoche YM, Meynard JM (2005) Diagnosis on the sustainability of an upland cropping system of southern Haiti. Agric Ecosyst Environ 105:221–234. doi:10.1016/j.agee.2004.03.008

    Google Scholar 

  • Clermont-Dauphin C, Suwannang N, Grünberger O, Hammecker C, Maeght JL (2010) Yield of rice under water and soil salinity risks in farmers’ fields in northeast Thailand. Field Crop Res 118:289–296. doi:10.1016/j.fcr.2010.06.009

    Google Scholar 

  • Clermont-Dauphin C, Suvannang N, Hammecker C, Cheylan V, Pongwichian P, Do FC (2013) Unexpected absence of control of rubber tree growth by soil water shortage in dry subhumid climate. Agron Sustain Dev 33:531–538. doi:10.1007/s13593-012-0129-2

    Google Scholar 

  • Cluzeau D, Guernion M, Chaussod R et al (2012) Integration of biodiversity in soil quality monitoring: baselines for microbial and soil fauna parameters for different land-use types. Eur J Soil Biol 49:63–72. doi:10.1016/j.ejsobi.2011.11.003

    Google Scholar 

  • Colbach N, Meynard JM (1995) Soil tillage and eyespot – influence of crop residue distribution on disease development and infection cycles. Eur J Plant Pathol 101:601–611. doi:10.1007/BF01874864

    Google Scholar 

  • Coll P, Le Cadre E, Blanchart E, Hinsinger P et al (2011) Organic viticulture and soil quality: a long-term study in southern France. Appl Soil Ecol 50:37–44. doi:10.1016/j.apsoil.2011.07.013

    Google Scholar 

  • Coq S, Barthès BG, Oliver R et al (2007) Earthworm activity affects soil aggregation and soil organic matter dynamics according to the quality and localization of crop residues – an experimental study (Madagascar). Soil Biol Biochem 39:2119–2128. doi:10.1016/j.soilbio.2007.03.019

    CAS  Google Scholar 

  • Coquil X, Blouet A, Fiorelli JL et al (2009) Conception de systèmes laitiers en agriculture biologique: une entrée agronomique. INRA Prod Anim 22:221–234

    Google Scholar 

  • Daily GC, Alexander S, Ehrlich PR et al (1997) Ecosystem services: benefits supplied to human society by natural ecosystems. Issues Ecol 2:1–16

    Google Scholar 

  • Dauber J, Wolters V (2000) Microbial activity and functional diversity in the mounds of three different ant species. Soil Biol Biochem 32:93–99. doi:10.1016/S0038-0717(99)00135-2

    CAS  Google Scholar 

  • Dauber J, Schroeter D, Wolters V (2001) Species specific effects of ants on microbial activity and N-availability in the soil of an old-field. Eur J Soil Biol 37:259–261. doi:10.1016/S1164-5563(01)01094-9

    CAS  Google Scholar 

  • De Leon-Gonzales F, Fuentes-Ponce M, Payán-Zelaya F (2012) Earthworms and agricultural systems management: emphasis on the Latin American region. Dyn Soil Dyn Plant 6(SI 1):14–25

    Google Scholar 

  • De Wit CT, Van Keulen H, Seligman NG et al (1988) Application of interactive multiple goal programming techniques for analysis and planning of regional agricultural development. Agric Syst 26:211–230. doi:10.1016/0308-521X(88)90012-1

    Google Scholar 

  • Decaëns T (2010) Macroecological patterns in soil communities. Global Ecol Biogeogr 19:287–302. doi:10.1111/j.1466-8238.2009.00517.x

    Google Scholar 

  • Decaëns T, Galvin JH, Amezquita E (2001) Propriétés des structures produites par les ingénieurs écologiques à la surface du sol d’une savane colombienne. CR Acad Sci Biol 324:465–478

    Google Scholar 

  • Decaëns T, Jiménez JJ, Gioia C et al (2006) The values of soil animals for conservation biology. Eur J Soil Biol 42:S23–S38. doi:10.1016/j.ejsobi.2006.07.001

    Google Scholar 

  • Derpsch R (2008) No-tillage and conservation agriculture: a progress report agricultural. In: Goddard T et al (eds) No-till farming systems. WASWC, Bangkok, pp 7–39

    Google Scholar 

  • Dighton J, Tuininga AR, Gray DM et al (2004) Impacts of atmospheric deposition on New Jersey pine barrens forest soils and communities of ectomycorrhizae. For Ecol Manag 201:131–144. doi:10.1016/j.foreco.2004.07.038

    Google Scholar 

  • Djigal D, Saj S, Rabary B et al (2012) Mulch type affects soil biological functioning and crop yield of conservation agriculture systems in a long-term experiment in Madagascar. Soil Tillage Res 118:11–21. doi:10.1016/j.still.2011.10.008

    Google Scholar 

  • Doran JW, Coleman DC, Bezdicek DF et al (1994) Defining soil quality for a sustainable environment. Soil Science Society of America Spec Publ n° 35, Soil Sci Soc Am Inc and Am Soc Agron Inc, Madison

    Google Scholar 

  • Doré T, Meynard JM, Sebillotte M (1997) A diagnostic method for assessing regional variations in crop yield. Agric Syst 54:169–188. doi:10.1016/S0308-521X(96)00084-4

    Google Scholar 

  • Doré T, Clermont-Dauphin C, Crozat Y et al (2008) Methodological progress in on-farm regional agronomic diagnosis. A review. Agron Sustain Dev 28:151–161. doi:10.1051/agro:2007031

    Google Scholar 

  • Doube BM, Buckerfield JC, Kirkegaard JA (1994) Short-term effects of tillage and stubble management on earthworm populations in cropping systems in southern New South Wales. Aust J Agric Res 45:1587–1600. doi:10.1071/AR9941587

    Google Scholar 

  • DuPont ST, Ferris H, Van Horn M (2009) Effects of cover crop quality and quantity on nematode-based soil food webs and nutrient cycling. Appl Soil Ecol 41:157–167. doi:10.1016/j.apsoil.2008.10.004

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman & Hall, London

    Google Scholar 

  • Edwards CA, Lofty JR (1982) The effects of direct drilling and minimal cultivation on earthworm populations. J Appl Ecol 19:723–734. doi:10.2307/2403277

    Google Scholar 

  • El Titi A, Ipach A (1989) Soil fauna in sustainable agriculture: results of an integrated farming system at Lautenbach, FRG. Agric Ecosyst Environ 27:561–572. doi:10.1016/0167-8809(89)90117-5

    Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Google Scholar 

  • Feng Y, Motta AC, Reeves DW et al (2003) Soil microbial communities under conventional-till and no-till continuous cotton systems. Soil Biol Biochem 35:1693–1703. doi:10.1016/j.soilbio.2003.08.016

    CAS  Google Scholar 

  • Ferris H, Matute MM (2003) Structural and functional succession in the nematode fauna of a soil food web. Appl Soil Ecol 23:93–110. doi:10.1016/S0929-1393(03)00044-1

    Google Scholar 

  • Förster B, Muroya K, Garcia M (2006) Plant growth and microbial activity in a tropical soil amended with faecal pellets from millipedes and woodlice. Pedobiologia 50:281–290. doi:10.1016/j.pedobi.2006.03.001

    Google Scholar 

  • Fox RH, Bandel VA (1986) Nitrogen utilization with no-tillage. In: Sprague MA, Triplett GB (eds) No-tillage and surface-tillage agriculture: the tillage revolution. Wiley, New York, pp 117–148

    Google Scholar 

  • Fuentes M, Govaerts B, De Leon F et al (2009) Fourteen years of applying zero and conventional tillage, crop rotation and residue management systems and its effect on physical and chemical soil quality. Eur J Agron 30:228–237. doi:10.1016/j.eja.2008.10.005

    CAS  Google Scholar 

  • Giller KE, Cadisch G (1995) Future benefits from biological nitrogen fixation: an ecological approach to agriculture. Plant Soil 174:255–277. doi:10.1007/BF00032251

