Skip to main content

Structural Equation Modeling

  • Living reference work entry
  • First Online:
Handbook of Market Research

Abstract

This chapter presents an overview of the process of structural equation modeling, involving the steps of model specification, model estimation, overall fit evaluation, model respecification, and local fit assessment (including interpreting the parameters of the model). Various extensions of the core structural equation model are described to enable more general representations of measurement and latent variable models as well as applications of the model to heterogeneous populations. An empirical example is provided to illustrate the process of structural equation modeling and to demonstrate some of the complexities that may arise in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423.

    Article  Google Scholar 

  • Bagozzi, R. P. (1980). Causal models in marketing. New York: Wiley.

    Google Scholar 

  • Bandalos, D. L., & Finney, S. J. (2001). Item parceling issues in structural equation modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 269–296). Mahwah: Erlbaum.

    Google Scholar 

  • Baumgartner, H., & Weijters, B. (2019). Measurement in marketing. Foundations and Trends® in Marketing, 12(4), 278–400.

    Article  Google Scholar 

  • Baumgartner, H., & Weijters, B. (forthcoming). Dealing with common method variance in international marketing research. Journal of International Marketing. in press.

    Google Scholar 

  • Baumgartner, H., Weijters, B., & Pieters, R. (2021). The biasing effect of common method variance: Some clarifications. Journal of the Academy of Marketing Science, 49(2), 221–235. https://doi.org/10.1007/s11747-020-00766-8.

  • Bollen, K. A. (2011). Evaluating effect, composite, and causal indicators in structural equation models. MIS Quarterly, 35(2), 359–372.

    Article  Google Scholar 

  • Bollen, K. A. (2012). Instrumental variables in sociology and the social sciences. Annual Review of Sociology, 38, 37–72.

    Article  Google Scholar 

  • Bollen, K. A. (2018). Model implied instrumental variables (MIIVs): An alternative orientation to structural equation modeling. Multivariate Behavioral Research, 54(1), 31–46.

    Article  Google Scholar 

  • Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. Hoboken: Wiley.

    Google Scholar 

  • Bollen, K. A., Harden, J. J., Ray, S., & Zavisca, J. (2014). BIC and alternative Bayesian information criteria in the selection of structural equation models. Structural Equation Modeling, 21(1), 1–19.

    Article  Google Scholar 

  • Chapman, C., & Feit, E. M. D. (2019). R for marketing research and analytics (2nd ed.). Springer: Cham.

    Book  Google Scholar 

  • Cortina, J. M., Markell-Goldstein, H. M., Green, J. P., & Chang, Y. (2021). How are we testing interactions in latent variable models? Surging forward or fighting shy? Organizational Research Methods, 24(1), 26–54.

    Article  Google Scholar 

  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.

    Article  Google Scholar 

  • Diamantopoulos, A. (2011). Incorporating formative measures into covariance-based structural equation models. MIS Quarterly, 35(June), 335–358.

    Article  Google Scholar 

  • Diamantopoulos, A., & Winklhofer, H. (2001). Index construction with formative indicators: An alternative to scale development. Journal of Marketing Research, 38(May), 269–277.

    Article  Google Scholar 

  • Diamantopoulos, A., Riefler, P., & Roth, K. P. (2008). Advancing formative measurement models. Journal of Business Research, 61(12), 1203–1218.

    Article  Google Scholar 

  • Diop, E. B., Zhao, S., & Duy, T. V. (2019). An extension of the technology acceptance model for understanding travelers’ adoption of variable message signs. PLoS One, 14(4), e0216007.

    Article  Google Scholar 

  • Edwards, J. R. (2011). The fallacy of formative measurement. Organizational Research Methods, 14(2), 370–388.

    Article  Google Scholar 

  • Fisher, Z. F., Bollen, K. A., Gates, K., & Ronkko, M. (2020). MlIVsem: Model implied instrumental variable (MIIV) estimation of structural equation models. R package version 0.5.5.

    Google Scholar 

  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.

    Article  Google Scholar 

  • Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Thousand Oaks: Sage.

    Google Scholar 

  • Howell, R. D., Breivik, E., & Wilcox, J. B. (2007). Reconsidering formative measurement. Psychological Methods, 12(2), 205–218.

    Article  Google Scholar 

  • Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453.

    Article  Google Scholar 

  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.

    Article  Google Scholar 

  • Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30(2), 199–218.

    Article  Google Scholar 

  • Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96, 201–210.

    Article  Google Scholar 

  • Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65(December), 457–474.

    Article  Google Scholar 

  • Kline, R. B. (2013). Reverse arrow dynamics: Feedback loops and formative measurement. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (2nd ed., pp. 39–76). Greenwich: Information Age Publishing.

    Google Scholar 

  • MacCallum, R. C. (1986). Specification searches in covariance structure modeling. Psychological Bulletin, 100(1), 107–120.

    Article  Google Scholar 

  • MacCallum, R. C., & Browne, M. W. (1993). The use of causal indicators in covariance structure models: Some practical issues. Psychological Bulletin, 114, 533–541.

    Article  Google Scholar 

  • MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modification in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111(3), 490–504.

    Article  Google Scholar 

  • MacKenzie, S. B., & Podsakoff, P. M. (2012). Common method bias in marketing: Causes, mechanisms, and procedural remedies. Journal of Retailing, 88(4), 542–555.

    Article  Google Scholar 

  • MacKenzie, S. B., Podsakoff, P. M., & Jarvis, C. B. (2005). The problem of measurement model misspecification in behavioral and organizational research and some recommended solutions. Journal of Applied Psychology, 90(4), 710–730.

