Skip to main content

mRNA Localization

  • Chapter
  • First Online:
Fungal RNA Biology

Abstract

mRNA localization and localized translation is a common mechanism that contributes to cell polarity and cellular asymmetry. In metazoans, mRNA transport participates in embryonic axis determination and neuronal plasticity. Since the dissection of the mRNA localization process and its molecular machinery in higher eukaryotes has been found to be more arduous, unicellular eukaryotes like Saccharomyces cerevisiae or Ustilago maydis have become attractive models to study mRNA localization. Especially studies on cytoplasmic mRNA transport in S. cerevisiae have provided mechanistic insights as well as novel experimental approaches to mRNA localization, which have proven valuable for understanding similar processes in metazoans. In this review we will focus on mRNA localization of ASH1 and other bud-localized mRNA in S. cerevisiae in order to provide a holistic view on mRNA localization. In addition, we will dwell on the mechanism and biological function of additional mRNA localization processes in budding yeast. Finally, we will compare mRNA transport in budding yeast with similar localization processes occurring in other fungi including the ascomycete Candida albicans and the basidiomycete U. maydis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitchison JD, Blobel G, Rout MP (1996) Kap104p: a karyopherin involved in the nuclear transport of messenger RNA binding proteins. Science 274:624–627

    PubMed  CAS  Google Scholar 

  • Arn EA, Cha BJ, Theurkauf WE, Macdonald PM (2003) Recognition of a bicoid mRNA localization signal by a protein complex containing swallow, Nod, and RNA binding proteins. Dev Cell 4:41–51

    PubMed  CAS  Google Scholar 

  • Aronov S, Gelin-Licht R, Zipor G et al (2007) mRNAs encoding polarity and exocytosis factors are cotransported with the cortical endoplasmic reticulum to the incipient bud in Saccharomyces cerevisiae. Mol Cell Biol 27:3441–3455

    PubMed Central  PubMed  CAS  Google Scholar 

  • Baumann S, Pohlmann T, Jungbluth M et al (2012) Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J Cell Sci

    Google Scholar 

  • Becht P, König J, Feldbrügge M (2006) The RNA-binding protein Rrm4 is essential for polarity in Ustilago maydis and shuttles along microtubules. J Cell Sci 119:4964–4973

    PubMed  CAS  Google Scholar 

  • Becker F, Block-Alper L, Nakamura G et al (1999) Expression of the 180-kD ribosome receptor induces membrane proliferation and increased secretory activity in yeast. J Cell Biol 146:273–284

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bertrand E, Chartrand P, Schaefer M et al (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445

    PubMed  CAS  Google Scholar 

  • Besse F, Ephrussi A (2008) Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat Rev Mol Cell Biol 9:971–980

    PubMed  CAS  Google Scholar 

  • Besse F, López de Quinto S, Marchand V et al (2009) Drosophila PTB promotes formation of high-order RNP particles and represses oskar translation. Genes Dev 23:195–207

    Google Scholar 

  • Blobel G, Walter P, Chang CN et al (1979) Translocation of proteins across membranes: the signal hypothesis and beyond. Symp Soc Exp Biol 33:9–36

    PubMed  CAS  Google Scholar 

  • Bobola N, Jansen RP, Shin TH, Nasmyth K (1996) Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84:699–709

    PubMed  CAS  Google Scholar 

  • Böhl F, Kruse C, Frank A et al (2000) She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J 19:5514–5524

    PubMed Central  PubMed  Google Scholar 

  • Bullock SL, Ringel I, Ish-Horowicz D, Lukavsky PJ (2010) A’-form RNA helices are required for cytoplasmic mRNA transport in Drosophila. Nat Struct Mol Biol 17:703–709

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cajigas IJ, Tushev G, Will TJ et al (2012) The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74:453–466

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chandarlapaty S, Errede B (1998) Ash1, a daughter cell-specific protein, is required for pseudohyphal growth of Saccharomyces cerevisiae. Mol Cell Biol 18:2884–2891

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chartrand P, Meng XH, Huttelmaier S et al (2002) Asymmetric sorting of ash1p in yeast results from inhibition of translation by localization elements in the mRNA. Mol Cell 10:1319–1330

    PubMed  CAS  Google Scholar 

  • Chartrand P, Meng XH, Singer RH, Long RM (1999) Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter particle in vivo. Curr Biol 9:333–338

    PubMed  CAS  Google Scholar 

  • Chung S, Takizawa PA (2010) Multiple Myo4 motors enhance ASH1 mRNA transport in Saccharomyces cerevisiae. J Cell Biol 189:755–767