    CAS  Google Scholar 

  • Gobat JM, Aragno M, Matthey W (1998) Le sol vivant: bases de pédologie, biologie des sols. Collection gérer l’environnement, Presses Polytechniques et Universitaires Romandes, Lausanne

    Google Scholar 

  • Hansen S, Engelstad F (1999) Earthworm populations in a cool and wet district as affected by tractor traffic and fertilization. Appl Soil Ecol 13:237–250. doi:10.1016/S0929-1393(99)00037-2

    Google Scholar 

  • Hart MM, Klironomos JN (2002) Diversity of arbuscular mycorrhizal fungi and ecosystem functioning. In: Van der Heijden MGA, Sanders I (eds) Ecological studies. Springer, Berlin, pp 226–242

    Google Scholar 

  • Hénin S, Gras R, Monnier G (1969) Le profil cultural: l’état physique du sol et ses conséquences agronomiques. Masson et Cie, Paris

    Google Scholar 

  • Hogh-Jensen H, Schjoerring JK, Soussana JF (2002) The influence of phosphorous deficiency on growth and nitrogen fixation of white clover plants. Ann Bot 90:745–753. doi:10.1093/aob/mcf260

    CAS  PubMed  Google Scholar 

  • Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103:1–25. doi:10.1016/j.agee.2003.12.018

    Google Scholar 

  • Holt JA (1998) Microbial activity in the mounds of some Australian termites. Appl Soil Ecol 9:183–187. doi:10.1016/S0929-1393(98)00073-0

    Google Scholar 

  • House GJ, Parmelee RW (1985) Comparison of soil arthropods and earthworms from conventional and no-tillage agroecosystems. Soil Tillage Res 5:351–360. doi:10.1016/S0167-1987(85)80003–9

    Google Scholar 

  • Hungria M, Franchini JC, Osvaldino BJ et al (2009) Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems. Appl Soil Ecol 42:288–296. doi:10.1016/j.apsoil.2009.05.005

    Google Scholar 

  • Husson O (2013) Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 362:389–417. doi:10.1007/s11104-012-1429-7

    CAS  Google Scholar 

  • Husson O, Charpentier H, Raharison T et al (2012) Climat de moyenne altitude (600–1100 m) avec longue saison sèche (> 6 mois) Lac Alaotra et Moyen Ouest. In: CIRAD (ed) Manuel pratique du semis direct à Madagascar -Volume IV-, Cirad, Antananarivo, pp 4–60

    Google Scholar 

  • Johnson NC, Copeland PJ, Crookston RK et al (1992) Mycorrhizae: possible explanation for yield decline with continuous corn and soybean. Agron J 84:387–390

    Google Scholar 

  • Johnson D, Booth RE, Whiteley AS et al (2003) Plant community composition affects the biomass, activity and diversity of microorganisms in limestone grassland soil. Eur J Soil Biol 54:671–677. doi:10.1046/j.1365-2389.2003.00562.x

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. doi:10.2307/3545850

    Google Scholar 

  • Jouquet P, Tessier D, Lepage M (2004) The soil structural stability of termite nests: role of clays in macrotermes bellicosus (isoptera, macrotermitinae) mound soils. Eur J Soil Biol 40:23–29. doi:10.1016/j.ejsobi.2004.01.006

    Google Scholar 

  • Kahindi JHP, Woomer P, George T et al (1997) Agricultural intensification, soil biodiversity and ecosystem function: the role of nitrogen fixing bacteria. Appl Soil Ecol 6:55–76. doi:10.1016/S0929-1393(96)00151-5

    Google Scholar 

  • Kaneko N (1999) Effect of millipede parafontaria tonominea attems (diplopoda: xystomidae) adult on soil biological activities: microcosm experiment. Ecol Res 14:271–279. doi:10.1046/j.1440-1703.1999.143302.x

    Google Scholar 

  • Karlen DL, Mausbach MJ, Doran JW et al (1997) Soil quality: a concept, definition, and framework for evaluation. Soil Sci Soc Am J 61:4–10

    CAS  Google Scholar 

  • Karlen DL, Ditzler CA, Andrews S (2003) Soil quality: why and how? Geoderma 114:145–156. doi:10.1016/S0016-7061(03)00039-9

    CAS  Google Scholar 

  • Kaschuk G, Alberton O, Hungria M (2010) Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biol Biochem 42:1–13. doi:10.1016/j.soilbio.2009.08.020

    CAS  Google Scholar 

  • Keating A, McCown RL (2001) Advances in farming systems analysis and intervention. Agric Syst 70:555–579. doi:10.1016/S0308-521X(01)00059-2

    Google Scholar 

  • Kennedy N, Edwards S, Clipson N (2005) Soil bacterial and fungal community structure across a range of unimproved and semi-improved upland grasslands. Microb Ecol 50:463–473. doi:10.1007/s00248-005-0256-2

    PubMed  Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos Trans R Soc B 363:685–701. doi:10.1098/rstb.2007.2178

    CAS  Google Scholar 

  • Kihara J, Bationo A, Waswa B (2012) Effect of reduced tillage and mineral fertilizer application on maize and soybean productivity. Exp Agric 48:159–175. doi:10.1017/S0014479711000895

    Google Scholar 

  • Kladivko EJ (2001) Tillage systems and soil ecology. Soil Tillage Res 61:61–76. doi:10.1016/S0167-1987(01)00179-9

    Google Scholar 

  • Kladivko EJ, Akhouri NM, Weesies G (1997) Earthworm populations and species distributions under no-till and conventional tillage in Indiana and Illinois. Soil Biol Biochem 29:613–615. doi:10.1016/S0038-0717(96)00187-3

    CAS  Google Scholar 

  • Krumins JA, Dighton J, Gray D et al (2009) Soil microbial community response to nitrogen enrichment in two scrub oak forests. For Ecol Manag 258:1383–1390. doi:10.1016/j.foreco.2009.06.046

    Google Scholar 

  • Lafont A, Risède JM, Loranger-Merciris G et al (2007) Effects of the earthworm pontoscolex corethrurus on banana plants infected with the plant-parasitic nematode radopholus similis. Pedobiologia 51:311–318. doi:10.1016/j.pedobi.2007.05.004

    CAS  Google Scholar 

  • Lançon J, Reau R, Cariolle M et al (2008) Elaboration à dire d’experts de systèmes de culture innovants. In: Reau R, Doré T (eds) Systèmes de culture innovants et durables: quelles méthodes pour les mettre au point et les évaluer. Educagri, Dijon, pp 91–108

    Google Scholar 

  • Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27:93–132. doi:10.1016/S0065-2504(08)60007-0

    Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer Scientific, Amsterdam, 654p

    Google Scholar 

  • Lavelle P, Blanchart E, Martin A et al (1993) A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25:130–150. doi:10.2307/2389178

    Google Scholar 

  • Lavelle P, Blouin M, Boyer J et al (2004) Plant parasite control and soil fauna diversity. CR Acad Sci Biol 327:629–638. doi:10.1016/j.crvi.2004.05.004

    Google Scholar 

  • Lavelle P, Decaëns T, Aubert M et al (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15. doi:10.1016/j.ejsobi.2006.10.002

    Google Scholar 

  • Le Bail M, Meynard JM (2003) Yield and protein concentration of spring malting barley: the effects of cropping systems in the Paris basin (France). Agronomie 23:13–27. doi:10.1051/agro:2002029

    Google Scholar 

  • Le Bayon RC, Binet F (2006) Earthworms change the distribution and availability of phosphorus in organic substrates. Soil Biol Biochem 38:235–246. doi:10.1016/j.soilbio.2005.05.013

    Google Scholar 

  • Le Roux X, Barbault R, Baudry J et al (2008) Agriculture et Biodiversité Valoriser les synergies. Synthèse du rapport d’expertise – 2ème partie. Expertise scientifique collective, INRA, Paris, pp 38–113

    Google Scholar 

  • Legrand A, Gaucherel C, Baudry J et al (2011) Long term effects of organic, conventional and integrated crop systems on carabids. Agron Sustain Dev 31:515–524. doi:10.1007/s13593-011-0007-3

    Google Scholar 

  • Lehmann J, Rillig MC, Thies J et al (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43:1812–1836. doi:10.1016/j.soilbio.2011.04.022

    CAS  Google Scholar 

  • Leroy BLM, Schmidt O, van den Bossche A et al (2008) Earthworm population dynamics as influenced by the quality of exogenous organic matter. Pedobiologia 52:139–150. doi:10.1016/j.pedobi.2008.07.001

    CAS  Google Scholar 

  • Lilleskov EA, Fahey TJ, Horton TR et al (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115. doi:10.2307/2680124

    Google Scholar 

  • Logan TJ, Lal R, Dick WA (1991) Tillage systems and soil properties in North-America. Soil Tillage Res 20:241–270. doi:10.1016/0167-1987(91)90042-V

    Google Scholar 

  • López-Hernández D (2001) Nutrient dynamics (C, N and P) in termite mounds of nasutitermes ephratae from savannas of the Orinoco llanos (Venezuela). Soil Biol Biochem 33:747–753. doi:10.1016/S0038-0717(00)00220-0

    Google Scholar 

  • Loranger-Merciris G, Cabidoche YM, Deloné B et al (2012) How earthworm activities affect banana plant response to nematode parasitism. Appl Soil Ecol 52:1–8. doi:10.1016/j.apsoil.2011.10.003

    Google Scholar 

  • Loreau M, Thébault E (2006) Food webs and the relationship between biodiversity and ecosystem functioning. In: de Ruiter P, Wolters W, Moore JC (eds) Dynamic food webs. Elsevier, Amsterdam, pp 270–282

    Google Scholar 

  • Lubbers IM, van Groeningen KJ, Fonte SJ et al (2013) Greenhouse-gas emissions from soils increased by earthworms. Nat Clim Change. doi:10.1038/NCLIMATE1692

    Google Scholar 

  • Manetti PL, Lopez AN, Clemente NL et al (2010) Tillage system does not affect soil macrofauna in southeastern Buenos Aires province, Argentina. Span J Agric Res 8:377–384

    Google Scholar 

  • Marschner P, Yang CH, Lieberei R (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–144. doi:10.1016/S0038-0717(01)00052-9

    CAS  Google Scholar 

  • Martin A (1991) Short- and long-term effects of the endogeic earthworm millonia anomala (megassolecidae, oligochaeta) of tropical savannas, on soil organic matter. Biol Fertil Soil 11:234–238. doi:10.1007/BF00335774

    Google Scholar 

  • McNeely JA (1994a) Lessons from the past: forest and biodiversity. Biodivers Conserv 3:3–20. doi:10.1007/BF00115329

    Google Scholar 

  • McNeely JA (1994b) Protected areas for 21st century: working to provide benefits to society. Biodivers Conserv 3:390–405. doi:10.1007/BF00057797

    Google Scholar 

  • Melero S, Lόpez-Garrido R, Madejόn E et al (2009) Long-term effects of conservation tillage on organic fractions in two soils in southwest of Spain. Agric Ecosyst Environ 133:68–74. doi:10.1016/j.agee.2009.05.004

    Google Scholar 

  • Meynard JM (2012) Innovating in cropping and farming systems. In: Coudel E et al (eds) Renewing innovation systems in agriculture and food: how to go towards more sustainability? Wageningen Academic, Wageningen, pp 89–108

    Google Scholar 

  • Meynard JM, Doré T, Habib R (2001) L’évaluation et la conception de systèmes de culture pour une agriculture durable. Dossier établi pour les responsables du département environnement et agronomie. CR Acad Agric Fr 87:223–236

    Google Scholar 

  • Meynard JM, Cerf M, Guichard L et al (2002) Which decision support tools for the environmental management of nitrogen? Agronomie 22:817–829. doi:10.1051/agro:2002064