    Article  Google Scholar 

  • MacKenzie, S. B., Podsakoff, P. M., & Podsakoff, N. P. (2011). Construct measurement and validation procedures in MIS and behavioral research: Integrating new and existing techniques. MIS Quarterly, 35(June), 293–334.

    Article  Google Scholar 

  • MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83–104.

    Article  Google Scholar 

  • Marsh, H. W., Hau, K.-T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling, 11(3), 320–341.

    Article  Google Scholar 

  • Marsh, H. W., Morin, A. J., Parker, P. D., & Kaur, G. (2014). Exploratory structural equation modeling: An integration of the best features of exploratory and confirmatory factor analysis. Annual Review of Clinical Psychology, 10, 85–110.

    Article  Google Scholar 

  • McNeish, D. (2020). Should we use F-tests for model fit instead of chi-square in over-identified structural equation models? Organizational Research Methods, 23, 487–510.

    Article  Google Scholar 

  • Muthén, B. (2001). Latent variable mixture modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 1–33). Mahwah: Erlbaum.

    Google Scholar 

  • Muthén, B., & Asparouhov, T. (2011). Beyond multilevel regression modeling: Multilevel analysis in a general latent variable framework. In J. Hox & J. K. Roberts (Eds.), Handbook of advanced multilevel analysis (pp. 15–40). New York: Taylor and Francis.

    Google Scholar 

  • Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313–335.

    Article  Google Scholar 

  • Muthén, L. K., & Muthén, B. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 9(4), 599–620.

    Article  Google Scholar 

  • Niemand, T., & Mai, R. (2018). Flexible cutoff values for fit indices in the evaluation of structural equation models. Journal of the Academy of Marketing Science, 46, 1148–1172.

    Article  Google Scholar 

  • Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903.

    Article  Google Scholar 

  • Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, 63, 539–569.

    Article  Google Scholar 

  • Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of Research in Marketing, 26(4), 332–344.

    Article  Google Scholar 

  • Rhemtulla, M., Brosseau-Liard, A. E., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17(3), 354–373.

    Article  Google Scholar 

  • Rhemtulla, M., van Bork, R., & Borsboom, D. (2020). Worse than measurement error: Consequences of inappropriate latent variable measurement models. Psychological Methods, 25(1), 30–45.

    Article  Google Scholar 

  • Rönkko, M., McIntosh, C. N., Antonakis, J., & Edwards, J. R. (2016). Partial least squares path modeling: Time for some serious second thoughts. Journal of Operations Management, 47–48(November), 9–27.

    Article  Google Scholar 

  • Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1–36.

    Article  Google Scholar 

  • Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66(4), 507–514.

    Article  Google Scholar 

  • Steenkamp, J.-B. E. M., & Baumgartner, H. (1998). Assessing measurement invariance in crossnational consumer research. Journal of Consumer Research, 25(June), 78–90.

    Article  Google Scholar 

  • Sterba, S. K. (2011). Implications of parcel-allocation variability for comparing fit of item-solutions and parcel-solutions. Structural Equation Modeling, 18(4), 554–577.

    Article  Google Scholar 

  • Sterba, S. K., & Pek, J. (2012). Individual influence on model selection. Psychological Methods, 17(4), 582–599.

    Article  Google Scholar 

  • Sterba, S. K., & Rights, J. D. (2017). Effects of parceling on model selection: Parcel-allocation variability in model ranking. Psychological Methods, 22(1), 47–68.

    Article  Google Scholar 

  • Umbach, N., Naumann, K., Brandt, H., & Kelava, A. (2017). Fitting nonlinear structural equation models in R with package nlsem. Journal of Statistical Software, 77(7), 1–20. https://doi.org/10.18637/iss.v077.i07.

    Article  Google Scholar 

  • Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3(January), 4–69.

    Article  Google Scholar 

  • Weijters, B., & Baumgartner, H. (2019). Analyzing Policy Capturing Data Using Structural Equation Modeling for Within-Subject Experiments (SEMWISE). Organizational Research Methods, 22(3), 623–648.

    Article  Google Scholar 

  • Weijters, B., & Baumgartner, H. (forthcoming). On the use of balanced item parceling to counter acquiescence bias in structural equation models. Organizational Research Methods. in press.

    Google Scholar 

  • Wilcox, J. B., Howell, R. D., & Breivik, E. (2008). Questions about formative measurement. Journal of Business Research, 61, 1219–1228.

    Article  Google Scholar 

  • Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety. Educational and Psychological Measurement, 73(6), 913–934.

    Article  Google Scholar 

  • Wooldridge, J. M. (2016). Introductory econometrics: A modern approach (6th ed.). Boston: Cengage Learning.

    Google Scholar 

  • Yang, M., Jiang, G., & Yuan, K.-H. (2018). The performance of ten modified rescaled statistics as the number of variables increases. Structural Equation Modeling, 25(3), 414–438.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Smeal Chair Endowment is gratefully acknowledged. The authors would like to thank two reviewers and the editors for helpful comments on a previous version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Baumgartner .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Baumgartner, H., Weijters, B. (2021). Structural Equation Modeling. In: Homburg, C., Klarmann, M., Vomberg, A.E. (eds) Handbook of Market Research. Springer, Cham. https://doi.org/10.1007/978-3-319-05542-8_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05542-8_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05542-8

  • Online ISBN: 978-3-319-05542-8

  • eBook Packages: Springer Reference Business and ManagementReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics