Skip to main content

A Simple Method for Measuring Force, Velocity and Power Capabilities and Mechanical Effectiveness During Sprint Running

  • Chapter
  • First Online:
Biomechanics of Training and Testing

Abstract

A macroscopic view of sprint mechanics during an acceleration phase, and notably athlete’s propulsion capacities, can be given by Force-velocity (F-v) and Power-velocity (P-v) relationships. They characterize the change in athlete’s maximal horizontal force and power production capabilities when running speed increases and directly determine sprint acceleration performance. This chapter presents an accurate and reliable simple method to determine these mechanical capabilities during sprinting. This method, based on a macroscopic biomechanical model and validated in laboratory conditions in comparison to force plate measurements, is very convenient for field use since it only requires anthropometric (body mass and stature) and spatio-temporal (split times or instantaneous velocity) input variables. It provides different information on athlete’s horizontal force production capabilities: maximal power output, maximal horizontal force, maximal velocity until which horizontal force can be produced and mechanical effectiveness of force application onto the ground. This information presents interesting practical applications for sport practitioners to individualize training focusing on sprint acceleration performance, but also perspectives in injury management. This chapter presents different examples of such applications. Moreover, this simple method can also help to bring new insight into the limits of human locomotion since it makes possible to estimate sprinting mechanical properties of the fastest men and women without testing them in a laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.iaaf.org/.

References

  • Arsac LM, Locatelli E (2002) Modeling the energetics of 100-m running by using speed curves of world champions. J Appl Physiol 92(5):1781–1788. https://doi.org/10.1152/japplphysiol.00754.2001

    Article  PubMed  Google Scholar 

  • Aughey RJ (2011) Applications of GPS technologies to field sports. Int J Sports Physiol Perform 6(3):295–310

    Article  PubMed  Google Scholar 

  • Barbero-Alvarez JC, Coutts A, Granda J, Barbero-Alvarez V, Castagna C (2010) The validity and reliability of a global positioning satellite system device to assess speed and repeated sprint ability (RSA) in athletes. J Sci Med Sport 13(2):232–235. https://doi.org/10.1016/j.jsams.2009.02.005

    Article  PubMed  Google Scholar 

  • Bezodis NE, Salo AI, Trewartha G (2012) Measurement error in estimates of sprint velocity from a laser displacement measurement device. Int J Sports Med 33(6):439–444. https://doi.org/10.1055/s-0031-1301313

    Article  CAS  PubMed  Google Scholar 

  • Buchheit M, Al Haddad H, Simpson BM, Palazzi D, Bourdon PC, Di Salvo V, Mendez-Villanueva A (2014a) Monitoring accelerations with GPS in football: time to slow down? Int J Sports Physiol Perform 9(3):442–445. https://doi.org/10.1123/ijspp.2013-0187

    Article  PubMed  Google Scholar 

  • Buchheit M, Samozino P, Glynn JA, Michael BS, Al Haddad H, Mendez-Villanueva A, Morin JB (2014b) Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players. J Sports Sci 32(20):1906–1913. https://doi.org/10.1080/02640414.2014.965191

    Article  PubMed  Google Scholar 

  • Cavagna GA, Komarek L, Mazzoleni S (1971) The mechanics of sprint running. J Physiol 217(3):709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chelly SM, Denis C (2001) Leg power and hopping stiffness: relationship with sprint running performance. Med Sci Sports Exerc 33(2):326–333

    Article  CAS  PubMed  Google Scholar 

  • Cross MR, Brughelli M, Brown SR, Samozino P, Gill ND, Cronin JB, Morin JB (2015) Mechanical properties of sprinting in elite rugby union and rugby league. Int J Sports Physiol Perform 10(6):695–702. https://doi.org/10.1123/ijspp.2014-0151

    Article  PubMed  Google Scholar 

  • Cross MR, Brughelli M, Samozino P, Brown SR, Morin JB (2017) Optimal loading for maximising power during sled-resisted sprinting. Int J Sports Physiol Perform 1–25. https://doi.org/10.1123/ijspp.2016-0362

  • di Prampero PE, Botter A, Osgnach C (2015) The energy cost of sprint running and the role of metabolic power in setting top performances. Eur J Appl Physiol 115(3):451–469. https://doi.org/10.1007/s00421-014-3086-4

    Article  PubMed  Google Scholar 

  • di Prampero PE, Fusi S, Sepulcri L, Morin JB, Belli A, Antonutto G (2005) Sprint running: a new energetic approach. J Exp Biol 208:2809–2816

    Article  PubMed  Google Scholar 

  • Edouard P, Nagahara R, Samozino P, Rossi J, Brughelli M, Mendiguchia J, Morin J (under review) Is maximal horizontal force output during sprint acceleration associated with increased risk of hamstring muscle injuries in soccer: a pilot prospective study?

