Skip to main content

Effects on Different Peptide Hormones

  • Reference work entry
Drug Discovery and Evaluation: Pharmacological Assays
  • 157 Accesses

Abstract

The role of melatonin as a neurotransmitter, a hormone, and a possible therapeutic agent has been a matter of controversy (Brainard 1978; Reiter 1991; Hajak et al. 1996; Huether 1996; Jansen et al. 2006) ever since melatonin was isolated and identified as N-acetyl-5-methoxytryptamine by Lerner et al. (1958) and characterized by Axelrod and Wurtman (1966). Melatonin is synthesized and released by the pineal gland and has been shown to play a key role in the regulation of mammalian circadian rhythms and reproductive functions (Reiter 1991; Arendt et al. 1995; DiBella and Gualano 2006). Melatonin is also produced in extrapineal sites, such as the retina (Lundmark et al. 2006), the Harderian glands, and the gut (Huether 1993, 1994; Messner et al. 2001). It should however be noted that methods for the identification of peptides and neurotransmitters have reached extremely high levels of sensitivity; as a consequence, their presence in a tissue does not necessarily indicate that a relevant physiological function is subserved in that organ or tissue. Melatonin is synthesized from 5-hydroxytryptamine (5-HT) by a two-step biochemical pathway (Reiter 1991). Initially, 5-HT is acetylated to produce N-acetylserotonin, which is subsequently O-methylated to form melatonin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

Other Peptide Hormones

  • Arendt J, Deacon S, English J, Hampton S, Morgan L (1995) Melatonin and adjustment to phase shift. J Sleep Res 4:74–79

    PubMed  Google Scholar 

  • Axelrod J, Wurtman RJ (1966) The formation, metabolism and some actions of melatonin, a pineal gland substance. Res Publ Assoc Res Nerv Ment Dis 43:200–211

    CAS  PubMed  Google Scholar 

  • Brainard GC (1978) Pineal research: the decade of transformation. J Neural Transm Suppl 3–10

    Google Scholar 

  • DiBella L, Gualano L (2006) Key aspects of melatonin physiology: thirty years of research. Neuro Endocrinol Lett 27(4):425–432

    CAS  Google Scholar 

  • Hajak G, Rodenbeck A, Hardeland R, Hüther G (1996) Melatonin: Vom Stiefkind der Hormonforschung zur Goldmarie der Vermarktungsstrategen. TW Neurologie Psychiatrie 10:384–390

    Google Scholar 

  • Huether G (1993) The contribution of extrapineal sites of melatonin synthesis to circulating melatonin levels in higher vertebrates. Experientia 49:665–670

    CAS  PubMed  Google Scholar 

  • Huether G (1994) Melatonin synthesis in the gastrointestinal tract and the impact of nutritional factors on circulating melatonin. Ann N Y Acad Sci 719:146–158

    CAS  PubMed  Google Scholar 

  • Huether G (1996) Melatonin as an antiaging drug: between facts and fantasy. Gerontology 42:87–96

    CAS  PubMed  Google Scholar 

  • Jansen SL, Forbes DA, Duncan V, Morgan DG (2006) Melatonin for cognitive impairment [review]. Cochrane Database Syst Rev CD003802

    Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee Y, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 81:2587

    Google Scholar 

  • Lundmark PO, Pandi-Perumal SR, Srinivasan V, Cardinali DP (2006) Role of melatonin in the eye and ocular dysfunctions. Vis Neurosci 23(6):853–862

    PubMed  Google Scholar 

  • Messner M, Huether G, Lorf T, Ramadori G, Schwörer H (2001) Presence of melatonin in the human hepatobiliary-gastrointestinal tract. Life Sci 69:543–551

    CAS  PubMed  Google Scholar 

  • Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151–180

    CAS  PubMed  Google Scholar 

Melatonin Receptor Binding

  • Audinot V, Mailliet F, Lahaye-Brasseur C, Bonnaud A, Le Gall A, Amossé C, Dromaint S, Rodriguez M, Nagel N, Galizzi JP, Malpaux B, Guillaumet G, Lesieur D, Lefoulon F, Renard P, Delagrange P, Boutin JA (2003) New selective ligands of human cloned MT1 and MT2 receptors. Naunyn-Schmiedebergs Arch Pharmacol 367:553–561

    CAS  PubMed  Google Scholar 

  • Browning C, Beresford I, Fraser N, Giles H (2000) Pharmacological characterization of human recombinant mt1 and MT2 receptors. Br J Pharmacol 129:877–886

    PubMed Central  CAS  PubMed  Google Scholar 

  • Charton I, Mamai A, Bennejean C, Renard P, Delagrange P, Morgan PJ, Howell HE, Gourdel-Martin ME, Viaud MC, Guillaumet G (2000a) Synthesis and biological activity of new melatonin receptor ligands. Pharm Pharmacol Commun 6:49–60

    CAS  Google Scholar 

  • Charton I, Mamai A, Bennejean C, Renard P, Howell HE, Guardiola-Lamaître B, Delagrange P, Morgan PJ, Viaud MC, Guillaumet G (2000b) Substituted oxygenated heterocycles and thio-analogues: synthesis and biological evaluation as melatonin ligands. Bioorg Med Chem 8:105–114

    CAS  PubMed  Google Scholar 

  • Depreux P, Lesieur D, Mansour HA, Morgan P, Howell HE, Renard P, Caignard DH, Pfeiffer B, Delagrange P, Guardiola B, Yous S, Demarque A, Adam G, Andrieux J (1994) Synthesis and structure-activity relationships of novel naphthalenic and bioisosteric related amidic derivatives as melatonin receptor ligands. J Med Chem 37:3231–3239

    CAS  PubMed  Google Scholar 

  • Dubocovich ML, DelPedro A, Masana MI (1997a) The efficacy of melatonin receptor analogues is dependent on the level of human melatonin receptor subtype expression. Chronobiol Int 14:45

    Google Scholar 

  • Dubocovich ML, Masana MI, Iacob S, Sauri DM (1997b) Melatonin receptor antagonists that differentiate between the human Mel1a and Mel1b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina ML1 presynaptic heteroreceptor. Naunyn-Schmiedebergs Arch Pharmacol 355:365–375

    CAS  PubMed  Google Scholar 

  • Dubocovich ML, Cardinali DP, Delagrange P, Krause DN, Strosberg D, Sugden D, Yocca FD (2001) Melatonin receptors. The IUPHAR compendium of receptor characterization and classification. IUPHAR Media, London, pp 270–277

    Google Scholar 

  • Middleton B (2006) Measurement of melatonin and 6-sulphatoxymelatonin. Methods Mol Biol 324:235–254

    CAS  PubMed  Google Scholar 

  • Nonno R, Lucini V, Spadoni G, Pannacci M, Croce A, Esposti D, Balsamini C, Tarzia G, Fraschini F, Stankow BM (2000) A new melatonin receptor ligand with mt1-agonist and MT2-antagonist properties. J Pineal Res 29:234–240

    CAS  PubMed  Google Scholar 

  • Nosjean O, Ferro M, Cogé F, Beauverger P, Henlin JM, Lefoulon F, Fauchère JL, Delagrange P, Canet E, Boutin JA (2000) Identification of the melatonin binding site MT 3 as the quinone reductase 2. J Biol Chem 275:31311–31317

    CAS  PubMed  Google Scholar 

  • Nosjean O, Nicolas JP, Klupsch F, Delagrange P, Canet E, Boutin JA (2001) Comparative pharmacological studies of melatonin receptors: MT1, MT2 and MT3/QR2. Tissue distribution of MT3/QR2. Biochem Pharmacol 61:1369–1379

    CAS  PubMed  Google Scholar 

  • Reppert SM, Waever DR, Ebisawa T (1994) Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13:1177–1185

    CAS  PubMed  Google Scholar 

  • Reppert SM, Godson C, Mahle CD, Waever DR, Slaugenhaupt SA, Gusella JF (1995) Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci U S A 92:8734–8738

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zlotos DP (2005) Recent advances in melatonin receptor ligands. Arch Pharmacol (Weinheim) 338(5–6):229–247

    CAS  Google Scholar 

In Vitro Assay of Melatonin: Inhibition of Forskolin-Stimulated cAMP Accumulation

  • Barrett P, MacDonald A, Helliwell R, Davidson G, Morgan P (1994) Cloning and expression of a new member of the melanocyte-stimulating hormone receptor family. J Mol Endocrinol 12:203–213

    CAS  PubMed  Google Scholar 

  • Browning C, Beresford I, Fraser N, Giles H (2000) Pharmacological characterization of human recombinant mt1 and MT2 receptors. Br J Pharmacol 129:877–886

    PubMed Central  CAS  PubMed  Google Scholar 

  • Charton I, Mamai A, Bennejean C, Renard P, Delagrange P, Morgan PJ, Howell HE, Gourdel-Martin ME, Viaud MC, Guillaumet G (2000a) Synthesis and biological activity of new melatonin receptor ligands. Pharm Pharmacol Commun 6:49–60

    CAS  Google Scholar 

  • Charton I, Mamai A, Bennejean C, Renard P, Howell HE, Guardiola-Lamaître B, Delagrange P, Morgan PJ, Viaud MC, Guillaumet G (2000b) Substituted oxygenated heterocycles and thio-analogues: synthesis and biological evaluation as melatonin ligands. Bioorg Med Chem 8:105–114

    CAS  PubMed  Google Scholar 

  • Conway S, Canning SH, Howell HE, Mowat ES, Barrett P, Drew JE, Delagrange P, Lesieur D, Morgan PJ (2000) Characterization of human melatonin mt1 and MT2 receptors by CRE-luciferase reporter assay. Eur J Pharmacol 390:15–24

    CAS  PubMed  Google Scholar 

  • Ebisawa T, Karne S, Lerner MR, Reppert SM (1994) Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proc Natl Acad Sci U S A 91:6133–6137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morgan PJ, Lawson W, Davidson G, Howell HE (1989) Melatonin inhibits cyclic AMP production in cultures ovine pars tuberalis cells. J Mol Endocrinol 3:R5–R8