    Google Scholar 

  • Meynard JM, Dedieu B, Bos AP (2012) Re-design and co-design of farming systems. An overview of methods and practices. In: Darnhofer I, Gibon D, Dedieu B (eds) Farming systems research into the 21st century: the new dynamic. Springer, Dordrecht, pp 407–432

    Google Scholar 

  • Meynard JM, Messéan A, Charlier A et al (2013) Freins et leviers à la diversification des cultures. Etude au niveau des exploitations agricoles et des filières. Synthèse du rapport d’étude, INRA, 52p. http://institut.inra.fr/Missions/Eclairer-decisions/Etudes/Toutes-les-actualites/Diversification-des-cultures

  • Mijangos I, Perez R, Albizu I et al (2006) Effects of fertilization and tillage on soil biological parameters. Enzym Microb Technol 40:100–106. doi:10.1016/j.enzmictec.2005.10.043

    CAS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: policy responses. Island Press, Washington, DC

    Google Scholar 

  • Mischler P, Lheureux S, Dumoulin F et al (2009) Huit fermes de Grande culture engagées en production intégrée réduisent les pesticides sans baisse de Marge. Le Courrier de l’Environnement 57:73–91

    Google Scholar 

  • Parkin TB, Berry EC (1999) Microbial nitrogen transformations in earthworms burrows. Soil Biol Biochem 31:1765–1771. doi:10.1016/S0038-0717(99)00085-1

    CAS  Google Scholar 

  • Passioura JB (1996) Simulation models: science, snake oil, education or engineering? Agron J 88:690–694

    Google Scholar 

  • Pelosi C, Bertrand M, Makowski D et al (2008) WORMDYN: a model of lumbricus terrestris population dynamics in agricultural fields. Ecol Model 218:219–234. doi:10.1016/j.ecolmodel.2008.07.002

    Google Scholar 

  • Pelosi C, Bertrand M, Capowiez Y et al (2009) Earthworm collection from agricultural fields: comparisons of selected expellants in presence/absence of hand-sorting. Eur J Soil Biol 45:176–183. doi:10.1016/j.ejsobi.2008.09.013

    Google Scholar 

  • Pérès G, Vandenbulcke F, Guernion M et al (2011) Earthworm indicators as tools for soil monitoring, characterization and risk assessment. An example from the national bioindicator programme (France). Pedobiologia 54:S77–S87. doi:10.1016/j.pedobi.2011.09.015

    Google Scholar 

  • Plenchette C, Perrin R (1992) Evaluation of the greenhouse of the effects of fungicides on the development of mycorrhiza on leek and wheat. Mycorrhiza 1:59–62. doi:10.1007/BF00206137

    CAS  Google Scholar 

  • Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin A (2005) Management of arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31–40

    Google Scholar 

  • Pommeresche R, Loes AK (2009) Relations between agronomic practice and earthworms in Norwegian arable soils. Dyn Soil Dyn Plant 3(SI 2):129–142

    Google Scholar 

  • Prost L, Cerf M, Jeuffroy MH (2012) Lack of consideration for end-users during the design of agronomic models – a review. Agron Sustain Dev 32:581–594. doi:10.1007/s13593-011-0059-4

    Google Scholar 

  • Pulleman M, Creamer R, Hamer U et al (2012) Soil biodiversity, biological indicators and soil ecosystem services-an overview of European approaches. Curr Opin Environ Sustain 4:529–538. doi:10.1016/j.cosust.2012.10.009

    Google Scholar 

  • Queinnec M (2013) Caractérisation et typologie des exploitations agricoles du Moyen Ouest du Vakinankaratra, Madagascar. MSc thesis Supagro Montpellier, Paris, 58 p

    Google Scholar 

  • Reau R, Monnot LA, Schaub A et al (2012) Les ateliers de conception de systèmes de culture pour construire, évaluer et identifier des prototypes prometteurs. Innov Agron 20:5–33