    PubMed Central  PubMed  CAS  Google Scholar 

  • Condeelis J, Singer RH (2005) How and why does beta-actin mRNA target? Biol Cell 97:97–110

    PubMed  CAS  Google Scholar 

  • Corral-Debrinski M, Blugeon C, Jacq C (2000) In yeast, the 3’ untranslated region or the presequence of ATM1 is required for the exclusive localization of its mRNA to the vicinity of mitochondria. Mol Cell Biol 20:7881–7892

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cui XA, Zhang H, Palazzo AF (2012) p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum. PLoS Biol 10:e1001336

    PubMed Central  PubMed  CAS  Google Scholar 

  • D’Silva S, Haider SJ, Phizicky EM (2011) A domain of the actin binding protein Abp140 is the yeast methyltransferase responsible for 3-methylcytidine modification in the tRNA anti-codon loop. RNA 17:1100–1110

    PubMed Central  PubMed  Google Scholar 

  • Daigle N, Ellenberg J (2007) LambdaN-GFP: an RNA reporter system for live-cell imaging. Nat Meth 4:633–636

    CAS  Google Scholar 

  • Deng Y, Singer RH, Gu W (2008) Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev 22:1037–1050

    PubMed Central  PubMed  CAS  Google Scholar 

  • Devaux FDR, Lelandais G, Garcia M et al (2010) Posttranscriptional control of mitochondrial biogenesis: spatio-temporal regulation of the protein import process. FEBS Lett 584:4273–4279

    PubMed  CAS  Google Scholar 

  • Diehn M, Bhattacharya R, Botstein D, Brown PO (2006) Genome-scale identification of membrane-associated human mRNAs. PLoS Genet 2:e11

    PubMed Central  PubMed  Google Scholar 

  • Diehn M, Eisen MB, Botstein D, Brown PO (2000) Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nat Genet 25:58–62

    PubMed  CAS  Google Scholar 

  • Doehlemann G, Mendoza-Mendoza A (2009) Ustilago maydis as a pathogen. Ann Rev Phytopath 47:423–445

    Google Scholar 

  • Doyle M, Kiebler MA (2011) Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J 30:3540–3552

    PubMed Central  PubMed  CAS  Google Scholar 

  • Du T-G, Jellbauer S, Müller M et al (2008) Nuclear transit of the RNA-binding protein She2 is required for translational control of localized ASH1 mRNA. EMBO Rep 9:781–787

    PubMed Central  PubMed  CAS  Google Scholar 

  • Du Y, Ferro-Novick S, Novick P (2004) Dynamics and inheritance of the endoplasmic reticulum. J Cell Sci 117:2871–2878

    PubMed  CAS  Google Scholar 

  • Dunn BD, Sakamoto T, Hong M-SS et al (2007) Myo4p is a monomeric myosin with motility uniquely adapted to transport mRNA. J Cell Biol 178:1193–1206

    PubMed Central  PubMed  CAS  Google Scholar 

  • Eliyahu E, Pnueli L, Melamed D et al (2010) Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner. Mol Cell Biol 30:284–294

    PubMed Central  PubMed  CAS  Google Scholar 

  • Elson SL, Noble SM, Solis NV et al (2009) An RNA transport system in Candida albicans regulates hyphal morphology and invasive growth. PLoS Genet 5:e1000664

    PubMed Central  PubMed  Google Scholar 

  • Estrada P, Kim J, Coleman J et al (2003) Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae. J Cell Biol 163:1255–1266

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fischer MA, Temmerman K, Ercan E et al (2009) Binding of plasma membrane lipids recruits the yeast integral membrane protein Ist2 to the cortical ER. Traffic 10:1084–1097

    PubMed  CAS  Google Scholar 

  • Forrest KM, Gavis ER (2003) Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr Biol 13:1159–1168

    PubMed  CAS  Google Scholar 

  • Franz A, Maass K, Seedorf M (2007) A complex peptide-sorting signal, but no mRNA signal, is required for the Sec-independent transport of Ist2 from the yeast ER to the plasma membrane. FEBS Lett 581:401–405

    PubMed  CAS  Google Scholar 

  • Fundakowski J, Hermesh O, Jansen R-P (2012) Localization of a subset of yeast mRNAs depends on inheritance of endoplasmic reticulum. Traffic 13:1642–1652

    Google Scholar 

  • Gadir N, Haim-Vilmovsky L, Kraut-Cohen J, Gerst JE (2011) Localization of mRNAs coding for mitochondrial proteins in the yeast Saccharomyces cerevisiae. RNA 17:1551–1565

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gagnon JA, Mowry KL (2011) Molecular motors: directing traffic during RNA localization. Crit Rev Biochem Mol Biol 46:229–239

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gaietta G, Deerinck TJ, Adams SR et al (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    PubMed  CAS  Google Scholar 

  • Gancedo JM (2001) Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:107–123

    PubMed  CAS  Google Scholar 

  • Garcia M, Darzacq X, Delaveau T et al (2007) Mitochondria-associated yeast mRNAs and the biogenesis of molecular complexes. Mol Biol Cell 18:362–368

    PubMed Central  PubMed  CAS  Google Scholar 

  • Garcia M, Delaveau T, Goussard S, Jacq C (2010) Mitochondrial presequence and open reading frame mediate asymmetric localization of messenger RNA. EMBO Rep 11:285–291

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gautreau D, Cote CA, Mowry KL (1997) Two copies of a subelement from the Vg1 RNA localization sequence are sufficient to direct vegetal localization in Xenopus oocytes. Development 124:5013–5020

    PubMed  CAS  Google Scholar 

  • Gelin-Licht R, Paliwal S, Conlon P et al (2012) Scp160-dependent mRNA trafficking mediates pheromone gradient sensing and chemotropism in yeast. Cell Reports 1:483–494

    PubMed Central  PubMed  CAS  Google Scholar 

  • Genz C, Fundakowski J, Hermesh O et al (2013) Association of the yeast RNA-binding protein She2p with the tubular endoplasmic reticulum depends on membrane curvature. J Biol Chem 288:32384–32393

    Google Scholar 

  • Gerber AP, Herschlag D, Brown PO (2004) Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol 2:E79

    PubMed Central  PubMed  Google Scholar 

  • Gonzalez I, Buonomo SB, Nasmyth K, von Ahsen U (1999) ASH1 mRNA localization in yeast involves multiple secondary structural elements and Ash1 protein translation. Curr Biol 9:337–340

    PubMed  CAS  Google Scholar 

  • Gu W, Deng Y, Zenklusen D, Singer RH (2004) A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev 18:1452–1465

    PubMed Central  PubMed  CAS  Google Scholar 

  • Güldener U, Münsterkötter M, Kastenmüller G et al (2004) CYGD: the comprehensive yeast genome database. Nucleic Acids Res 33:D364–D368

    PubMed Central  Google Scholar 

  • Hachet O, Ephrussi A (2001) Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Curr Biol 11:1666–1674

    PubMed  CAS  Google Scholar 

  • Hasegawa Y, Irie K, Gerber AP (2008) Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14:2333–2347

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hermesh O, Jansen R-P (2013) Take the (RN)A-train: localization of mRNA to the endoplasmic reticulum. Biochim Biophys Acta 1833:2519–2525

    PubMed  CAS  Google Scholar 

  • Herskowitz I (1989) A regulatory hierarchy for cell specialization in yeast. Nature 342:749–757

    PubMed  CAS  Google Scholar 

  • Heuck A, Du T-G, Jellbauer S et al (2007) Monomeric myosin V uses two binding regions for the assembly of stable translocation complexes. Proc Natl Acad Sci USA 104:19778–19783

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hogan DJ, Riordan DP, Gerber AP et al (2008) Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6:e255

    PubMed Central  PubMed  Google Scholar 

  • Holt CE, Schuman EM (2013) The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 80:648–657

    PubMed Central  PubMed  CAS  Google Scholar 

  • Inglis DO, Johnson AD (2002) Ash1 protein, an asymmetrically localized transcriptional regulator, controls filamentous growth and virulence of Candida albicans. Mol Cell Biol 22:8669–8680

    PubMed Central  PubMed  CAS  Google Scholar 

  • Irie K, Tadauchi T, Takizawa PA et al (2002) The Khd1 protein, which has three KH RNA-binding motifs, is required for proper localization of ASH1 mRNA in yeast. EMBO J 21:1158–1167

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jambhekar A, Derisi JL (2007) Cis-acting determinants of asymmetric, cytoplasmic RNA transport. RNA 13:625–642

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jambhekar A, McDermott K, Sorber K et al (2005) Unbiased selection of localization elements reveals cis-acting determinants of mRNA bud localization in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 102:18005–18010

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jansen RP (2001) mRNA localization: message on the move. Nat Rev Mol Cell Biol 2:247–256

    PubMed  CAS  Google Scholar 

  • Jansen RP, Dowzer C, Michaelis C et al (1996) Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell 84:687–697

    PubMed  CAS  Google Scholar 

  • Jellbauer S, Jansen R-P (2008) A putative function of the nucleolus in the assembly or maturation of specialized messenger ribonucleoprotein complexes. RNA Biol 5:225–229

    PubMed  CAS  Google Scholar 

  • Kanai Y, Dohmae N, Hirokawa N (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43:513–525

    PubMed  CAS  Google Scholar 

  • Kilchert C, Spang A (2011) Cotranslational transport of ABP140 mRNA to the distal pole of S. cerevisiae. EMBO J 30:3567–3580

    PubMed Central  PubMed  CAS  Google Scholar 

  • Komili S, Farny NG, Roth FP, Silver PA (2007) Functional specificity among ribosomal proteins regulates gene expression. Cell 131:557–571

    PubMed Central  PubMed  CAS  Google Scholar 

  • König J, Baumann S, Koepke J et al (2009) The fungal RNA-binding protein Rrm4 mediates long-distance transport of ubi1 and rho3 mRNAs. EMBO J 28:1855–1866

    PubMed Central  PubMed  Google Scholar 

  • Kraut-Cohen J, Afanasieva E, Haim-Vilmovsky L et al (2013) Translation- and SRP-independent mRNA targeting to the endoplasmic reticulum in the yeast Saccharomyces cerevisiae. Mol Biol Cell 24:3069–3084

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kraut-Cohen J, Gerst JE (2010) Addressing mRNAs to the ER: cis sequences act up! Trends Biochem Sci 35:459–469

    PubMed  CAS  Google Scholar 

  • Krementsova EB, Hodges AR, Lu H, Trybus KM (2005) Processivity of chimeric class V myosins. J Biol Chem 281:6079–6086

    PubMed  Google Scholar 

  • Krementsova EB, Hodges AR, Bookwalter CS et al (2011) Two single-headed myosin V motors bound to a tetrameric adapter protein form a processive complex. J Cell Biol 195:631–641

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kress TL, Yoon YJ, Mowry KL (2004) Nuclear RNP complex assembly initiates cytoplasmic RNA localization. J Cell Biol 165:203–211

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kruse C, Jaedicke A, Beaudouin J et al (2002) Ribonucleoprotein-dependent localization of the yeast class V myosin Myo4p. J Cell Biol 159:971–982

    PubMed Central  PubMed  CAS  Google Scholar 

  • Landers SM, Gallas MR, Little J, Long RM (2009) She3p possesses a novel activity required for ASH1 mRNA localization in Saccharomyces cerevisiae. Eukaryot Cell 8:1072–1083

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lange S, Katayama Y, Schmid M et al (2008) Simultaneous transport of different localized mRNA species revealed by live-cell imaging. Traffic 9:1256–1267

    PubMed  CAS  Google Scholar 

  • Lerner RS, Seiser RM, Zheng T et al (2003) Partitioning and translation of mRNAs encoding soluble proteins on membrane-bound ribosomes. RNA 9:1123–1137

    PubMed Central  PubMed  CAS  Google Scholar 

  • Li Z, Lee I, Moradi E et al (2009) Rational extension of the ribosome biogenesis pathway using network-guided genetics. PLoS Biol 7:e1000213–e1000213

    PubMed Central  PubMed  Google Scholar 

  • Liao G, Ma X, Liu G (2011) An RNA-zipcode-independent mechanism that localizes dia1 mRNA to the perinuclear ER through interactions between dia1 nascent peptide and Rho-GTP. J Cell Sci 124:589–599

    PubMed Central  PubMed  CAS  Google Scholar 

  • Long RM, Gu W, Meng X et al (2001) An exclusively nuclear RNA-binding protein affects asymmetric localization of ASH1 mRNA and Ash1p in yeast. J Cell Biol 153:307–318

    PubMed Central  PubMed  CAS  Google Scholar 

  • Long RM, Singer RH, Meng X et al (1997) Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277:383–387

    PubMed  CAS  Google Scholar 

  • Loya A, Pnueli L, Yosefzon Y et al (2008) The 3’-UTR mediates the cellular localization of an mRNA encoding a short plasma membrane protein. RNA 14:1352–1365

    PubMed Central  PubMed  CAS  Google Scholar 

  • Marc P, Margeot A, Devaux F et al (2002) Genome-wide analysis of mRNAs targeted to yeast mitochondria. EMBO Rep 3:159–164

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maris C, Dominguez C, Allain FH-T (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272:2118–2131

    PubMed  CAS  Google Scholar 

  • Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136:719–730

    PubMed Central  PubMed  CAS  Google Scholar 

  • McBride HJ, Sil A, Measday V et al (2001) The protein kinase Pho85 is required for asymmetric accumulation of the Ash1 protein in Saccharomyces cerevisiae. Mol Microbiol 42:345–353

    PubMed  CAS  Google Scholar 

  • Mosammaparast N, Pemberton LF (2004) Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol 14:547–556

    PubMed  CAS  Google Scholar 

  • Moseley JB, Goode BL (2006) The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 70:605–645

    PubMed Central  PubMed  CAS  Google Scholar 

  • Munro TP, Magee RJ, Kidd GJ et al (1999) Mutational analysis of a heterogeneous nuclear ribonucleoprotein A2 response element for RNA trafficking. J Biol Chem 274:34389–34395

    PubMed  CAS  Google Scholar 

  • Müller M, Heym RG, Mayer A et al (2011) A cytoplasmic complex mediates specific mRNA recognition and localization in yeast. PLoS Biol 9:e1000611

    PubMed Central  PubMed  Google Scholar 

  • Müller M, Richter K, Heuck A et al (2009) Formation of She2p tetramers is required for mRNA binding, mRNP assembly, and localization. RNA 15:2002–2012

    PubMed Central  PubMed  Google Scholar 

  • Münchow S, Ferring D, Kahlina K, Jansen R-P (2002) Characterization of Candida albicans ASH1 in Saccharomyces cerevisiae. Curr Genet 41:73–81

    PubMed  Google Scholar 

  • Nasmyth K (1993) Regulating the HO endonuclease in yeast. Curr Opin Genet Dev 3:286–294

    PubMed  CAS  Google Scholar 

  • Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Ann Rev Biochem 76:723–749

    PubMed  CAS  Google Scholar 

  • Niedner A, Müller M, Moorthy BT et al (2013) The role of Loc1p in nuclear ASH1 mRNP assembly and reorganization in yeast. Proc Natl Acad Sci USA 110:5049–5058

    Google Scholar 

  • Niessing D, Hüttelmaier S, Zenklusen D et al (2004) She2p is a novel RNA binding protein with a basic helical hairpin motif. Cell 119:491–502

    PubMed  CAS  Google Scholar 

  • Oeffinger M, Wei KE, Rogers R et al (2007) Comprehensive analysis of diverse ribonucleoprotein complexes. Nat Meth 4:951–956

    CAS  Google Scholar 

  • Oleynikov Y, Singer RH (2003) Real-time visualization of ZBP1 association with beta-actin mRNA during transcription and localization. Curr Biol 13:199–207

    PubMed  CAS  Google Scholar 

  • Olivier C, Poirier G, Gendron P et al (2005) Identification of a conserved RNA motif essential for She2p recognition and mRNA localization to the yeast bud. Mol Cell Biol 25:4752–4766

    PubMed Central  PubMed  CAS  Google Scholar 

  • Paquin N, Ménade M, Poirier G et al (2007) Local activation of yeast ASH1 mRNA translation through phosphorylation of Khd1p by the Casein Kinase Yck1p. Mol Cell 26:795–809

    PubMed  CAS  Google Scholar 

  • Peabody DS, Lim F (1996) Complementation of RNA binding site mutations in MS2 coat protein heterodimers. Nucleic Acids Res 24:2352–2359

    PubMed Central  PubMed  CAS  Google Scholar 

  • Powrie EA, Zenklusen D, Singer RH (2010) A nucleoporin, Nup60p, affects the nuclear and cytoplasmic localization of ASH1 mRNA in S. cerevisiae. RNA 17:144

    Google Scholar 

  • Prilusky J, Bibi E (2009) Studying membrane proteins through the eyes of the genetic code revealed a strong uracil bias in their coding mRNAs. Proc Natl Acad Sci USA 106:6662–6666

    PubMed Central  PubMed  CAS  Google Scholar 

  • Reck-Peterson SL, Tyska MJ, Novick PJ, Mooseker MS (2001) The yeast class V myosins, Myo2p and Myo4p, are nonprocessive actin-based motors. J Cell Biol 153:1121–1126