    CAS  Google Scholar 

  • Reppert SM, Godson C, Mahle CD, Waever DR, Slaugenhaupt SA, Gusella JF (1995) Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci U S A 92:8734–8738

    PubMed Central  CAS  PubMed  Google Scholar 

Dopamine Release from Rabbit Retina

  • Dubocovich ML (1985) Characterization of a retinal melatonin receptor. J Pharmacol Exp Ther 234:395–401

    CAS  PubMed  Google Scholar 

  • Dubocovich ML, Masana MI, Iacob S, Sauri DM (1997) Melatonin receptor antagonists that differentiate between the human Mel1a and Mel1b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina ML1 presynaptic heteroreceptor. Naunyn-Schmiedebergs Arch Pharmacol 355:365–375

    CAS  PubMed  Google Scholar 

Effect on Xenopus Melanophores

  • Danilolos A, Lerner AB, Lerner MR (1990) Action of light on frog pigment cells in culture. Pigment Cell Res 3:38–43

    Google Scholar 

  • TeckTeh M, Sugden D (1998) Comparison of the structure-activity relationships of melatonin receptor agonists and antagonists: lengthening the N-acyl side-chain has differing effects on potency on Xenopus melanophores. Naunyn-Schmiedebergs Arch Pharmacol 358:522–528

    Google Scholar 

Vasoconstrictor Activity of Melatonin

  • Black JW, Leff P, Shankley NP (1985) An operational model of pharmacological agonism: the effect of E/[A] curve shape on agonist dissociation constant estimation. Br J Pharmacol 84:561–571

    PubMed Central  CAS  PubMed  Google Scholar 

  • Delagrange P, Ting KN, Kopp C, Lahaye C, Lesieur D, Weibel L, Bennejean C, Renard R, Retton MC (1999) In vitro and in vivo antagonist properties of S 22153, a new melatonin ligand. Fundam Clin Pharmacol 13:253

    Google Scholar 

  • Evans BK, Mason R, Wilson VG (1992) Evidence for direct vasoconstriction activity of melatonin in ‘pressurized’ segments of isolated caudal artery from juvenile rats. Naunyn-Schmiedebergs Arch Pharmacol 346:362–365

    CAS  PubMed  Google Scholar 

  • Halpern W, Osol G, Coy GS (1984) Mechanical behavior of pressurized in vitro prearteriolar vessels determined with a video system. Ann Biochem Eng 12:463–479

    CAS  Google Scholar 

  • Ting KN, Dunn WR, Davies DJ, Sugden D, Delagrange P, Guardiola-Lamaître B, Scalbert E, Wilson VG (1997) Studies on the vasoconstrictor action of melatonin and putative melatonin receptor ligands in the tail artery of juvenile Wistar rats. Br J Pharmacol 122:1299–1306

    PubMed Central  CAS  PubMed  Google Scholar 

  • Viswatanan M, Scalbert DP, Guardiola-Lamaître B, Saavedra JM (1997) Melatonin receptors mediate contraction of rat cerebral artery. NeuroReport 8:3847–3849

    Google Scholar 

Melatonin’s Effect on Firing Rate of Suprachiasmatic Nucleus Cells

  • Liu C, Weaver DR, Jin X, Sherman LP, Pieschl RL, Gribkoff VR, Reppert SM (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19:91–102

    CAS  PubMed  Google Scholar 

  • Meijer JH, Reitveld WJ (1989) Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev 69:671–707

    CAS  PubMed  Google Scholar 

  • Moore RY (1983) Organization and function of a central nervous system circadian oscillator: the suprachiasmatic nucleus. Fed Proc 42:2783

    CAS  PubMed  Google Scholar 

  • Ying SW, Zhang DX, Rusak B (1993) Effect of serotonin agonists and melatonin on photic responses of hamster geniculate leaflet neurons. Brain Res 628:8–16

    CAS  PubMed  Google Scholar 

  • Ying SW, Rusak B, Delagrange P, Mocaër E, Renard P, Guardiola-Lamaître B (1996) Melatonin analogues as agonists and antagonists in the circadian system and other brain areas. Eur J Pharmacol 296:33–46

    CAS  PubMed  Google Scholar 

  • Zhang DX, Rusak B (1989) Photic sensitivity of geniculate neurons that project to the suprachiasmatic nuclei of the contralateral geniculate. Brain Res 504:161–164

    CAS  PubMed  Google Scholar 

Melatonin’s Effect on Circadian Rhythm

  • Benloucif S, Dubocovich ML (1996) Melatonin and light induce phase shifts of circadian rhythms in the C3H/HeN mouse. J Biol Rhythms 11:113–125

    CAS  PubMed  Google Scholar 

  • Delagrange P, Ting KN, Kopp C, Lahaye C, Lesieur D, Weibel L, Bennejean C, Renard R, Retton MC (1999) In vitro and in vivo antagonist properties of S 22153, a new melatonin ligand. Fundam Clin Pharmacol 13:253

    Google Scholar 

  • Dubocovich ML, Yun K, Al-Ghoul WM, Benloucif S, Masana MI (1998) Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. FASEB J 12:1211–1220

    CAS  PubMed  Google Scholar 

  • MacArthur JJ, Hunt AE, Gilette MU (1997) Melatonin action and signal transduction on the rat suprachiasmatic circadian clock: activation of protein kinase C at dusk and dawn. Endocrinology 138:627–634

    Google Scholar 

Melatonin’s Effect on Neophobia in Mice

  • Delagrange P, Ting KN, Kopp C, Lahaye C, Lesieur D, Weibel L, Bennejean C, Renard R, Retton MC (1999) In vitro and in vivo antagonist properties of S 22153, a new melatonin ligand. Fundam Clin Pharmacol 13:253

    Google Scholar 

  • Hughes RN (1968) Behaviour of male and female rats with a free choice of two environments differing in novelty. Anim Behav 16:92–96

    CAS  PubMed  Google Scholar 

  • Kopp C, Vogel E, Rettori MC, Delagrange P, Guardiola-Lamaître B, Misslin R (1999a) Effects of melatonin on neophobic responses in different strain of mice. Pharmacol Biochem Behav 63:521–526

    CAS  PubMed  Google Scholar 

  • Kopp C, Vogel E, Rettori MC, Delagrange P, Renard P, Lesieur D, Misslin R (1999b) Antagonistic effects of S22153, a new mt1 and MT2 receptor ligand, on the neophobia-reducing properties of melatonin in BALB/c mice. Pharmacol Biochem Behav 64:131–136

    CAS  PubMed  Google Scholar 

Melanophore Stimulating Hormone

  • Boehm M, Schiller M, Luger TA (2006) Non-pigmentary actions of alpha-melanocyte-stimulating hormone–lessons from the cutaneous melanocortin system [review]. Cell Mol Biol 52(2):61–68

    CAS  Google Scholar 

  • Butler AA (2006) The melanocortin system and energy balance. Peptides 27(2):281–290

    PubMed Central  CAS  PubMed  Google Scholar 

  • Catania A, Colombo G, Rossi C, Carlin A, Sordi A, Lonati C, Turcatti F, Leonardi P, Grieco P, Gatti S (2006) Antimicrobial properties of alpha-MSH and related synthetic melanocortins. Sci World J 6:1241–1246

    CAS  Google Scholar 

  • Fehm HL, Born J, Peters A (2004) Glucocorticoids and melanocortins in the regulation of body weight in humans. Horm Metab Res 36(6):360–364

    CAS  PubMed  Google Scholar 

  • Hadley ME, Dorr RT (2006) Melanocortin peptide therapeutics: historical milestones, clinical studies and commercialization. Peptides 27(4):230–921

    Google Scholar 

  • Humphreys MH (2007) Cardiovascular and renal actions of melanocyte-stimulating hormone peptides. Curr Opin Nephrol Hypertens 16(1):32–38

    CAS  PubMed  Google Scholar 

  • Millington GW (2006) Proopiomelanocortin (POMC): the cutaneous roles of its melanocortin products and receptors. Clin Exp Dermatol 31(3):407–412

    CAS  PubMed  Google Scholar 

  • Nargund RP, Strack AM, Fong TM (2006) Melanocortin-4 receptor (MC4R) agonists for the treatment of obesity. J Med Chem 49(14):4035–4043, PMID: 16821763

    CAS  PubMed  Google Scholar 

  • Slominski A, Wortsman J (2000) Neuroendocrinology of the skin. Endocr Rev 21(5):457–487

    CAS  PubMed  Google Scholar 

Skin Darkening in Whole Amphibia

  • Hunt G (1995) Melanocyte-stimulating hormone: a regulator of human melanocyte physiology. Pathobiology 63:12–21

    CAS  PubMed  Google Scholar 

  • Inouye K, Otsuka H (1987) ACTH: structure-function relationship. In: Li CH (ed) Hormonal proteins and peptides, vol XIII. Academic, New York, pp 1–29

    Google Scholar 

  • Landgrebe FW, Waring H (1950) Biological assay of the melanophore expanding hormone from the pituitary. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 141–171

    Google Scholar 

  • Landgrebe FW, Waring H (1962) Melanophore-expanding activity. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 517–558

    Google Scholar 

  • Sandow J, Geiger R, Vogel HG (1977) Pharmacological effects of a short chain ACTH-analogue. Naunyn Schmiedebergs Arch Pharmacol 297(Suppl II):162

    Google Scholar 

Assay in Isolated Amphibian Skin

  • Bagutti C, Eberle AN (1993) Synthesis and biological properties of a biotinylated derivative of ACTH1–17 for MSH receptor studies. J Recept Res 13:229–244

    CAS  PubMed  Google Scholar 

  • Celis ME, Taleisnik S, Walter R (1971) Regulation of formation and proposed structure of the factor inhibiting the release of melanocyte-stimulating hormone. Proc Natl Acad Sci U S A 68:1428–1433

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kastin AJ, Viosca A, Schally AV (1969) Assay of mammalian MSH release-regulating factors. In: Proceedings of the workshop conference: hypophysiotropic hormones of the hypothalamus: assay and chemistry. Tucson

    Google Scholar 

  • Landgrebe FW, Waring H (1950) Biological assay of the melanophore expanding hormone from the pituitary. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 141–171