    Google Scholar 

  • Furusawa K, Hill AV, Parkinson JL (1927) The dynamics of “sprint” running. Proc R Soc B 102:29–42

    Article  Google Scholar 

  • Haugen T, Buchheit M (2016) Sprint running performance monitoring: methodological and practical considerations. Sports Med 46(5):641–656. https://doi.org/10.1007/s40279-015-0446-0

    Article  PubMed  Google Scholar 

  • Helene O, Yamashita MT (2010) The force, power and energy of the 100 meter sprint. Am J Phys 78:307–309

    Article  Google Scholar 

  • Henry FM (1954) Time-velocity equations and oxygen requirements of “all-out” and “steady-pace” running. Res Q 25:164–177

    Google Scholar 

  • Jaskolska A, Goossens P, Veenstra B, Jaskolski A, Skinner JS (1999) Treadmill measurement of the force-velocity relationship and power output in subjects with different maximal running velocities. Sports Med Train Rehab 8:347–358

    Article  Google Scholar 

  • Jaskolski A, Veenstra B, Goossens P, Jaskolska A, Skinner JS (1996) Optimal resistance for maximal power during treadmill running. Sports Med Train Rehabil 7:17–30

    Article  Google Scholar 

  • Jennings D, Cormack S, Coutts AJ, Boyd LJ, Aughey RJ (2010) Variability of GPS units for measuring distance in team sport movements. Int J Sports Physiol Perform 5(4):565–569

    Article  PubMed  Google Scholar 

  • Kawamori N, Newton R, Nosaka K (2014) Effects of weighted sled towing on ground reaction force during the acceleration phase of sprint running. J Sports Sci 32(12):1139–1145. https://doi.org/10.1080/02640414.2014.886129

    Article  PubMed  Google Scholar 

  • Lockie RG, Murphy AJ, Schultz AB, Jeffriess MD, Callaghan SJ (2013) Influence of sprint acceleration stance kinetics on velocity and step kinematics in field sport athletes. J Strength Cond Res 27(9):2494–2503. https://doi.org/10.1519/JSC.0b013e31827f5103

    Article  PubMed  Google Scholar 

  • Mendiguchia J, Edouard P, Samozino P, Brughelli M, Cross M, Ross A, Gill N, Morin JB (2016) Field monitoring of sprinting power-force-velocity profile before, during and after hamstring injury: two case reports. J Sports Sci 34(6):535–541. https://doi.org/10.1080/02640414.2015.1122207

    Article  CAS  PubMed  Google Scholar 

  • Mendiguchia J, Samozino P, Martinez-Ruiz E, Brughelli M, Schmikli S, Morin JB, Mendez-Villanueva A (2014) Progression of mechanical properties during on-field sprint running after returning to sports from a hamstring muscle injury in soccer players. Int J Sports Med 35(8):690–695. https://doi.org/10.1055/s-0033-1363192

    Article  CAS  PubMed  Google Scholar 

  • Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR (2012) Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol 112(11):3921–3930. https://doi.org/10.1007/s00421-012-2379-8

    Article  PubMed  Google Scholar 

  • Morin JB, Edouard P, Samozino P (2011a) Technical ability of force application as a determinant factor of sprint performance. Med Sci Sports Exerc 43(9):1680–1688

    Article  PubMed  Google Scholar 

  • Morin JB, Jeannin T, Chevallier B, Belli A (2006) Spring-mass model characteristics during sprint running: correlation with performance and fatigue-induced changes. Int J Sports Med 27(2):158–165. https://doi.org/10.1055/s-2005-837569

    Article  PubMed  Google Scholar 

  • Morin JB, Petrakos G, Jimenez-Reyes P, Brown SR, Samozino P, Cross MR (2017) Very-heavy sled training for improving horizontal-force output in soccer players. Int J Sports Physiol Perform 12(6):840–844. https://doi.org/10.1123/ijspp.2016-0444

    Article  PubMed  Google Scholar 

  • Morin JB, Samozino P (2016) Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform 11(2):267–272

    Google Scholar 

  • Morin JB, Samozino P, Bonnefoy R, Edouard P, Belli A (2010) Direct measurement of power during one single sprint on treadmill. J Biomech 43(10):1970–1975

    Article  CAS  PubMed  Google Scholar 

  • Morin JB, Samozino P, Edouard P, Tomazin K (2011b) Effect of fatigue on force production and force application technique during repeated sprints. J Biomech 44(15):2719–2723. https://doi.org/doi:10.1016/j.jbiomech.2011.07.020 (S0021-9290(11)00526-4 [pii])

  • Nagahara R, Botter A, Rejc E, Koido M, Shimizu T, Samozino P, Morin JB (2017) Concurrent validity of GPS for deriving mechanical properties of sprint acceleration. Int J Sports Physiol Perform 12(1):129–132. https://doi.org/10.1123/ijspp.2015-0566

    Article  PubMed  Google Scholar 

  • Petrakos G, Morin JB, Egan B (2016) Resisted sled sprint training to improve sprint performance: a systematic review. Sports Med 46(3):381–400. https://doi.org/10.1007/s40279-015-0422-8

    Article  PubMed  Google Scholar 

  • Rabita G, Dorel S, Slawinski J, Saez de villarreal E, Couturier A, Samozino P, Morin JB (2015) Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. https://doi.org/10.1111/sms.12389

  • Rampinini E, Alberti G, Fiorenza M, Riggio M, Sassi R, Borges TO, Coutts AJ (2015) Accuracy of GPS devices for measuring high-intensity running in field-based team sports. Int J Sports Med 36(1):49–53. https://doi.org/10.1055/s-0034-1385866

    CAS  PubMed  Google Scholar 

  • Romero-Franco N, Jimenez-Reyes P, Castano-Zambudio A, Capelo-Ramirez F, Rodriguez-Juan JJ, Gonzalez-Hernandez J, Toscano-Bendala FJ, Cuadrado-Penafiel V, Balsalobre-Fernandez C (2016) Sprint performance and mechanical outputs computed with an iPhone app: comparison with existing reference methods. Eur J Sport Sci:1–7. https://doi.org/10.1080/17461391.2016.1249031

  • Samozino P, Morin JB, Hintzy F, Belli A (2008) A simple method for measuring force, velocity and power output during squat jump. J Biomech 41(14):2940–2945

    Article  PubMed  Google Scholar 

  • Samozino P, Morin JB, Hintzy F, Belli A (2010) Jumping ability: a theoretical integrative approach. J Theor Biol 264(1):11–18

    Article  PubMed  Google Scholar 

  • Samozino P, Rabita G, Dorel S, Slawinski J, Peyrot N, Saez de Villarreal E, Morin JB (2016) A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports 26(6):648–658. https://doi.org/10.1111/sms.12490

    Article  CAS  PubMed  Google Scholar 

  • Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB (2012) Optimal force-velocity profile in ballistic movements. Altius: citius or fortius? Med Sci Sports Exerc 44(2):313–322

    Article  PubMed  Google Scholar 

  • Simperingham KD, Cronin JB, Ross A (2016) Advances in sprint acceleration profiling for field-based team-sport athletes: utility, reliability, validity and limitations. Sports Med 46(11):1619–1645. https://doi.org/10.1007/s40279-016-0508-y

    Article  PubMed  Google Scholar 

  • Slawinski J, Bonnefoy A, Ontanon G, Leveque JM, Miller C, Riquet A, Cheze L, Dumas R (2010) Segment-interaction in sprint start: analysis of 3D angular velocity and kinetic energy in elite sprinters. J Biomech 43(8):1494–1502. https://doi.org/10.1016/j.jbiomech.2010.01.044

    Article  CAS  PubMed  Google Scholar 

  • Slawinski J, Termoz N, Rabita G, Guilhem G, Dorel S, Morin JB, Samozino P (2017) How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand J Med Sci Sports 27(1):45–54. https://doi.org/10.1111/sms.12627

    Article  CAS  PubMed  Google Scholar 

  • van Ingen Schenau GJ, Jacobs R, de Koning JJ (1991) Can cycle power predict sprint running performance? Eur J Appl Physiol Occup Physiol 63(3–4):255–260

    Article  PubMed  Google Scholar 

  • Woods C, Hawkins RD, Maltby S, Hulse M, Thomas A, Hodson A, Football Association Medical Research P (2004) The football association medical research programme: an audit of injuries in professional football-analysis of hamstring injuries. Br J Sports Med 38(1):36–41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Samozino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samozino, P. (2018). A Simple Method for Measuring Force, Velocity and Power Capabilities and Mechanical Effectiveness During Sprint Running. In: Morin, JB., Samozino, P. (eds) Biomechanics of Training and Testing. Springer, Cham. https://doi.org/10.1007/978-3-319-05633-3_11

Download citation

Publish with us

Policies and ethics