Skip to main content

The Importance and Application of Bacterial Diversity in Sustainable Agricultural Crop Production Ecosystems

  • Chapter
  • First Online:
Bacterial Diversity in Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 1))

Abstract

Soil inhabiting bacteria are integral to global biogeochemical cycles and influence nutrient cycling and mineral solubilization important to soil health, and crop productivity. Soil bacteria directly impact plant fitness as pathogens, beneficial mutualists, and indirectly as decomposers, or through antagonistic activity against plant pathogens. Moreover, such beneficial bacteria have the capacity to produce plant hormones and induce systemic disease resistance responses in plants. This chapter discusses bacterial diversity and its role in sustainable agriculture in crop ecosystems. The chapter also addresses the potential role of plant growth promoting rhizobacteria (PGPR), biological control agents (BCAs) and the significance of bacterial community diversity associated with soil borne plant disease suppression in sustainable agricultural crop production. The influence of herbicide resistant crop rotation systems on soil bacterial diversity is discussed. Current culture-independent approaches to study bacterial diversity, and directions for future applied research in agricultural production systems are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Martinez V, Dowd S, Sun Y, Allen V (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40:2762–2770

    CAS  Google Scholar 

  • Aeron A, Kumar S, Pandey P, Maheshwari DK (2011) Emerging role of plant growth promoting rhizobacteria in agrobiology. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, pp 1–36

    Google Scholar 

  • Alabouvette C, Hornby D (1990) Biological control of fusarium wilt pathogens in suppressive soils. In: Hornby D, Cook RJ (ed) Biological control of soil-borne plant pathogens. CAB International, UK, pp 27–43

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aminov RI, Mackie RI (2007) Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett 271:147–161

    CAS  PubMed  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson GF (1892) Some diseases of cotton. AL Agric Exp Stn Bull 41:65

    Google Scholar 

  • Baker KF, Snyder WC (1965) Ecology of soil-borne plant pathogens. Soil Sci 100(3):224

    Google Scholar 

  • Banat IM, Makkar RS, Cameotra S (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    CAS  PubMed  Google Scholar 

  • Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci U S A 91:1609–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barriuso J, Marín S, Mellado RP (2011) Potential accumulative effect of the herbicide glyphosate on glyphosate-tolerant maize rhizobacterial communities over a three-year cultivation period. PloS ONE 6(11):e27558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol 11:557–574

    Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    CAS  PubMed  Google Scholar 

  • Bohlen PJ, Groffman PM, Driscoll CT, Fahey TJ, Siccama TG (2001) Plant-soil-microbial interactions in a northern hardwood forest. Ecology 82:965–978

    Google Scholar 

  • Borneman J, Skroch PW, O’Sullivan KM, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J, Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62:1935–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boudreau M, Andrews J (1987) Factors influencing antagonism of Chaetomium globosum to Venturiaina equalis: A case study in failed biocontrol. Phytopathology 77:1470–1475

    Google Scholar 

  • Bowers J, Kinkel L, Jones R (1996) Influence of disease-suppressive strains of Streptomyces on the native Streptomyces community in soil as determined by the analysis of cellular fatty acids. Can J Microbiol 42:27–37

    CAS  PubMed  Google Scholar 

  • Bringhurst RM, Cardon ZG, Gage DJ (2001) Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci U S A 98:4540–4545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bull CT, Weller DM, Thomashow LS (1991) Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79. Phytopathology 81:954–959

    Google Scholar 

  • Busse MD, Ratcliff AW, Shestak CJ, Powers RF (2001) Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol Biochem 33:1777–1789

    CAS  Google Scholar 

  • Campbell PJ, Stephens PJ, Pleasance ED, O’Meara S, Li H, Santarius T, Stebbings LA, Leroy C, Edkins S, Hardy C, Teague JW, Menzies A, Goodhead I, Turner DJ, Clee CM, Quail MA, Cox A, Brown C, Durbin R, Hurles ME, Edwards PAW, Bignell GR, Stratton MR, Futreal PA (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40:722–729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EAG (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12:1842–1854

    CAS  PubMed  Google Scholar 

  • Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A 100:14555–14561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterton S, Sutton JC, Boland GJ (2004) Timing Pseudomonas chlororaphis applications to control Pythiumaphanidermatum, Pythiumdissotocum, and root rot in hydroponic peppers. Biol Control 30:360–373