    Google Scholar 

  • Landgrebe FW, Waring H (1962) Melanophore-expanding activity. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 517–558

    Google Scholar 

  • Sahm UG, Olivier GWJ, Branch SK, Moss SH, Pouton CW (1993) Influence of α-MSH terminal amino acids on binding affinity and biological activity in melanoma cells. Peptides 15:441–446

    Google Scholar 

  • Sahm UG, Olivier GWJ, Branch SK, Moss SH, Pouton CW (1994) Synthesis and biological evaluation of α-MSH analogues substituted with alanine. Peptides 15:1297–1302

    CAS  PubMed  Google Scholar 

  • Sahm UG, Olivier GWJ, Branch SK, Moss SH, Pouton CW (1996) Receptor binding affinities and biological activities of linear and cyclic melanocortins in B16 murine melanoma cells expressing the native MC1 receptor. J Pharm Pharmacol 48:197–200

    CAS  PubMed  Google Scholar 

  • Schuler W, Schär B, Desaulles P (1963) Zur Pharmakologie eines ACTH-wirksamen, vollsynthetischen Polypeptids, des b1-24-Corticotropins, Ciba 30920-Ba, Synacthen. Schweiz Med Wschr 93:1027–1030

    CAS  PubMed  Google Scholar 

  • Shizume K, Lerner AB, Fitzpatrick TB (1954) In vitro bioassay for the melanocyte stimulating hormone. Endocrinology 54:553–560

    CAS  PubMed  Google Scholar 

  • Siegrist W, Eberle AN (1986) In situ melanin assay for MSH using mouse B16 melanoma cells in culture. Anal Biochem 159:191–197

    CAS  PubMed  Google Scholar 

  • Trendelenburg P (1926) Weitere Versuche über den Gehalt des Liquor cerebrospinalis an wirksamen Substanzen des Hypophysenhinterlappens. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 114:255–261

    Google Scholar 

  • Vogel HG (1965) Evaluation of synthetic peptides with ACTH-Activity. Acta Endocrinol Suppl 100:34

    Google Scholar 

  • Vogel HG (1969) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. A: Vergleich mit dem III Int Standard für Corticotropin. Arzneimittelforschung 19:20–24

    CAS  PubMed  Google Scholar 

Binding to the Melanocortin Receptor

  • Adan RAH, Cone RD, Burbach JPH, Gispen WH (1994) Differential effects of melanocortin peptides on neural melanocortin receptors. Mol Pharmacol 46:1182–1190

    CAS  PubMed  Google Scholar 

  • Bagutti C, Stolz B, Albert R, Bruns C, Pless J, Eberle AN (1993) [111In]DTPA-labeled analogues of α-MSH for the detection of MSH receptors in vitro and in vivo. Ann N Y Acad Sci 680:445–447

    CAS  PubMed  Google Scholar 

  • Chhajlani V, Wikberg JES (1992) Molecular cloning of a novel human melanocyte stimulating hormone receptor cDNA. FEBS Lett 309:417–420

    CAS  PubMed  Google Scholar 

  • Chhajlani V, Muceniece R, Wikberg JES (1993) Molecular cloning of a novel human melanocortin receptor. Biochem Biophys Res Commun 195:866–873

    CAS  PubMed  Google Scholar 

  • Cone RD, Lu D, Koppula S, Vage DI, Klungland H, Boston B, Chen W, Orth DN, Pouton C, Kesterson RA (1996) The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res 51:287–317

    CAS  PubMed  Google Scholar 

  • Desarnaud F, Labbe O, Eggerickx D, Vassart G, Parmentier M (1994) Molecular cloning, functional expression and pharmacological characterization of a mouse melanocortin receptor gene. Biochem J 299:367–373

    PubMed Central  CAS  PubMed  Google Scholar 

  • Erskine-Grout ME, Olivier GWJ, Lucas P, Sahm UG, Branch SK, Moss SH, Notarianni LJ, Pouton CW (1996) Melanocortin probes for the melanoma MC1 receptor: synthesis, receptor binding and biological activity. Melanoma Res 6:89–94

    CAS  PubMed  Google Scholar 

  • Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD (1997) Role of melanocortin neurons in feeding and agouti obesity syndrome. Nature 386:165–168

    Google Scholar 

  • Fathi Z, Iben LG, Parker RM (1995) Cloning, expression, and tissue distribution of a fifth melanocortin receptor subtype. Neurochem Res 20:107–113

    CAS  PubMed  Google Scholar 

  • Gantz I, Konda Y, Tashiro T, Shimoto Y, Miwa H, Munzert G, Watson SJ, Del Valle J, Yamada T (1993a) Molecular cloning of a novel melanocortin receptor. J Biol Chem 268:8246–8250

    CAS  PubMed  Google Scholar 

  • Gantz I, Miwa H, Konda Y, Shimoto Y, Tashiro T, Watson SJ, Del Valle J, Yamada T (1993b) Molecular cloning, expression, and gene location of a fourth melanocortin receptor. J Biol Chem 268:15174–15179

    CAS  PubMed  Google Scholar 

  • Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier RL, Gu W, Hesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141

    CAS  PubMed  Google Scholar 

  • Kask A, Rago L, Mutulis F, Pahkla R, Wikberg JES, Schioth HB (1998a) Selective antagonist for the melanocortin-4 receptor (HS014) increases food uptake in free-feeding rats. Biochem Biophys Res Commun 245:90–93

    CAS  PubMed  Google Scholar 

  • Kask A, Mutulis F, Muceniece R, Pahkla R, Mutule I, Wikberg JS, Rago L, Schioth HB (1998b) Discovery of a novel superpotent and selective melanocortin-4 receptor antagonist (HS024): evaluation in vitro and in vivo. Endocrinology 139:5006–5014

    CAS  PubMed  Google Scholar 

  • Labbé O, Desarnaud F, Eggerickx D, Vassart G, Parmentier M (1994) Molecular cloning of a mouse melanocortin 5 receptor gene widely expressed in peripheral tissues. Biochemistry 93:4543–4549

    Google Scholar 

  • Peng PJ, Sahm UG, Doherty RVM, Kinsman RG, Moss SH, Pouton CW (1997) Binding and biological activity of C-terminally modified melanocortin peptides: a comparison of their actions at rodent MC1 and MC3 receptors. Peptides 18:1001–1008

    CAS  PubMed  Google Scholar 

  • Quillan JM, Sadée W (1996) Structure-based search for peptide ligands that cross-react with melanocortin receptors. Pharm Res 13:1624–1630

    CAS  PubMed  Google Scholar 

  • Sahm UG, Qarawi MA, Olivier GWJ, Ahmed AHR, Branch SK, Moss SH, Pouton CW (1994) The melanocortin (MC3) receptor from rat hypothalamus: photoaffinity labelling and binding of alanine-substituted analogues. FEBS Lett 350:29–32

    CAS  PubMed  Google Scholar 

  • Sahm UG, Olivier GWJ, Branch SK, Moss SH, Pouton CW (1996) Receptor binding affinities and biological activities of linear and cyclic melanocortins in B16 murine melanoma cells expressing the native MC1 receptor. J Pharm Pharmacol 48:197–200

    CAS  PubMed  Google Scholar 

  • Schiöth HB, Muceniece R, Wikberg JES, Chhajlani V (1995) Characterization of melanocortin receptor subtypes by radioligand binding analysis. Eur J Pharmacol 288:311–317

    PubMed  Google Scholar 

  • Schiöth HB, Chhajlani V, Muceniece R, Klusa V, Wikberg JES (1996a) Major pharmacological distinction of the ACTH receptor from other melanocortin receptors. Life Sci 59:797–801

    PubMed  Google Scholar 

  • Schiöth HB, Muceniece R, Wikberg JES (1996b) Characterization of the melanocortin 4 receptor by radioligand binding. Pharmacol Toxicol 79:161–165

    PubMed  Google Scholar 

  • Schiöth HB, Muceniece R, Larsson M, Mutulis F, Szardenings M, Prusis P, Lindeberg G, Wikberg JES (1997a) Binding of cyclic and linear MSH core peptides to the melanocortin receptor subtypes. Eur J Pharmacol 319:369–373

    PubMed  Google Scholar 

  • Schiöth HB, Müceniece R, Mutulis F, Prusis P, Lindeberg G, Sharma SD, Hruby VJ, Wikberg JE (1997b) Selectivity of cyclic [d-Nal7] and d-Phe7] substituted MSH analogues for the melanocortin receptor subtypes. Peptides 18:1009–1013

    PubMed  Google Scholar 

  • Schiöth HB, Mutulis F, Muceniece R, Prusis P, Wikberg JES (1998a) Selective properties of C- and N-terminals and core residues of the melanocyte-stimulating hormone on the binding to the human melanocortin receptor subtypes. Eur J Pharmacol 349:359–366

    PubMed  Google Scholar 

  • Schiöth HB, Mutulis F, Muceniece R, Prusis P, Wikberg JES (1998b) Discovery of novel melanocortin4 receptor selective MSH analogues. Br J Pharmacol 124:75–82

    PubMed Central  PubMed  Google Scholar 

  • Skuladottir GV, Jonsson L, Skarphedinsson JO, Mutulis F, Muceniece R, Raine A, Mutule I, Helgason J, Prusis J, Wikberg JES, Schioth HB (1999) Long term orexigenic effect of a novel melanocortin-4 receptor selective antagonist. Br J Pharmacol 126:27–34

    PubMed Central  CAS  PubMed  Google Scholar 

  • Strand FL (1999) New vistas for melanocortins. finally an explanation for their pleiotropic function. In: Sandman CA, Chronwall BM, Strand FL, Flynn FW, Beckwith B, Nachman RJ (eds) Neuropeptides. Structure and function in biology and behavior. Ann N Y Acad Sci 897:1–16

    Google Scholar 

Melanocortin Peptides

  • Adan RA, van Dijk G (2006) Melanocortin receptors as drug targets for disorders of energy balance. CNS Neurol Disord Drug Targets 5(3):251–261

    CAS  PubMed  Google Scholar 

  • Adan RA, Tiesjema B, Hillebrand JJ, la Fleur SE, Kas MJ, de Krom M (2006) The MC4 receptor and control of appetite. Br J Pharmacol 149(7):815–827

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bjorbaek C, Hollenberg AN (2002) Leptin and melanocortin signaling in the hypothalamus. Vitam Horm 65:281–311

    CAS  PubMed  Google Scholar 

  • Cai M, Mayorov AV, Ying J, Stankova M, Trivedi D, Cabello C, Hruby VJ (2005) Design of novel melanotropin agonists and antagonists with high potency and selectivity for human melanocortin receptors. Peptides 26(8):1481–1485

    CAS  PubMed  Google Scholar 

  • Cone RD (2006) Studies on the physiological functions of the melanocortin system. Endocr Rev 27(7):736–749

    CAS  PubMed  Google Scholar 

  • Deboer MD, Marks DL (2006a) Cachexia: lessons from melanocortin antagonism. Trends Endocrinol Metab 17(5):199–204

    CAS  PubMed  Google Scholar 

  • DeBoer MD, Marks DL (2006b) Therapy insight: use of melanocortin antagonists in the treatment of cachexia in chronic disease. Nat Clin Pract Endocrinol Metab 2(8):459–466

    CAS  PubMed  Google Scholar 

  • Della-Fera MA, Baile CA (2005) Roles for melanocortins and leptin in adipose tissue apoptosis and fat deposition. Peptides 26(10):1782–1787

    CAS  PubMed  Google Scholar 

  • Eves PC, MacNeil S, Haycock JW (2006) alpha-Melanocyte stimulating hormone, inflammation and human melanoma. Peptides 27(2):444–452

    CAS  PubMed  Google Scholar 

  • Fan W, Voss-Andreae A, Cao WH, Morrison SF (2005) Regulation of thermogenesis by the central melanocortin system. Peptides 26(10):1800–1813

    CAS  PubMed  Google Scholar 

  • Gantz I, Fong TM (2003) The melanocortin system. Am J Physiol 284(3):E468–E474

    CAS  Google Scholar 

  • Garcia-Borron JC, Sanchez-Laorden BL, Jimenez-Cervantes C (2005) Melanocortin-1 receptor structure and functional regulation. Pigment Cell Res 18(6):393–410

    CAS  PubMed  Google Scholar 

  • Getting SJ (2006) Targeting melanocortin receptors as potential novel therapeutics. Pharmacol Ther 111(1):1–15

    CAS  PubMed  Google Scholar 

  • Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445(7130):843–850

    CAS  PubMed  Google Scholar 

  • Maaser C, Kannengiesser K, Kucharzik T (2006) Role of the melanocortin system in inflammation. Ann N Y Acad Sci 1072:123–134

    CAS  PubMed  Google Scholar 

  • Martin NM, Smith KL, Bloom SR, Small CJ (2006) Interactions between the melanocortin system and the hypothalamo-pituitary-thyroid axis. Peptides 27(2):333–339

    CAS  PubMed  Google Scholar 

  • Myers MG Jr (2004) Leptin receptor signaling and the regulation of mammalian physiology. Recent Prog Horm Res 59:287–304

    CAS  PubMed  Google Scholar 

  • Padwal RS, Majumdar SR (2007) Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet 369(9555):71–77

    CAS  PubMed  Google Scholar 

  • Todorovic A, Haskell-Luevano C (2005) A review of melanocortin receptor small molecule ligands. Peptides 26(10):2026–2036

    CAS  PubMed  Google Scholar 

Relaxin

  • Bani D (1997) Relaxin: a pleiotropic hormone. Gen Pharmacol 28:13–22

    CAS  PubMed  Google Scholar 

  • Büllesbach EE, Schwabe C (1993) Mouse relaxin: synthesis and biological activity of the first relaxin with an unusual cross-linking pattern. Biochem Biophys Res Commun 196:311–319

    PubMed  Google Scholar 

  • Canova-Davis E, Baldonado IP, Teshima GM (1990) Characterization of chemically synthesized human relaxin by high-performance liquid chromatography. J Chromatogr 508:81–96

    CAS  PubMed  Google Scholar 

  • Coulson CC, Thorp JM Jr, Mayer DC, Cefalo RC (1996) Central hemodynamic effects of recombinant human relaxin in the isolated, perfused rat heart model. Obstet Gynecol 87:610–612

    CAS  PubMed  Google Scholar 

  • Evans BA, John M, Fowler KJ, Summers RJ, Crink M, Shine J, Tregear GW (1993) The mouse relaxin gene: nucleotide sequence and expression. J Mol Endocrinol 10:15–23

    CAS  PubMed  Google Scholar 

  • Goldsmith LT, Weiss G, Steinetz BG (1995) Relaxin and its role in pregnancy. Endocrinol Metab Clin North Am 24:171–186

    CAS  PubMed  Google Scholar 

  • Jockenhövel F, Peterson MA, Johnston PD, Swerdloff RS (1991) Directly iodinated rat relaxin as a tracer for use in radioimmunoassays. Eur J Clin Chem Clin Biochem 29:71–75

    PubMed  Google Scholar 

  • Klonisch T, Hombach-Klonisch S, Froehlich C, Kauffold J, Steger K, Steinetz BG, Fischer B (1999) Canine preprorelaxin: nucleic acid sequence and localization within the canine placenta. Biol Reprod 60:551–557

    CAS  PubMed  Google Scholar 

  • Layden SS, Tregear GW (1996) Purification and characterization of porcine prorelaxin. J Biochem Biophys Methods 31:69–80

    CAS  PubMed  Google Scholar 

  • Lucas C, Bald LN, Martin MC, Jaffe RB, Drolet DW, Mora-Worms M, Bennett G, Chen AB, Johnston PD (1989) An enzyme-linked immunoassay to study human relaxin in human pregnancy and in pregnant rhesus monkeys. J Endocrinol 120:449–457

    CAS  PubMed  Google Scholar 

  • Pusch W, Balvers M, Ivell R (1996) Molecular cloning and expression of the relaxin-like factor from the mouse testis. Endocrinology 137:3009–3013

    CAS  PubMed  Google Scholar 

  • Schwabe C, Büllesbach EE (1994) Relaxin: structures, functions, and nonevolution. FASEB J 8:1152–1160

    CAS  PubMed  Google Scholar 

  • Sherwood OD (1979) Relaxin. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 785–886

    Google Scholar 

  • Steinetz BG, Büllesbach EE, Godsmith LT, Schwabe C, Lust G (1996) Use of synthetic canine relaxin to develop a rapid homologous radioimmunoassay. Biol Reprod 54:1252–1260

    CAS  PubMed  Google Scholar 

  • Taylor MJ, Clark CL (1989) Analysis of relaxin release by cultured porcine luteal cells using a reverse hemolytic plaque assay: effects of arachidonic acid, cyclo- and lipoxygenase blockers, phospholipase A2, and melittin. Endocrinology 125:1389–1397

    CAS  PubMed  Google Scholar 

  • Taylor MJ, Clark CL (1992a) Basic fibroblast growth factor inhibits basal and stimulated relaxin secretion by cultured luteal cells: analysis by reverse hemolytic plaque assay. Endocrinology 130:1951–1956

    CAS  PubMed  Google Scholar 

  • Taylor MJ, Clark CL (1992b) Discordant secretion of relaxin by individual porcine large luteal cells: quantitative analysis by a reverse hemolytic plaque assay. J Endocrinol 134:77–83

    CAS  PubMed  Google Scholar 

  • Wade JD, Layden SS, Lambert PF, Kakouris H, Tregear GW (1994) Primate relaxin: synthesis of gorilla and rhesus monkey relaxins. J Protein Chem 13:315–321

    CAS  PubMed  Google Scholar 

  • Zarreh-Hoshyari-Khah MR, Einspanier A, Ivell R (1999) Differential splicing and expression of the relaxin-like factor gene in reproductive tissues of the marmoset monkey (Callithrix jacchus). Biol Reprod 60:445–453

    CAS  PubMed  Google Scholar 

Relaxin Bioassay by Pubic Symphysis Method in Guinea Pigs

  • Hisaw FL (1929) The corpus luteum hormone. I. Experimental relaxation of the pelvic ligaments of the guinea pig. Physiol Zool 2:59–79

    CAS  Google Scholar 

  • Kroc RL, Steinetz BG, Beach VL, Stasilli NR (1956) Bioassay of relaxin extracts in guinea pigs and mice, using a reference standard. J Clin Endocrinol Metab 16:966

    Google Scholar 

  • Kroc RL, Steinetz BG, Beach VL (1959) The effects of estrogens, progestagens, and relaxin in pregnant and nonpregnant laboratory rodents. Ann N Y Acad Sci 75:942–980

    CAS  PubMed  Google Scholar 

  • Steinetz BG, Lust G (1994) Inhibition of relaxin-induced pubic symphyseal ‘relaxation’ in guinea pigs by glycosaminoglycan polysulfates and pentosan polysulfate. Agents Actions 42:74–80

    CAS  PubMed  Google Scholar 

  • Steinetz BG, Beach VL, Kroc RL (1969a) Relaxin. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 559–589

    Google Scholar 

  • Steinetz BG, Beach VL, Kroc RL (1969b) Bioassay of relaxin. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 481–513

    Google Scholar 

Relaxin Bioassay in Mice

  • Bullesbach EE, Schwabe C (1996) The chemical synthesis of rat relaxin and the unexpectedly high potency of the synthetic hormone in the mouse. Eur J Biochem 241:533–537

    CAS  PubMed  Google Scholar 

  • Dorfman RI, Marsters RW, Dinerstein J (1953) Bioassay of relaxin. Endocrinology 52:204–214

    CAS  PubMed  Google Scholar 

  • Hall K (1948) Further notes on the action of oestrone and relaxin on the pelvis of the spayed mouse, including a single-dose test of potency of relaxin. J Endocrinol 5:314–321

    CAS  PubMed  Google Scholar 

  • Kroc RL, Steinetz BG, Beach VL (1959) The effects of estrogens, progestagens, and relaxin in pregnant and nonpregnant laboratory rodents. Ann N Y Acad Sci 75:942–980

    CAS  PubMed  Google Scholar 

  • Samuel CS, Coghlan JP, Bateman JF (1998) Effects of relaxin, pregnancy and parturition on collagen metabolism in the rat pubic symphysis. J Endocrinol 159:125–1178

    Google Scholar 

  • Steinetz BG, Beach VL, Kroc RL, Stasilli NR, Nussbaum RE, Nemith PJ, Dunn RK (1960) Bioassay of relaxin using a reference standard: a simple and reliable method utilizing direct measurement of interpubic ligament formation in mice. Endocrinology 67:102–115

    CAS  PubMed  Google Scholar 

  • Steinetz BG, Beach VL, Kroc RL (1969a) Bioassay of relaxin. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 481–513

    Google Scholar 

  • Steinetz BG, Beach VL, Kroc RL (1969b) Relaxin. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 559–589

    Google Scholar 

Inhibition of Uterine Motility

  • Del Angel Meza AR, Beas-Zárate C, Alfaro FL, Morales-Villagran A (1991) A simple biological assay for relaxin measurement. Comp Biochem Physiol 99(C):35–39

    Google Scholar 

  • Downing SJ, Hollingsworth M (1993) Action of relaxin on uterine contractions. A review. J Reprod Fertil 99:275–282

    CAS  PubMed  Google Scholar 

  • Downing SJ, Sherwood OD (1985) The physiological role of relaxin in the pregnant rat. III The influence of relaxin on cervical distensibility. Endocrinology 116:1215–1220

    CAS  PubMed  Google Scholar 

  • Felton LC, Frieden EH, Bryant HH (1953) The effects of ovarian extracts upon activity of the guinea pig uterus in situ. J Pharmacol Exp Ther 107:160–164

    CAS  PubMed  Google Scholar 

  • Porter DG, Downing SJ, Bradshaw JMC (1979) Relaxin inhibits spontaneous and prostaglandin-driven myometrial activity in anaesthetized rats. J Endocrinol 83:183–192

    CAS  PubMed  Google Scholar 

  • Steinetz BG, Beach VL, Kroc RL (1969) Bioassay of relaxin. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 481–513

    Google Scholar 

  • Vu AL, Green CB, Roby KF, Soares MJ, Fei DTW, Chen AB, Kwok SCM (1993) Recombinant porcine prorelaxin produced in Chinese hamster ovary cells is biologically active. Life Sci 52:1055–1061

    CAS  PubMed  Google Scholar 

  • Wiqvist N, Paul KG (1958) Inhibition of the spontaneous uterine motility in vitro as a bioassay of relaxin. Acta Endocrinol 31:135–146

    Google Scholar 

Relaxin Assay by Interstitial Collagenase Activity in Cultured Uterine Cervical Cells

  • Dean DD, Woessner JF Jr (1985) A sensitive specific assay for tissue collagenase using telopeptide-free 3H-acetylated collagen. Anal Biochem 148:174–181

    CAS  PubMed  Google Scholar 

  • Mushayandebvu TI, Rajabi MR (1995) Relaxin stimulates interstitial collagenase activity in cultured uterine cervical cells from nonpregnant and pregnant but not immature guinea pigs; estradiol-17β restores relaxin’s effect in immature cervical cells. Biol Reprod 53:1030–1037

    CAS  PubMed  Google Scholar 

  • Rajabi MR, Dean DD, Beydoun SN, Woessner JF Jr (1988) Elevated tissue levels of collagenase during dilatation of uterine cervix in human parturition. Am J Obstet Gynecol 159:971–976

    CAS  PubMed  Google Scholar 

  • Rajabi MR, Solomon S, Poole AR (1991) Biochemical evidence of collagenase-mediated collagenolysis as a mechanism of cervical dilatation in the guinea pig at parturition. Biol Reprod 45:764–772

    CAS  PubMed  Google Scholar 

Relaxin Receptor Binding

  • Bryant-Greenwood GD, Greenwood FC, Mercado-Simmen R, Weiss T, Yamamoto S, Ueno M, Arakaki R (1982) Relaxin secretion and relaxin receptors: the linkages. Ann N Y Acad Sci 380:100–110

    CAS  PubMed  Google Scholar 

  • Büllesbach EE, Schwabe C (1988) On the receptor binding site of relaxin. Int J Pept Protein Res 32:361–367

    PubMed  Google Scholar 

  • Büllesbach EE, Yang S, Schwabe C (1992) The receptor binding site of human relaxin II. A dual prong-binding mechanism. J Biol Chem 267:22957–22960

    PubMed  Google Scholar 

  • Mercado-Simmen RC, Bryant-Greenwood GD, Greenwood FC (1982a) Relaxin receptor in the rat myometrium: regulation by estrogen and relaxin. Endocrinology 110:220–226

    CAS  PubMed  Google Scholar 

  • Mercado-Simmen RC, Goodwin B, Ueno MS (1982b) Relaxin receptors in the myometrium and cervix of pig. Biol Reprod 26:120–128

    CAS  PubMed  Google Scholar 

  • Min G, Sherwood OD (1996) Identification of specific relaxin-binding cells in the cervix, mammary glands, nipples, small intestine, and skin of pregnant pigs. Biol Reprod 55:1243–1252

    CAS  PubMed  Google Scholar 

  • Osheroff PL, Phillips HS (1991) Autoradiographic localization of relaxin binding sites in rat brain. Proc Natl Acad Sci U S A 88:6413–6417

    PubMed Central  CAS  PubMed  Google Scholar 

  • Segaloff A, Gabbard RB (1982) Preparation of fluoresceinylthiocarbamyl relaxin for the demonstration of relaxin receptors. Ann N Y Acad Sci 380:198–199

    CAS  PubMed  Google Scholar 

  • Yang S, Rembiesa B, Büllesbach EE, Schwabe C (1992) Relaxin receptors in mice: demonstration of ligand binding in symphyseal tissues and uterine membrane fragments. Endocrinology 130:179–185

    CAS  PubMed  Google Scholar 

Calcitonin Gene-Related Peptide

  • Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature (Lond) 289:240–244

    Google Scholar 

  • Amara SG, Arriza JI, Swanson LW, Evans RM, Rosenfeld MG (1985) Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science 229:1094–1097

    CAS  PubMed  Google Scholar 

  • Barakat A, Rosselin G, Marie J-C (1993) Characterization of specific calcitonin gene-related peptide receptors present in hamster pancreatic β-cells. Biosci Rep 13:221–231

    CAS  PubMed  Google Scholar 

  • Born W, Fischer A (1993) Calcitonin gene products: molecular biology, chemistry, and actions. Handb Exp Pharmacol 107:569–616

    CAS  Google Scholar 

  • Brain SD, Hughes SR, Cambridge H, O’Driscoll G (1993) The contribution of calcitonin gene-related peptide (CGRP) to neurogenic vasodilator responses. Agents Actions 38(Special Issue I):C19–C21

    CAS  PubMed  Google Scholar 

  • Cadieux A, Monast NP, Pomerleau F, Fournier A, Lanoue C (1999) Bronchoprotector properties of calcitonin gene-related peptide in guinea pig and human airways: effect of pulmonary inflammation. Am J Respir Crit Care Med 159:235–243

    CAS  PubMed  Google Scholar 

  • Castellucci A, Maggi CA, Evangelista S (1993) Calcitonin gene-related peptide (CGRP)1 receptor mediates vasodilation in the rat isolated and perfused kidney. Life Sci 53:PL153–PL158

    CAS  PubMed  Google Scholar 

  • Champion HC, Akers DL, Santiago JA, Lambert DG, McNamara DB, Kadowitz PJ (1997) Analysis of the responses to human synthetic adrenomedullin and calcitonin gene-related peptides in the hindlimb vascular bed of the cat. Mol Cell Biochem 176:5–11

    CAS  PubMed  Google Scholar 

  • Chatzipantelli K, Goldberg RB, Howard GA, Roos BA (1996) Calcitonin gene-related peptide is an adipose-tissue neuropeptide with lipolytic actions. Endocrinol Metab 3:235–242

    Google Scholar 

  • Clementi G, Amico-Roxas M, Caruso A, Cutuli VMC, Maugeri S, Prato A (1993) Protective effects of calcitonin gene-related peptide in different experimental models of gastric ulcers. Eur J Pharmacol 238:101–104

    CAS  PubMed  Google Scholar 

  • Clementi G, Caruso A, Prato A, De Bernardis E, Fiore CE, Amico-Roxas M (1994a) A role of nitric oxide in the anti-ulcer activity of calcitonin gene-related peptide. Eur J Pharmacol 256:R7–R8

    CAS  PubMed  Google Scholar 

  • Clementi G, Amico-Roxas M, Caruso A, Cutuli VMC, Prato A, Maugeri S, de Bernardis E, Scapagnini U (1994b) Effects of CGRP in different models of mouse ear inflammation. Life Sci 54:119–124

    Google Scholar 

  • Dumont Y, Fournier A, St-Pierre S, Quirion R (1997) A potent and selective CGRP2 agonist, [Cys(Et)2.7]hCGRPα: comparison in prototypical CGRP1 and CGRP2 in vitro bioassays. Can J Physiol Pharmacol 75:671–676

    CAS  PubMed  Google Scholar 

  • Evangelista S, Renzi D (1997) A protective role for calcitonin gene-related peptide in water-immersion stress-induced gastric ulcers in rats. Pharmacol Res 35:347–350

    CAS  PubMed  Google Scholar 

  • Fleming NW, Lewis BK, White DA, Dretchen KL (1993) Acute effects of calcitonin gene-related peptide on the mechanical and electrical responses of the rat hemidiaphragm. J Pharmacol Exp Ther 265:1199–1204

    CAS  PubMed  Google Scholar 

  • Howitt SG, Poyner DR (1997) The selectivity and structural determinants of peptide antagonists at the CGRP receptor of rat, L6 myocytes. Br J Pharmacol 121:1000–1004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kitamura K, Kanagawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Ato T (1993) Adrenomedullin, a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 192:553–560

    CAS  PubMed  Google Scholar 

  • Kurz V, von Gaudecker B, Kranz A, Krisch B, Mentlein R (1995) Calcitonin gene-related peptide and its receptor in the thymus. Peptides 16:1497–1503

    CAS  PubMed  Google Scholar 

  • Leighton B, Cooper GJS (1988) Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle. Nature 335:632–634

    CAS  PubMed  Google Scholar 

  • Li J, Matsuura JE, Waugh DJJ, Adrian TE, Abel PW, Manning MC, Smith DD (1997) Structure–activity studies on position 14 of human α-calcitonin gene-related peptide. J Med Chem 40:3071–3076

    CAS  PubMed  Google Scholar 

  • Lutz TA, Rossi R, Althaus J, Del Prete E, Scharrer E (1997) Evidence for a physiological role of central calcitonin gene-related peptide (CGRP) receptors in the control of food intake in rats. Neurosci Lett 230:159–162

    CAS  PubMed  Google Scholar 

  • Maggi CA, Giuliani S, Santicioli P (1995) CGRP inhibition of electromechanical coupling in the guinea-pig isolated rat pelvis. Naunyn Schmiedebergs Arch Pharmacol 352:529–537

    CAS  PubMed  Google Scholar 

  • McMurdo L, Lockhart JC, Ferrell WR (1997) Modulation of synovial blood flow by the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP8–37. Br J Pharmacol 121:1075–1080

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meini S, Santicioli P, Maggi CA (1995) Propagation of impulses in the guinea-pig ureter and its blockade by calcitonin gene-related peptide (CGRP). Naunyn Schmiedebergs Arch Pharmacol 351:79–86

    CAS  PubMed  Google Scholar 

  • Menard DP, Van Rossum D, Kar S, St Pierre S, Sutak M, Jhamandas K, Quirion R (1996) A calcitonin gene-related peptide antagonists prevents the development of tolerance to spinal morphine analgesia. J Neurosci 16:2342–2351

    CAS  PubMed  Google Scholar 

  • Merchant NB, Dempsey DT, Grabowski MW, Rizzo M, Ritchie WP Jr (1994) Capsaicin-induced gastric mucosal hyperemia and protection: the role of calcitonin gene-related peptide. Surgery 116:419–425

    CAS  PubMed  Google Scholar 

  • Morley JE, Farr SA, Flood JF (1996) Peripherally administered calcitonin gene-related peptide decreases food intake in mice. Peptides 17:511–516

    CAS  PubMed  Google Scholar 

  • Morris HR, Panico M, Etienne T, Tippins J, Girgis SI, MacIntyre I (1984) Isolation and characterization of human calcitonin gene-related peptide. Nature 308:746–748

    CAS  PubMed  Google Scholar 

  • Nuki C, Kawasaki H, Takasaki K, Wada A (1994) Structure-activity study of chicken calcitonin gene-related peptide (CGRP) on vasorelaxation in rat mesenteric resistance vessels. Jpn J Pharmacol 65(2):99–105

    CAS  PubMed  Google Scholar 

  • Poyner DR (1992) Calcitonin-gene-related peptide: multiple actions, multiple receptors. Pharmacol Ther 56:23–51

    CAS  PubMed  Google Scholar 

  • Poyner DR (1997) Molecular pharmacology of receptors for calcitonin-gene-related peptide, amylin and adrenomedullin. Biochem Soc Trans 25:1032–1036

    CAS  PubMed  Google Scholar 

  • Poyner DR, Taylor GM, Tomlinson AE, Richardson AG, Smith DM (1999) Characterization of receptors for calcitonin gene-related peptide and adrenomedullin on the guinea pig vas deferens. Br J Pharmacol 126:1276–1282

    PubMed Central  CAS  PubMed  Google Scholar 

  • Preibisz JJ (1993) Calcitonin gene-related peptide and regulation of human cardiovascular homeostasis. Am J Hypertens 6:434–450

    CAS  PubMed  Google Scholar 

  • Raddino R, Pela G, Manca C, Barbagallo M, D’Aloia A, Passeri M, Visioli O (1997) Mechanism of action of human calcitonin gene-related peptide in rabbit heart and human mammary arteries. J Cardiovasc Pharmacol 29:463–470

    CAS  PubMed  Google Scholar 

  • Rink TJ, Beaumont K, Koda J, Young AA (1993) Structure and biology of amylin. Trends Pharmacol Sci 14:113–118

    CAS  PubMed  Google Scholar 

  • Sakai K, Saito K, Akima M (1998) Synergistic effect of calcitonin gene-related peptide on adenosine-induced vasodepression in rats. Eur J Pharmacol 344:153–159

    CAS  PubMed  Google Scholar 

  • Schaible H-G (1996) On the role of tachykinins and calcitonin gene-related peptide in the spinal mechanisms of nociception and in the induction and maintenance of inflammation-evoked hyperexcitability in spinal cord neurons (with special reference to nociception in joints). In: Kumazawa T, Kruger L, Mizumura K (eds) Progress in brain research, vol 113. Elsevier Science, Amsterdam, pp 423–441

    Google Scholar 

  • Smith DD, Li J, Wang Q, Murphy RF, Adrian TE, Elias Y, Bockman CS, Abel PW (1993) Synthesis and biological activity of C-terminally truncated fragments of human α-calcitonin gene-related peptide. J Med Chem 36:2536–2541

    CAS  PubMed  Google Scholar 

  • Tomobe YI, Ishikawa T, Goto K (1998) Enhanced endothelium-independent vasodilator response to calcitonin gene-related peptide in hypertensive rats. Eur J Pharmacol 35:351–355

    Google Scholar 

  • Van Rossum D, Hanisch UK, Quirion R (1997) Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 21:649–678

    PubMed  Google Scholar 

  • Wang F, Millet I, Bottomly K, Vignery A (1992) Calcitonin gene-related peptide inhibits interleukin 2 production by murine T lymphocytes. J Biol Chem 267:21052–21057

    CAS  PubMed  Google Scholar 

  • Wimalawansa SJ (1996) Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev 17:533–585

    CAS  PubMed  Google Scholar 

  • Wisskirchen FM, Burt RP, Marshall I (1998) Pharmacological characterization of CGRP receptors of the rat pulmonary artery and inhibition of twitch responses f the rat deferens. Br J Pharmacol 123:1673–1683

    PubMed Central  CAS  PubMed  Google Scholar 

Receptor Binding of CGRP

  • Aiyar N, Rand K, Elshourbagy NA, Zeng Z, Adamou JE, Bergma DJ, Li Y (1996) A cDNA encoding the calcitonin gene-related peptide type 1 receptor. J Biol Chem 271:11325–11329

    CAS  PubMed  Google Scholar 

  • Born W, Fischer JA (1993) Calcitonin gene products: molecular biology, chemistry, and actions. Handb Exp Pharmacol 107:569–616c

    Google Scholar 

  • Dennis T, Fournier A, St. Pierre S, Quirion R (1989) Structure-activity profile of calcitonin gene-related peptide in peripheral and brain tissues. Evidence for receptor multiplicity. J Pharmacol Exp Ther 251:718–725

    CAS  PubMed  Google Scholar 

  • Dennis T, Fournier A, Guard S, St. Pierre S, Quirion R (1991) Calcitonin gene-related peptide (hCGRP alpha) binding sites in nucleus accumbens. Atypical structural requirements and marked phylogenetic differences. Brain Res 539:59–66

    CAS  PubMed  Google Scholar 

  • Juaneda C, Dumont Y, Quirion R (2000) The molecular pharmacology of CGRP and related peptide receptor subtypes. Trends Pharmacol Sci 21:432–438

    CAS  PubMed  Google Scholar 

  • Muff R, Stangl D, Born W, Fischer JA (1992) Comparison of a calcitonin gene-related peptide receptor in a human neuroblastoma cell line (SK-N-MC) and a calcitonin receptor in a human breast carcinoma cell line (T47D). Ann N Y Acad Sci 657:106–116

    CAS  PubMed  Google Scholar 

  • Muff R, Born W, Fischer JA (1995) Receptors for calcitonin, calcitonin gene related peptide, amylin, and adrenomedullin. Can J Physiol Pharmacol 73:963–967

    CAS  PubMed  Google Scholar 

  • Poyner DR (1997) Molecular pharmacology of receptors for calcitonin-gene-related peptide, amylin and adrenomedullin. Biochem Soc Trans 25:1032–1036

    CAS  PubMed  Google Scholar 

  • Poyner DR, Taylor GM, Tomlinson AE, Richardson AG, Smith DM (1999) Characterization of receptors for calcitonin gene-related peptide and adrenomedullin on the guinea pig vas deferens. Br J Pharmacol 126:1276–1282

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quirion R, van Rossum D, Dumont Y, St. Pierre S, Fournier R (1992) Characterization of CGRP1 and CGRP2 receptor subtypes. Ann N Y Acad Sci 657:88–105

    CAS  PubMed  Google Scholar 

  • Schindler M, Doods HN (2002) Binding properties of the novel, non-peptide CGRP receptor antagonist radioligand, [3H]BIBN4096BS. Eur J Pharmacol 442:187–193

    CAS  PubMed  Google Scholar 

  • Van Rossum D, Ménard DP, Fournier A, St-Pierre S, Quirion R (1994) Binding profile of a selective calcitonin gene-related peptide (CGRP) receptor antagonist ligand, [125I-Tyr]hCGRP8–37, in rat brain and peripheral tissues. J Pharmacol Exp Ther 269:846–853

    PubMed  Google Scholar 

  • Van Rossum D, Hanisch UK, Quirion R (1997) Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 21:649–678

    PubMed  Google Scholar 

  • Wimalawansa SJ (1989) A sensitive and specific radioreceptor assay for calcitonin gene-related peptide. J Neuroendocrinol 1:15–18

    CAS  PubMed  Google Scholar 

  • Wimalawansa SJ (1996) Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev 17:533–585

    CAS  PubMed  Google Scholar 

  • Wimalawansa SJ, El-Kholy AA (1993) Comparative study of distribution and biochemical characterization of brain calcitonin gene-related peptide receptors in five different species. Neuroscience 54:513–519

    CAS  PubMed  Google Scholar 

Inhibin

  • De Kretser DM, Robertson DM (1989) The isolation and physiology of inhibin and related proteins. Biol Reprod 40:33–47

    PubMed  Google Scholar 

  • Forage RG, Ring JM, Brown RW et al (1986) Cloning and sequence analysis of cDNA species coding for the two subunits of inhibin from bovine follicular fluid. Proc Natl Acad Sci U S A 83:3091–3095

    PubMed Central  CAS  PubMed  Google Scholar 

  • Franchimont P, Verstraelen-Proyard J, Hazee-Hagelstein MT, Renard C, Demoulin A, Bourguignon JP, Hustin J (1979) Inhibin: from concept to reality. In: Munson PL, Diczfalusy E, Glover J, Olson RE (eds) Vitamins and hormones, vol 37, Advances in research and applications. Academic, New York, pp 243–302

    Google Scholar 

  • Franchimont P, Hazee-Hagelstein MT, Jaspar JM, Charlet-Renard C, Demoulin A (1989) Inhibin and related peptides: mechanisms of action and regulation of secretion. J Steroid Biochem 32:193–197

    CAS  PubMed  Google Scholar 

  • Gaines Das RE, Rose M, Zanelli JM (1992) International collaborative study by in vitro bioassays of the first International Standard for porcine inhibin. J Reprod Fertil 96:803–814

    CAS  PubMed  Google Scholar 

  • Halvorson LM, DeCherney AH (1996) Inhibin, activin, and follistatin in reproductive medicine. Fertil Steril 65:459–469

    CAS  PubMed  Google Scholar 

  • Mason AJ, Niall HD, Seeburg PH (1986) Structure of two human ovarian inhibins. Biochem Biophys Res Commun 135:957–964

    CAS  PubMed  Google Scholar 

  • McGullagh DR (1932) Dual endocrine activity of the testes. Science 76:19–20

    Google Scholar 

  • Moore A, Krummen LA, Mather JP (1994) Inhibins, activins, their binding proteins and receptors: interactions underlying paracrine activity in the testis. Mol Cell Endocrinol 100:81–86

    CAS  PubMed  Google Scholar 

  • Robertson DM (1991) Transforming growth factor-β/inhibin family. Baillieres Clin Endocrinol Metab 5:615–634

    CAS  PubMed  Google Scholar 

  • Robertson DM, Giacometti MS, de Kretser DM (1986) The effects of inhibin purified from bovine follicular fluid in several in vitro pituitary culture systems. Mol Cell Endocrinol 46:29–36

    CAS  PubMed  Google Scholar 

  • Robertson DM, Foulds LM, Prosk M, Hedger MP (1992) Inhibin/activin β-subunit monomer: isolation and characterization. Endocrinology 130:1680–1687

    CAS  PubMed  Google Scholar 

  • Rose MP, Gaines Das RE (1996) International collaborative study by in vitro bioassays and immunoassays of the first international standard for inhibin, human recombinant. Biologicals 24:1–18

    CAS  PubMed  Google Scholar 

  • Stewart AG, Millborrow HM, Ring JM, Crowther CE, Forage RG (1986) Human inhibin genes: genomic characterization and sequencing. FEBS Lett 206:329–334

    CAS  PubMed  Google Scholar 

  • Tierney ML, Goss NH, Tomkins SM, Kerr DB, Pitt DE, Forage RG, Robertson DM, Hearn MTW, de Kretser DM (1990) Physicochemical and biological characterization of recombinant human inhibin A. Endocrinology 126:3268–3270

    CAS  PubMed  Google Scholar 

  • Tio S, Koppenaal D, Bardin CW, Cheng CY (1994) Purification of gonadotropin surge-inhibiting factor from Sertoli cell-enriched medium. Biochem Biophys Res Commun 199:1229–1236

    CAS  PubMed  Google Scholar 

  • Vale W, Rivier C, Hsueh AJW, Campen C, Meunier H, Bicsak T, Vaughan J, Corrigan A, Bardin W, SawchenkoP PF, Yu J, Plotsky P, Spiess J, Rivier J (1986) Chemical and biological characterization of inhibin family of proteins. Recent Prog Horm Res 44:1–34

    Google Scholar 

  • Woodruff TK, Besecke LM, Groome N, Draper LB, Schwartz NB, Weiss J (1996) Inhibin A and inhibin B are inversely correlated to follicle-stimulating hormone, yet are discordant during the follicular phase of the rat estrus cycle, and inhibin A is expressed in a sexually dimorphic manner. Endocrinology 137:5463–5467

    CAS  PubMed  Google Scholar 

In Vitro Bioassay for Inhibin

  • Allenby G, Foster PMD, Sharpe RM (1991) Evaluation of changes in the secretion of immunoreactive inhibin by adult rat seminiferous tubules in vitro as an indicator of early toxicant action on spermatogenesis. Fundam Appl Toxicol 16:710–724

    CAS  PubMed  Google Scholar 

  • Blumenfeld Z, Ritter M, Shen-Orr Z, Shariki K, Ben-Shahar M, Haim N (1998) Inhibin A concentrations in the sera of young women during and after chemotherapy for lymphoma: correlation with ovarian toxicity. Am J Reprod Immunol 39:33–40

    CAS  PubMed  Google Scholar 

  • Brown JL, Dahl KD, Chakraborty PK (1991) Effects of follicular fluid administration on serum bioactive and immunoreactive FSH concentrations and compensatory testosterone secretion in hemicastrated adult rats. J Androl 12:221–225

    CAS  PubMed  Google Scholar 

  • Demura R, Suzuki T, Tajima S, Kubo O, Yoshimoto T, Demura H (1996) Inhibin α, β A and β B subunit messenger ribonucleic acid levels in cultured rat pituitary: studies by a quantitative RT-PCR. Endocr J 43:403–410

    CAS  PubMed  Google Scholar 

  • Gaines Das RE, Rose M, Zanelli JM (1992) International collaborative study by in vitro bioassays of the first International Standard for porcine inhibin. J Reprod Fertil 96:803–814

    CAS  PubMed  Google Scholar 

  • Hertan R, Farnworth PG, Fitzsimmons KL, Robertson DM (1999) Identification of high affinity binding sites for inhibin on ovine pituitary cells in culture. Endocrinology 140:6–12

    CAS  PubMed  Google Scholar 

  • Jakubowiak A, Janecki A, Steinberger A (1989) Similar effects of inhibin and cycloheximide on gonadotropin release in superfused pituitary cell cultures. Biol Reprod 41:454–463

    CAS  PubMed  Google Scholar 

  • Knight PG, Muttukrishna S (1994) Measurement of dimeric inhibin using a modified two-site immunoradiometric assay specific for oxidized (Met O) inhibin. J Endocrinol 141:417–425

    CAS  PubMed  Google Scholar 

  • Knight PG, Groome M, Beard AJ (1991) Development of a two-site immunoradiometric assay for dimeric inhibin using antibodies against chemically synthesized fragments of the α and β subunit. J Endocrinol 129:R9–R12

    PubMed  Google Scholar 

  • Magoffin DA, Jakimiuk AJ (1998) Inhibin A, inhibin B and activin A concentrations in follicular fluid from women with polycystic ovary syndrome. Hum Reprod 13:2693–2698

    CAS  PubMed  Google Scholar 

  • Mason AJ, Farnworth PG, Sullivan J (1996) Characterization and determination of the biological activities of noncleavable high molecular weight forms of inhibin A and activin A. Mol Endocrinol 10:1055–1065

    CAS  PubMed  Google Scholar 

  • Munson PJ, Rodbard D (1980) Ligand, a versatile computerised approach for characterization of ligand binding systems. Anal Biochem 107:220–239

    CAS  PubMed  Google Scholar 

  • Robertson DM, Prisk M, McMaster JW, Irby DC, Findlay JK, de Kretser DM (1991) Serum FSH-suppressing activity of human recombinant inhibin A in male and female rats. J Reprod Fertil 91:321–328

    CAS  PubMed  Google Scholar 

  • Robertson D, Burger HG, Sullivan J, Cahir N, Groome N, Poncelet E, Franchimont P, Woodruff T, Mather CP (1996) Biological and immunological characterization of inhibin forms in human plasma. J Clin Endocrinol Metab 81:669–676

    CAS  PubMed  Google Scholar 

  • Rose MP, Gaines Das RE (1996) International collaborative study by in vitro bioassays and immunoassays of the first international standard for inhibin, human recombinant. Biologicals 24:1–18

    CAS  PubMed  Google Scholar 

  • Simpson BJB, Hedger MP, de Kretser DM (1992) Characterisation of adult Sertoli cell cultures from cryptorchid rats: inhibin secretion in response to follicle-stimulating hormone. Mol Cell Endocrinol 87:167–177

    CAS  PubMed  Google Scholar 

  • Wallace EM, Crossley JA, Ritoe SC, Aitken DA, Spencer K, Groome NP (1998) Evolution of an inhibin A ELISA method: implications for Down’s syndrome screening. Ann Clin Biochem 35:656–664

    CAS  PubMed  Google Scholar 

  • Wenstrom KD, Owen J, Chu DC, Boots L (1997) Elevated second-trimester dimeric inhibin A levels identify Down syndrome pregnancies. Am J Obstet Gynecol 177:992–996

    CAS  PubMed  Google Scholar 

  • Wreford NG, O’Connor AE, de Kretser DM (1994) Gonadotropin-suppressing activity of human recombinant inhibin in the male rat is age dependent. Biol Reprod 50:1066–1071

    CAS  PubMed  Google Scholar 

Activin

  • Dalkin AC, Haisenleder DJ, Yasin M, Gilrain JT, Marshall JC (1996) Pituitary activin receptor subtypes and follistatin gene expression in female rats: differential regulation by activin and follistatin. Endocrinology 137:548–554

    CAS  PubMed  Google Scholar 

  • De Paolo LV (1997) Inhibins, activins, follistatins: the saga continues. Proc Soc Exp Biol Med 214:328–339