    PubMed Central  PubMed  CAS  Google Scholar 

  • Reid DW, Nicchitta CV (2012) Primary role for endoplasmic reticulum-bound ribosomes in cellular translation identified by ribosome profiling. J Biol Chem 287:5518–5527

    PubMed Central  PubMed  CAS  Google Scholar 

  • Riedl J, Crevenna AH, Kessenbrock K et al (2008) Lifeact: a versatile marker to visualize F-actin. Nat Meth 5:605–607

    CAS  Google Scholar 

  • Saint-Georges Y, Garcia M, Delaveau T et al (2008) Yeast mitochondrial biogenesis: a role for the PUF RNA-binding protein Puf3p in mRNA localization. PLoS ONE 3:e2293

    PubMed Central  PubMed  Google Scholar 

  • Schmid M, Jaedicke A, Du T-G, Jansen R-P (2006) Coordination of endoplasmic reticulum and mRNA localization to the yeast bud. Curr Biol 16:1538–1543

    PubMed  CAS  Google Scholar 

  • Sellers JR, Veigel C (2006) Walking with myosin V. Curr Opin Cell Biol 18:68–73

    PubMed  CAS  Google Scholar 

  • Shen Z, Paquin N, Forget A, Chartrand P (2009) Nuclear shuttling of She2p couples ASH1 mRNA localization to its translational repression by recruiting Loc1p and Puf6p. Mol Biol Cell 20:2265–2275

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shen Z, St-Denis A, Chartrand P (2010) Cotranscriptional recruitment of She2p by RNA pol II elongation factor Spt4-Spt5/DSIF promotes mRNA localization to the yeast bud. Genes Dev 24:1914–1926

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shepard KA, Gerber AP, Jambhekar A et al (2003) Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc Natl Acad Sci USA 100:11429–11434

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sil A, Herskowitz I (1996) Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84:711–722

    PubMed  CAS  Google Scholar 

  • Sladewski TE, Bookwalter CS, Hong M-S, Trybus KM (2013) Single-molecule reconstitution of mRNA transport by a class V myosin. Nat Struct Mol Biol 20:952–957

    PubMed Central  PubMed  CAS  Google Scholar 

  • St Johnston D (2005) Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol 6:363–375

    PubMed  CAS  Google Scholar 

  • St Johnston D, Ahringer J (2010) Cell polarity in eggs and epithelia: parallels and diversity. Cell 141:757–774

    PubMed  CAS  Google Scholar 

  • Strathern JN, Herskowitz I (1979) Asymmetry and directionality in production of new cell types during clonal growth: the switching pattern of homothallic yeast. Cell 17:371–381

    PubMed  CAS  Google Scholar 

  • Takizawa PA, DeRisi JL, Wilhelm JE, Vale RD (2000) Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290:341–344

    PubMed  CAS  Google Scholar 

  • Takizawa PA, Sil A, Swedlow JR et al (1997) Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389:90–93

    PubMed  CAS  Google Scholar 

  • Urbinati CR, Gonsalvez GB, Aris JP, Long RM (2006) Loc1p is required for efficient assembly and nuclear export of the 60S ribosomal subunit. Mol Genet Genomics 276:369–377

    PubMed  CAS  Google Scholar 

  • Urbinati CR, Long RM (2011) Techniques for following the movement of single RNAs in living cells. WIREs RNA 2:601–609

    PubMed  CAS  Google Scholar 

  • Valverde R, Edwards L, Regan L (2008) Structure and function of KH domains. FEBS J 275:2712–2726

    PubMed  CAS  Google Scholar 

  • van den Bogaart G, Meinema AC, Krasnikov V et al (2009) Nuclear transport factor directs localization of protein synthesis during mitosis. Nat Cell Biol 11:350–356

    PubMed  Google Scholar 

  • Weis BL, Schleiff E, Zerges W (2013) Biochimica et Biophysica Acta. BBA—Mole Cell Res 1833:260–273

    CAS  Google Scholar 

  • Wintersberger U, Kühne C, Karwan A (1995) Scp160p, a new yeast protein associated with the nuclear membrane and the endoplasmic reticulum, is necessary for maintenance of exact ploidy. Yeast 11:929–944

    PubMed  CAS  Google Scholar 

  • Yang H-C, Pon LA (2002) Actin cable dynamics in budding yeast. Proc Natl Acad Sci USA 99:751–756

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf-Peter Jansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moorthy, B.T., Jansen, RP. (2014). mRNA Localization. In: Sesma, A., von der Haar, T. (eds) Fungal RNA Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-05687-6_6

Download citation

Publish with us

Policies and ethics