    Google Scholar 

  • Roger-Estrade J, Anger C, Bertrand M et al (2010) Tillage and soil ecology: partners for sustainable agriculture. Soil Tillage Res 111:33–40. doi:10.1016/j.still.2010.08.010

    Google Scholar 

  • Rosas-Medina AM, de Leon-Gonzalez F, Flores-Macias A et al (2010) Effects of tillage, sampling date and soil depth on earthworm population on maize monoculture with continuous Stover restitutions. Soil Tillage Res 108:37–42. doi:10.1016/j.still.2010.03.008

    Google Scholar 

  • Rossing WAH, Meynard JM, van Ittersum MK (1997) Model-based explorations to support development of sustainable farming systems: case studies from France and the Netherlands. Eur J Agron 7:271–283. doi:10.1016/S1161-0301(97)00042-7

    Google Scholar 

  • Rousseau GX, Silva PRS, Carvalho CJR (2010) Earthworms, ants and other arthropods as soil health indicators in traditional and no-fire agro-ecosystems from eastern Brazilian Amazonia. Acta Zool Mex 2:117–134

    Google Scholar 

  • Ruiz-Camacho N, Velasquez E, Pando A (2009) Indicateurs synthétiques de la qualité du sol. Etude et Gestion des Sols 16:323–338

    Google Scholar 

  • Sarr M, Agbogba C, Russel-Smith A (2001) Effects of soil faunal activity and woody shrub on water infiltration rates in a semi-arid fallow of Senegal. Appl Soil Ecol 16:283–290. doi:10.1016/S0929-1393(00)00126-8

    Google Scholar 

  • Schneider A, Flénet F, Dumans P et al (2010) Diversifier les rotations céréalières notamment avec du pois et du colza –données récentes d’expérimentations et d’études. OCL Ol Corps Gras Li 17:301–311

    Google Scholar 

  • Sebillotte M (1974) Agronomie et agriculture: essai d’analyse des tâches de l’agronome. Cahiers ORSTOM, série Biologie 24:3–25

    Google Scholar 

  • Sebillotte M (1980) Rôles de la prairie dans la succession culturale. Fourrages 83:79–124

    Google Scholar 

  • Séguy L, Bouzinac S, Maeda N et al (1998) Semis direct du cotonnier en Grande culture motorisée. Agric Dév 17:4–22

    Google Scholar 

  • Serpantié G (2009) L’agriculture de conservation à la croisée des chemins (afrique, Madagascar). VertigO 9(3):1–21

    Google Scholar 

  • Shi Y, Lalande R, Hamel C et al (2013) Seasonal variation of microbial biomass, activity, and community structure in soil under different tillage and phosphorus management practices. Biol Fertil Soils 49:803–818. doi:10.1007/s00374-013-0773-y

    CAS  Google Scholar 

  • Simmons BL, Coleman DC (2008) Microbial community response to transition from conventional to conservation tillage in cotton fields. Appl Soil Ecol 40:518–528. doi:10.1016/j.apsoil.2008.08.003

    Google Scholar 

  • Sisti CPJ, dos Santos H, Kohhann R et al (2004) Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Tillage Res 76:39–58. doi:10.1016/j.still.2003.08.007

    Google Scholar 

  • Spain AV, Lavelle P, Mariotti A (1992) Stimulation of plant growth by tropical earthworms. Soil Biol Biochem 24:1629–1633. doi:10.1016/0038-0717(92)90161-P

    Google Scholar 

  • Spedding CRW (1979) An introduction to agricultural systems. Applied Science Publishers, London, 189pp

    Google Scholar 

  • Spedding TA, Hamel C, Mehuys GR et al (2004) Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol Biochem 36:499–512. doi:10.1016/j.soilbio.2003.10.026

    CAS  Google Scholar 

  • Stirling GR, Cox MC, Ogden-Brown J (2010) Resistance to plant-parasitic nematodes (pratylenchus zeae and meloidogyne javanica) in erianthus and crosses between erianthus and sugarcane. Int Sugar J 114:30–36

    Google Scholar 

  • Stork NE, Eggleton P (1992) Invertebrates as determinants and indicators of soil quality. Am J Altern Agric 7:38–45

    Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci U S A 96:5995–6000. doi:10.1073/pnas.96.11.5995

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245. doi:10.1016/S1369-5274(02)00324-7

    CAS  PubMed  Google Scholar 

  • Toyota A, Kaneko N, Ito MT (2006) Soil ecosystem engineering by the train millipede parafontaria laminata in a Japanese larch forest. Soil Biol Biochem 38:1840–1850. doi:10.1016/j.soilbio.2005.12.015

    CAS  Google Scholar 

  • Trébuil G, Thungwa S (2002) Farmers’ Direct sowing practices in rainfed lowland rice in southern Thailand: improving a traditional system. In: Pandey S et al (eds) Direct seeding: research strategies and opportunities, proceedings of the international workshop on direct seeding in Asian rice systems. International Rice Research Institute, Los Baños, pp 99–115

    Google Scholar 

  • Turbé A, De Toni A, Benito P, Lavelle P, Ruiz N, Van der Putten WH, Labouze E, Mudgal S (2010) Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, IRD, and NIOO Technical Report 2010–049 for European Commission (DG Environment), Paris

    Google Scholar 

  • Vian JF, Peigné J, Chaussod R et al (2009) Effects of four tillage systems on soil structure and soil microbial biomass in organic farming. Soil Use Manag 25:1–10. doi:10.1111/j.1475-2743.2008.00176.x

    Google Scholar 

  • Villemaine R (2011) Eléments d’analyse du dispositif d’innovation autour des SCV dans la région du lac Alaotra, Madagascar. MSc thesis, AgroParisTech, Paris, France, 77 p

    Google Scholar 

  • Villenave C, Cadet P (1998) Interaction of helicotylenchus dihystera, pratylenchus pseudopratensis and tylenchorhynchus gladiotus on two plants from the Sudano-Sahelian zone of West Africa. Nematropica 28:31–39

    Google Scholar 

  • Wall DH, Virginia RA (2000) The world beneath our feet: soil biodiversity and ecosystem functioning. In: Raven PR, Williams T (eds) Nature and human society: the quest for a sustainable world. National Academy of Sciences and National Research Council, Washington, DC, pp 225–241

    Google Scholar 

  • Warkentin BP, Fletcher HF (1977) Soil quality for intensive agriculture. In: Proceedings of the international seminar on soil environment and fertilization management; Intensive Agriculture Society of Science, Soil and Manure; National Institute of Agricultural Science, Tokyo, pp 594–598

    Google Scholar 

  • Wezel A, Bellon S, Dore T et al (2009) Agroecology as a science, a movement and a practice. A review. Agron Sustain Dev 29:503–515. doi:10.1051/agro/2009004

    Google Scholar 

  • Wolters V (2001) Biodiversity of soil animals and its function. Eur J Soil Biol 37:221–227. doi:10.1016/S1164-5563(01)01088-3

  • Wurst S (2010) Effects of earthworms on above- and belowground herbivores. Appl Soil Ecol 45:123–130. doi:10.1016/j.apsoil.2010.04.005

    Google Scholar 

  • Zhang X, Li Q, Zhu A et al (2012) Effects of tillage and residue management on soil nematode communities in north China. Ecol Indic 13:75–81. doi:10.1016/j.ecolind.2011.05.009

    Google Scholar 

Download references

Acknowledgements

The authors thank Laurent Cournac, Nicolas Dauphin and Harry Ozier-Lafontaine for the helpful discussions on a previous draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathy Clermont-Dauphin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Clermont-Dauphin, C., Blanchart, E., Loranger-Merciris, G., Meynard, JM. (2014). Cropping Systems to Improve Soil Biodiversity and Ecosystem Services: The Outlook and Lines of Research. In: Ozier-Lafontaine, H., Lesueur-Jannoyer, M. (eds) Sustainable Agriculture Reviews 14. Sustainable Agriculture Reviews, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-06016-3_5

Download citation

Publish with us

Policies and ethics