    Google Scholar 

  • Chin-A-Woeng TFC, de Priester W, van der Bij AJ, Lugtenberg BJJ (1997) Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol Plant Microbe Interact 10:79–86

    CAS  Google Scholar 

  • Clardy J, Fischbach M, Currie C (2009) The natural history of antibiotics. Curr Biol 19(11):R437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole J, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(1):D141–D145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole JR, Wang Q, Chai B, Tiedje JM (2011) The ribosomal database project: sequences and software for high-throughput rRNA analysis. In: de BruijnFrans J (ed) Handbook of molecular microbial ecology I: metagenomics and complementary approaches. Wiley-Blackwell, Hoboken, pp 313–324

    Google Scholar 

  • Cook R, Rovira A (1976) The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils. Soil Biol Biochem 8:269–273

    Google Scholar 

  • Coombs JT, Franco CM (2003a) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    CAS  Google Scholar 

  • Coombs JT, Franco CM (2003b) Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol 69:4260–4262

    CAS  Google Scholar 

  • Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249

    CAS  PubMed  Google Scholar 

  • Cundliffe E (1989) How antibiotic-producing organisms avoid suicide. Ann Rev Microbiol 43: 207–233

    CAS  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Ann Rev Microbiol 61:401–422

    CAS  Google Scholar 

  • DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK (2008) Selective progressive response of soil microbial community to wild oat roots. ISME J 3:168–178

    PubMed  Google Scholar 

  • DeLong EF, Pace NR (2001) Environmental diversity of bacteria and Archaea. Syst Biol 50:470–478

    CAS  PubMed  Google Scholar 

  • Dias ACF, Hoogwout EF, Pereira e Silva MdC, Salles JF, van Overbeek LS, van Elsas JD (2012) Potato cultivar type affects the structure of ammonia oxidizer communities in field soil under potato beyond the rhizosphere. Soil Biol Biochem 50:85–95

    CAS  Google Scholar 

  • Dufour S, Deleu M, Nott K, Wathelet B, Thonart P, Paquot M (2005) Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochim Biophys Acta 1726:87–95

    CAS  PubMed  Google Scholar 

  • Duke SO, Lydon J, Koskinen WC, Moorman TB, Chaney RL, Hammerschmidt R (2012) Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops. J Agric Food Chem 60:10375–10397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunbar J, Barns SM, Ticknor LO, Kuske CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68:3035–3045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris MJ, Ward DM (1997) Seasonal distributions of dominant 16S rRNA defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris MJ, Nold SC, Revsbech NP, Ward NM (1997) Population structure and physiological changes within a hot spring microbial mat community following disturbance. Appl Environ Microbiol 63:1367–1374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Schimel JP, Holder PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    CAS  Google Scholar 

  • Fischer RS, Berry A, Gaines CG, Jensen RA (1986) Comparative action of glyphosate as a trigger of energy drain in eubacteria. J Bacteriol 168:1147–1154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36–49

    PubMed  Google Scholar 

  • Franco C, Michelsen P, Percy N, Conn V, Listiana E, Moll S, Loria R, Coombs J (2007) Actinobacterial endophytes for improved crop performance. Australas Plant Pathol 36:524–531

    Google Scholar 

  • Fravel D (2005) Commercialization and implementation of biocontrol 1. Ann Rev Phytopathol 43:337–359

    CAS  Google Scholar 

  • Fritze D (2004) Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology 94:1245–1248

    PubMed  Google Scholar 

  • Fry WE, Goodwin SB (1997) Resurgence of the Irish potato famine fungus. BioScience 47:363–371

    Google Scholar 

  • Fuhrman JA, McCallum K, Davis AA (1993) Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol 59:1294–1302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    CAS  PubMed  Google Scholar 

  • Garbeva P, Van Elsas J, Van Veen J (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302:19–32

    CAS  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 344:60–63

    Google Scholar 

  • Glandorf DCM, Van Der Sluis I, Anderson AJ, Bakker P, Schippers B (1994) Agglutination, adherence, and root colonization by fluorescent pseudomonads. Appl Environ Microbiol 60:1726–1733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goddard VJ, Bailey MJ, Darrah P, Lilley AK, Thompson IP (2001) Monitoring temporal and spatial variation in rhizosphere bacterial population diversity: a community approach for the improved selection of rhizosphere competent bacteria. Plant Soil 232:181–193

    CAS  Google Scholar 

  • Grey JP, Herwig RP (1996) Phylogenetic analysis of the bacterial communities in marine sediments. Appl Environ Microbiol 62:4049–4059

    Google Scholar 

  • Gupta C, Kumar B, Dubey R, Maheshwari D (2006) Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut. BioControl 51:821–835

    CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haas D, Dèfago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    CAS  PubMed  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Ann Rev Phytopathol 41:117–153

    CAS  Google Scholar 

  • Haney RL, Senseman SA, Hons FM, Zuberer DA (2009) Effect of glyphosate on soil microbial activity and biomass. Weed Sci 48(1):89–93

    Google Scholar 

  • Hao J, Meng Q, Yin J, Kirk W (2009) Characterization of a new Streptomyces strain, DS3024, that causes potato common scab. Plant Dis 93:1329–1334

    CAS  Google Scholar 

  • Hart MR, Brookes PC (1996) Soil microbial biomass and mineralisation of soil organic matter after 19 years of cumulative field applications of pesticides. Soil Biol Biochem 28:1641–1649

    CAS  Google Scholar 

  • Hartmann A, Schmid M, Wenzel W, Hinsinger P (2004) Rhizosphere 2004-perspectives and challenges-a tribute to Lorenz Hiltner, Munich, Germany. GSF-National Research Center for Environment and Health, Neuherberg, p 333

    Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman HN, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208

    CAS  PubMed  Google Scholar 

  • Heap IM (1999) The occurrence of herbicide-resistant weeds worldwide. Pesticide Science 51:235–243

    Google Scholar 

  • Heuer H, Smalla K (1997) Application of denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis for studying soil microbial communities. In: van Elsas JD (ed) Modern soil microbiology. Marcel Dekker, New York, pp 353–373

    Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hewitt HG (1998) Fungicides in crop protection. CAB International, UK

    Google Scholar 

  • Heyrman J, Vanparys B, Logan NA, Balcaen A, Rodríguez-Díaz M, Felske A, De Vos P (2004) Bacillus novalis spp. nov., Bacillus vireti spp. nov., Bacillus soli spp. nov., Bacillus bataviensis spp. nov. and Bacillus drentensis spp. nov., from the Drentse A grasslands. Int J Syst Evol Microbiol 54:47–57

    CAS  PubMed  Google Scholar 

  • Heyrman J, Rodríguez-Díaz M, Devos J, Felske A, Logan NA, De Vos P (2005) Bacillus arenosi spp. nov., Bacillus arvi spp. nov. and Bacillus humi spp. nov., isolated from soil. Int J Syst Evol Microbiol 55:111–1117

    CAS  PubMed  Google Scholar 

  • Hiltner L (1904) Ãœberneuere Erfahrungen und Probleme auf demGebiete der Bodenbakteriologieunterbesonderer Berücksichtigung der Gründüngung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78

    Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    CAS  Google Scholar 

  • Hiradate S, Yoshida S, Sugie H, Yada H, Fujii Y (2002) Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61:693–698

    CAS  PubMed  Google Scholar 

  • Hofemeister J, Conrad B, Adler B, Hofemeister B, Feesche J, Kucheryava N, Steinborn G, Franke P, Grammel N, Zwintscher A, Leenders F, Hitzeroth G, Vater J (2004) Genetic analysis of the biosynthesis of non-ribosomal peptide-and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Gene Genom 272:363–378

    CAS  Google Scholar 

  • Hopwood DA (2007) Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, New York

    Google Scholar 

  • Hornby D (1983) Suppressive soils. Ann Rev Phytopathol 21:65–85

    Google Scholar 

  • Horner-Devine MC, Leibold MA, Smith VH, Bohannan BJM (2003) Bacterial diversity patterns along a gradient of primary productivity. Ecol Lett 6:613–622

    Google Scholar 

  • Huang X, Lu Z, Bie X, Lü F, Zhao H, Yang S (2007) Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis FMBJ strains using a response surface method. Appl Microbiol Biotechnol 74:454–461

    CAS  PubMed  Google Scholar 

  • Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143

    PubMed  PubMed Central  Google Scholar 

  • Huse S, Dethlefsen L, Huber J, Welch D, Relman D, Sogin M (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4:e1000255

    PubMed  PubMed Central  Google Scholar 

  • Ibekwe AM, Kennedy AC, Frohne PS, Papeirnik SK, Yang CH, Crowley DE (2002) Microbial diversity along a transect of agronomic zones. FEMS Microbiol Ecol 39:183–191

    CAS  PubMed  Google Scholar 

  • Iwai S, Chai B, Sul WJ, Cole JR, Hashsham SA, Tiedje JM (2009) Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME J 4:279–285

    PubMed  PubMed Central  Google Scholar 

  • Iwai S, Chai B, Jesus EC, Penton CR, Lee T-K, Cole JR, Tiedje JM (2011) Gene-targeted-metagenomics (GT-metagenomics) to explore the extensive diversity of genes of interest in microbial communities. In: De BruijnFrans J (ed) Handbook of molecular microbial ecology I: metagenomics and complementary approches. Wiley, Hoboken, pp 235–243

    Google Scholar 

  • Johnson WG, Davis VM, Kruger GR, Weller SC (2009) Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations. Eur J Agron 31:162–172

    CAS  Google Scholar 

  • Jones DL, Hinsinger P (2008) Therhizosphere: complex by design. Plant Soil 312:1–6

    CAS  Google Scholar 

  • Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi M, Rong X, Moll S, Kers J, Franco C, Loria R (2007) Streptomyces turgidiscabies secretes a novel virulence protein, Nec1, which facilitates infection. Mol Plant Microbe Interact 20:599–608

    CAS  PubMed  Google Scholar 

  • Kaltenpoth M, Göttler W, Herzner G, Strohm E (2005) Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol 15:475–479

    CAS  PubMed  Google Scholar 

  • Keel C, Voisard C, Berling CH, Kahr G, Défago G (1989) Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology 79:584–589

    Google Scholar 

  • Kinkel LL, Bakker MG, Schlatter DC (2011) A coevolutionary framework for managing disease-suppressive soils. Ann Rev Phytopathol 49:47–67

    CAS  Google Scholar 

  • Kinsinger RF, Shirk MC, Fall R (2003) Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol 185:5627–5631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    CAS  PubMed  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980a) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980b) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    CAS  Google Scholar 

  • Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D, Carriero NJ, Du L, Taillon BE, Chen Z, Tanzer A, Saunders ACE, Chi J, Yang F, Carter NP, Hurles ME, Weissman SM, Harkins TT, Gerstein MB, Egholm M, Snyder M (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science 318(5894):420–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kracht M, Rokos H, Ozel M, Kowall M, Pauli G, Vater J (1999) Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot 52:613

    CAS  PubMed  Google Scholar 

  • Kremer R, Means N, Kim S (2005) Glyphosate affects soybean root exudation and rhizosphere micro-organisms. Int J Environ Anal Chem 85:1165–1174

    CAS  Google Scholar 

  • Lancaster SH, Haney RL, Senseman SA, Hons FM, Chandler JM (2006) Soil microbial activity is affected by Roundup Weather Max and pesticides applied to cotton (Gossypium hirsutum). J Agric Food Chem 54:7221–7226

    CAS  PubMed  Google Scholar 

  • Lancaster SH, Hollister EB, Senseman SA, Gentry TJ (2010) Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Manag Sci 66:59–64

    CAS  PubMed  Google Scholar 

  • Lane M, Lorenz N, Saxena J, Ramsier C, Dick RP (2012) Microbial activity, community structure and potassium dynamics in rhizosphere soil of soybean plants treated with glyphosate. Pedobiologia 55:153–159

    CAS  Google Scholar 

  • Leclère V, Béchet M, Adam A, Guez J-S, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    PubMed  PubMed Central  Google Scholar 

  • Liesack W, Stackebrandt E (1992) Occurence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Austalian terrestrial environment. J Bacteriol 174:5072–5078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Anderson N, Kinkel L (1995) Biological control of potato scab in the field with antagonistic Streptomyces scabies. Phytopathology 85:827–831

    Google Scholar 

  • Liu ZZ, DeSantis TZ, Andersen GL, Knight R (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res. 36:e120

    PubMed  PubMed Central  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe Interact 4:5–13

    CAS  Google Scholar 

  • Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 63:99–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loria R, Bukhalid RA, Fry BA, King RR (1997) Plant pathogenicity in the genus Streptomyces. Plant Dis 81:836–846

    Google Scholar 

  • Loria R, Bignell DRD, Moll S, Huguet-Tapia JC, Joshi MV, Johnson EG, Siepke RF, Gibson DM (2008) Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces. Antonie van Leeuwenhoek 94(1):3–10

    PubMed  Google Scholar 

  • Maheshwari DK (2013) In bacteria in agrobiology: disease management. Springer, Berlin

    Google Scholar 

  • Maire N, Borcard D, Laczko E, Matthey W (1999) Organic matter cycling in grassland soils of the Swiss Jura mountains: biodiversity and strategies of the living communities. Soil Biol Biochem 31:1281–1293

    CAS  Google Scholar 

  • Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–166

    PubMed  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208

    CAS  Google Scholar 

  • Maurhofer M, Keel C, Haas D, Défago G (1995) Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHAO with enhanced antibiotic production. Plant Pathol 44:40–50

    Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 333(6033):1097–1100

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    CAS  PubMed  Google Scholar 

  • Meng QX, Jiang HH, Hanson LE, Hao JJ (2012) Characterizing a novel strain of Bacillus amyloliquefaciens BAC03 for potential biological control application. J Appl Microbiol 113:1165–1175

    CAS  PubMed  Google Scholar 

  • Menzies J (1959) Occurrence and transfer of a biological factor in soil that suppresses potato scab. Phytopathology 49:648–652

    Google Scholar 

  • Merriman B, Torrent I, Rothberg JM (2012) Progress in Ion Torrent semiconductor chip based sequencing. Electrophoresis 33:3397–3417

    CAS  PubMed  Google Scholar 

  • Michelsen A, Graglia E, Schmidt IK, Jonasson S, Sleep D, Quarmby C (1999) Differential responses of grass and a dwarf shrub to long-term changes in soil microbial biomass C, N, and P following factorial addition of NPK fertilizer, fungicide, and labile carbon to a heath. New Phytol 143(3):523–538

    Google Scholar 

  • Montesinos E (2003) Plant-associated microorganisms: a view from the scope of microbiology. Int Microbiol 6:221–223

    CAS  PubMed  Google Scholar 

  • Moorman TB, Becerril JM, Lydon J, Duke SO (1992) Production of hydroxybenzoic acids by Bradyrhizobium japonicum strains after treatment with glyphosate. J Agric Food Chem 40:289–293

    CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198.

    CAS  PubMed  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127–141

    CAS  PubMed  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationship of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172

    CAS  PubMed  Google Scholar 

  • Myers RM, Fischer SG, Lerman LS, Maniatis T (1985) Nearly all single base substitutions in DNA fragments joint to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3131–3145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatsu CH, Torsvik V, Ovreas L (2000) Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci Soc Am J 64:1382–1388

    CAS  Google Scholar 

  • Nyrén P, Pettersson B, Uhlen M (1993) Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay. Anal Biochem 208:171–175

    PubMed  Google Scholar 

  • Ongena M, Henry G, Thonart P (2009) The roles of cyclic lipopeptides in the biocontrol activity of Bacillus subtilis. In: Gisi U, Chet I, Gullino ML (eds) Recent developments in management of plant diseases: plant pathology in the 21st century, vol. 1. Springer, Netherland, pp. 59–69

    Google Scholar 

  • Pace N (1996) New perspective on the natural microbial world: molecular microbial ecology. ASM News 62:463–470

    Google Scholar 

  • Paulitz TC, Bélanger RR (2001) Biological control in greenhouse systems. Ann Rev Phytopathol 39:103–133

    CAS  Google Scholar 

  • Pearson BM, Gaskin DJH, Segers RPAM, Wells JM, Nuijten PJM, van Vliet AHM (2007) The complete genome sequence of Campylobacter jejuni strain 81116 (NCTC11828). J Bacteriol 189:8402–8403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pierret A, Doussan C, Capowiez Y, Bastardie F (2007) Root functional architecture: a framework for modeling the interplay between roots and soil. Vadose Zone J 6:269–281

    Google Scholar 

  • Pollegioni L, Schonbrunn E, Siehl D (2011) Molecular basis of glyphosate resistance-different approaches through protein engineering. FEBS J 278:2753–2766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Postma J, Schilder MT, Bloem J, van Leeuwen-Haagsma WK (2008) Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biol Biochem 40:2394–2406

    CAS  Google Scholar 

  • Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Bonsall RF, Weller DM (1999) Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89:470–475

    CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) Therhizosphere: a playground and battlefield for soil-borne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    CAS  Google Scholar 

  • Raskin L, Zheng D, Griffin ME, Stroot PG, Misra P (1995) Characterization of microbial communities in anaerobic bioreactors using molecular probes. Antonie van Leeuwenhoek 68:297–308

    CAS  PubMed  Google Scholar 

  • Riesner D, Steger G, Zimmat R, Owens RA, Wagenhofer M, Hillen W et al (1989) Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis 10:377–389

    CAS  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    CAS  PubMed  Google Scholar 

  • Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89

    CAS  PubMed  Google Scholar 

  • Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365

    CAS  PubMed  Google Scholar 

  • Rosenzweig N, Tiedje J, Quensen JI, Meng Q, Hao J (2012) Microbial communities associated with potato common scab suppressive soil determined by pyrosequencing analyses. Plant Dis 96:718–725

    Google Scholar 

  • Rosenzweig N, Bradeen JM, Tu ZJ, McKay SJ, Kinkel LL (2013) Rhizosphere bacterial communities associated with long-lived perennial prairie plants vary in diversity, composition, and structure. Can J Microbiol 59(7):494–502

    CAS  PubMed  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kleopper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santegoeds CM, Nold SC, Ward DM (1996) Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat. Appl Environ Microbiol 62:3922–3928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saraf M, Rajkumar S, Saha T (2011) Perspectives of PGPR in agri-ecosystems. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, pp 361–385

    Google Scholar 

  • Sardi P, Saracchi M, Quaroni S, Petrolini B, Borgonovi G, Merli S (1992) Isolation of endophytic Streptomyces strains from surface-sterilized roots. Appl Environ Microbiol 58:2691–2693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scher FM, Baker R (1982) Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to fusarium wilt pathogens. Phytopathology 72:1567–1573

    CAS  Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271

    CAS  PubMed  Google Scholar 

  • Schottel JL, Shimizu K, Kinkel LL (2001) Relationships of in-vitro pathogen inhibition and soil colonization to potato scab biocontrol by antagonistic Streptomyces spp. Biol Control 20:102–112

    Google Scholar 

  • Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876

    CAS  PubMed  Google Scholar 

  • Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732

    CAS  PubMed  Google Scholar 

  • Shively JM, English RS, Baker SH, Cannon GC (2001) Carboncycling: the prokaryotic contribution. Curr Opin Microbiol 4:301–306

    CAS  PubMed  Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J (1998) Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37:6–11

    CAS  PubMed  Google Scholar 

  • Singh P, Cameotra SS (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Comm 319:291–297

    CAS  PubMed  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith K, Havey M, Handelsman J (1993) Suppression of cottony leak of cucumber with Bacillus cereus strain UW85. Plant Dis 77:139–142

    Google Scholar 

  • Stahl DA, Flesher B, Mansfield HR, Montgomery L (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54:1079–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stutz EW, Défago G, Kern H (1986) Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76:181–185

    Google Scholar 

  • Sugiyama A, Vivanco JM, Jayanty SS, Manter DK (2010) Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms. Plant Dis 94:1329–1335

    CAS  Google Scholar 

  • Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385

    CAS  Google Scholar 

  • Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16:652–656

    CAS  PubMed  Google Scholar 

  • Teixeira LC, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4:989–1001

    PubMed  Google Scholar 

  • Teske A, Sigalevich P, Cohen Y, Muyzer G (1996) Molecular identification of bacteria from coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Appl Environ Microbiol 62:4210–4215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thirup L, Johansen A, Winding A (2003) Microbial succession in the rhizosphere of live and decomposing barley roots as affected by the antagonistic strain Pseudomonas fluorescens DR54-BN14 or the fungicide imanzalil. FEMS Microbiol Ecol 43:383–392

    CAS  PubMed  Google Scholar 

  • Tiedje JM, Asuming-Brempong S, Nusslein K, Marsh TL, Flynn SJ (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13:109–122

    Google Scholar 

  • Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    CAS  PubMed  Google Scholar 

  • Toure Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160

    CAS  PubMed  Google Scholar 

  • Van Bruggen A, Semenov A (2000) In search of biological indicators for soil health and disease suppression. Appl Soil Ecol 15:13–24

    Google Scholar 

  • Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29−3. J Antibiotics 39:888−901

    Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sindern D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571 − 586

    CAS  Google Scholar 

  • Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clinical Chem 55:641–658

    CAS  Google Scholar 

  • Walker J, Snyder W (1934) Pea wilt much less severe on certain soils. Univ Wis Agr Exp Sta Bull 428 (pp 95–96)

    Google Scholar 

  • Wanner L (2007) High proportions of nonpathogenic Streptomyces are associated with common scab-resistant potato lines and less severe disease. Can J Microbiol 53:1062–1075

    CAS  PubMed  Google Scholar 

  • Wanner LA, Haynes KG (2009) Aggressiveness of Streptomyces on four potato cultivars and implications for common scab resistance breeding. Am J Potato Res 86:335–346

    Google Scholar 

  • Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultivated microorganisms in a natural environment. Nature 345:63–65

    CAS  PubMed  Google Scholar 

  • Ward DM, Santegoeds CM, Nold SC, Ramsing NB, Ferris MJ, Bateson MM (1996) Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures. Antonie van Leeuwenhoek 71:143–150

    Google Scholar 

  • Wardle DA, Parkinson D (1990) Effects of three herbicides on soil microbial biomass and activity. Plant Soil 122:21–28

    CAS  Google Scholar 

  • Weinert N, Piceno Y, Ding GC, Meincke R, Heuer H, Berg G, Schloter M, Andersen G, Smalla K (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75:497–506

    CAS  PubMed  Google Scholar 

  • Weller R, Weller JW, Ward DM (1991) 16S rRNA sequences of uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly primed cDNA. Appl Environ Microbiol 57:1146–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens 1. Ann Rev Phytopathol 40:309–348

    CAS  Google Scholar 

  • Wiggins B, Kinkel L (2005) Green manures and crop sequences influence potato diseases and pathogen inhibitory activity of indigenous streptomycetes. Phytopathology 95:178–185

    CAS  PubMed  Google Scholar 

  • Yin C, Jones KL, Peterson DE, Garrett KA, Hulbert SH, Paulitz TC (2010) Members of soil bacterial communities sensitive to tillage and crop rotation. Soil Biol Biochem 42(12):2111–2118

    CAS  Google Scholar 

  • Yu G, Sinclair J, Hartman G, Bertagnolli B (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963

    CAS  Google Scholar 

  • Zabaloy MC, Gómez MA (2008) Microbial respiration in soils of the argentine pampas after metsulfuron methyl, 2, 4-D, and glyphosate treatments. Comm Soil Sci Plant Anal 39:370–385

    CAS  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050

    Google Scholar 

  • Zeng W, Kirk W, Hao J (2012a) Field management of Sclerotinia stem rot of soybean using biological control agents. Biol Control 60:141–147

    Google Scholar 

  • Zeng W, Wang D, Kirk W, Hao J (2012b) Use of Coniothyrium minitans and other microorganisms for reducing Sclerotinia sclerotiorum. Biol Control 60:225–232

    Google Scholar 

  • Zhou J, Xiz B, Treves DS, Wu LY, Marsh TL, O’Neill RV Palumo AV, Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noah Rosenzweig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosenzweig, N. (2014). The Importance and Application of Bacterial Diversity in Sustainable Agricultural Crop Production Ecosystems. In: Maheshwari, D. (eds) Bacterial Diversity in Sustainable Agriculture. Sustainable Development and Biodiversity, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-05936-5_13

Download citation

Publish with us

Policies and ethics