    Google Scholar 

  • Eto Y, Tsuji T, Takezawa M, Takano S, Tokagawa Y, Shibai H (1987) Purification and characterization of erythroid differentiation factor (EDF) isolated from human leukemia cell line THP-1. Biochem Biophys Res Commun 142:1095–1103

    CAS  PubMed  Google Scholar 

  • Hashimoto O, Yamato K, Koseki T, Ohguchi M, Ishisaki A, Shoji H, Nakamura T, Hayashi Y, Sugino H, Nishihara T (1998) The role of activin type I receptors in activin A-induced growth arrest and apoptosis in mouse B-cell hybridoma cells. Cell Signal 10:743–749

    CAS  PubMed  Google Scholar 

  • Hötten G, Neidhardt H, Schneider C, Pohl J (1995) Cloning of a new member of the TGF-β family: a putative new activin β C chain. Biochem Biophys Res Commun 206:608–613

    Google Scholar 

  • Lee W, Mason AJ, Schwall R, Szonyi E, Mather JP (1989) Secretion of activin by interstitial cells in the testis. Science 243:396–398

    CAS  PubMed  Google Scholar 

  • Ling N, Ying SY, Ueno N, Shimasaki S, Etsch F, Hott M, Guillemin R (1986) Pituitary FSH is released by a homodimer of the beta subunit from the two forms of inhibin. Nature 321:779–782

    CAS  PubMed  Google Scholar 

  • Loveland KL, McFarlane JR, de Kretser DM (1996) Expression of activin β C subunit mRNA in reproductive tissue. J Mol Endocrinol 17:61–65

    CAS  PubMed  Google Scholar 

  • MacConnell LA, Lawson MA, Mellon PL, Roberts VJ (1999) Activin A regulation of gonadotropin-releasing hormone synthesis and release in vitro. Neuroendocrinology 70:246–254

    Google Scholar 

  • Mason AJ (1988) Structure and recombinant expression of human inhibin and activin. In: Nonsteroidal gonadal factors: physiological roles and possibilities in contraceptive development. Jones Institute, Norfolk, pp 1–19

    Google Scholar 

  • Mason AJ, Berkemeier LM, Schmelzer CH, Schwall RH (1989) Activin B: precursor sequences, genomic structure and in vitro activities. Mol Endocrinol 3:1352–1358

    CAS  PubMed  Google Scholar 

  • Mather JP, Attie KM, Woodruff DK, Rice GC, Phillips DM (1990) Activin stimulates spermatogonial proliferation in germ-Sertoli cell cocultures from immature rat testis. Endocrinology 127:3206–3214

    CAS  PubMed  Google Scholar 

  • Nakamura T, Asashima M, Eto Y, Takio K, Uchiyama H, Moriya M, Ariizumi T, Yashiro T, Sugino K, Titani K, Sugino H (1992) Isolation and characterization of native activin B. J Biol Chem 267:16385–16389

    CAS  PubMed  Google Scholar 

  • Thomsen G, Woolf T, Whitman M, Solkol S, Vaughan J, Vale W et al (1990) Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63:485–493

    CAS  PubMed  Google Scholar 

  • Vale W, Rivier J, McClintock R, Corrigan A, Woo W, Karr D, Spiess J (1986) Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature 321:776–779

    CAS  PubMed  Google Scholar 

In Vitro Bioassay for Activin

  • Attardi B, Miklos J (1990) Rapid stimulatory effect of activin-A on messenger RNA encoding the follicle-stimulating hormone b-subunit in pituitary cell cultures. Mol Endocrinol 4:721–726

    CAS  PubMed  Google Scholar 

  • Brosh N, Sternberg D, Honigswachs-Sha’anani J, Lee BC, Shav-Tal Y, Tzehoval E, Shulman LM, Toledo J, Hacham Y, Carmi P, Jiang W, Sasse J, Horn F, Burstein Y, Zipori D (1995) The plasmacytoma growth inhibitor restrictin-P is an antagonist of interleukin 6 and interleukin 11. Identification as a stroma-derived activin A. J Biol Chem 270:29594–29600

    CAS  PubMed  Google Scholar 

  • Carroll RS, Corrigan AZ, Vale W, Chin WW (1991) Activin stabilizes follicle-stimulating hormone-beta messenger ribonucleic acid levels. Endocrinology 129:1721–1726

    CAS  PubMed  Google Scholar 

  • Demura R, Suzuki T, Tajima S, Mitsuhashi S, Odagiri E, Demura H (1993) Activin and inhibin secretion by cultured porcine granulosa cells is stimulated by FSH and LH. Endocr J 40:447–451

    CAS  PubMed  Google Scholar 

  • De Winter JP, Timmermann MA, Vanderstichele HMJ, Klaij IA, Grootenhuis AJ, Rommerts FFG, de Jong FH (1992) Testicular Leydig cells in vitro secrete only inhibin α-subunits, whereas Leydig cell tumors can secrete bioactive inhibin. Mol Cell Endocrinol 83:105–115

    PubMed  Google Scholar 

  • Knight PG, Muttukrishna S, Groome NP (1996) Development and application of a two-site enzyme immunoassay for the determination of ‘total’ activin-A concentrations in serum and follicular fluid. J Endocrinol 148:267–279

    CAS  PubMed  Google Scholar 

  • LaPolt PS, Soto D, Su J-G, Campen CA, Vaughan J, Vale W, Hsueh AJW (1989) Activin stimulation of inhibin secretion and messenger RNA levels in cultured granulosa cells. Mol Endocrinol 3:1666–1673

    CAS  PubMed  Google Scholar 

  • Laskov R, Scharff MD (1970) Synthesis, assembly, and secretion of gamma globulin by mouse myeloma cells. I. Adaptation of the Mervin plasma cell tumor-11 to culture, cloning and characterization of gamma globulin subunits. J Exp Med 131:515–541

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu ZH, Shintani Y, Wakatsuki M, Sakamoto Y, Harada K, Zhang CY, Saito S (1996) Regulation of immunoreactive activin A secretion from cultured rat anterior pituitary cells. Endocr J 43:39–44

    CAS  PubMed  Google Scholar 

  • McFarlane JR, Foulds LM, Pisciotta A, Robertson DM, de Kretser DM (1996) Measurement of activin in biological fluids by radioimmunoassay, utilizing dissociating agents to remove the interference of follistatin. Eur J Endocrinol 134:481–489

    CAS  PubMed  Google Scholar 

  • Miyamoto S, Irahara M, Ushigoe K, Kuwahara A, Sugino H, Aono T (1999) Effects of activin on hormone secretion by single female rat pituitary cells: analysis by cell immunoblot assay. J Endocrinol 161:375–382

    CAS  PubMed  Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis. Daudlin, Amsterdam

    Google Scholar 

  • Peng C, Ohno T, Koh LY, Chen VTS, Leung PCK (1999) Human ovary and placenta express messenger RNA for multiple activin receptors. Life Sci 64:983–994

    CAS  PubMed  Google Scholar 

  • Phillips DJ, Brauman JN, Mason AJ, de Kretser DM, Hedger MP (1999) A sensitive and specific in vitro bioassay for activin using a mouse plasmacytoma cell line, MPC-11. J Endocrinol 162:111–116

    CAS  PubMed  Google Scholar 

  • Robertson DM, Foulds LM, Prisk M, Hedger MP (1992) Inhibin/activin β-subunit monomer: isolation and characterization. Endocrinology 130:345–351

    Google Scholar 

  • Saito S, Nakamura T, Titani K, Sugino H (1991) Production of activin-binding protein by rat granulosa cells in vitro. Biochem Biophys Res Commun 176:413–422

    CAS  PubMed  Google Scholar 

  • Schwall RH, Lai C (1991) Erythroid differentiation assays for activin. Methods Enzymol 198:340–346

    CAS  PubMed  Google Scholar 

  • Shao L, Frigon NL Jr, Sehy DW, Yu AL, Lofgren J, Schwall R, Yu J (1992) Regulation of production of activin A in human marrow stromal cells and monocytes. Exp Hematol 20:1235–1242

    CAS  PubMed  Google Scholar 

  • Shintani Y, Takada Y, Yamasaki R, Saito S (1991) Radioimmunoassay for activin A/EDF. Method and measurement of immunoreactive A/EDF levels in various biological materials. J Immunol Methods 137:267–274

    CAS  PubMed  Google Scholar 

  • Uchimaru K, Motokura T, Takahashi S, Sakurai T, Asano S, Yamashita T (1995) Bone marrow stromal cells produce and respond to activin A: interactions with basic fibroblast growth factor and platelet-derived growth factor. Exp Hematol 23:613–618

    CAS  PubMed  Google Scholar 

  • Wuytens G, Verschueren K, de Winter JP, Gajendran N, Beek L, Devos K, Bosman F, de Waele P, Andries M, van den Eijnden-van Raaij AJM, Smith JC, Huylebroeck D (1999) Identification of two amino acids in activin A that are important for biological activity and binding to the activin type II receptors. J Biol Chem 274:9821–9827

    CAS  PubMed  Google Scholar 

  • Yamashita T, Takahashi S, Ogata E (1992) Expression of activin A/erythroid differentiation factor in murine bone marrow stromal cells. Blood 79:304–307

    CAS  PubMed  Google Scholar 

Follistatin

  • Bohnsack BL, Szabo M, Kilen SM, Tam DH, Schwartz HB (2000) Follistatin suppresses steroid-enhanced follicle-stimulating hormone release in vitro in rats. Biol Reprod 62:636–641

    CAS  PubMed  Google Scholar 

  • De Winter JP, ten Dijke P, de Vries CJM, van Achterberg TAE, Sugino H, de Waele P, Huylebroeck D, Verschueren K, van den Eijnden-van Raaij AJM (1996) Follistatins neutralize activin bioactivity by inhibition of activin binding to its type II receptors. Mol Cell Endocrinol 116:105–114

    PubMed  Google Scholar 

  • Inouye S, Guo Y, de Paolo L, Shimonaka M, Ling N, Shimasaki S (1991) Recombinant expression of human follistatin with 315 and 288 amino acids: chemical and biological comparison with native porcine follistatin. Endocrinology 129:815–822

    CAS  PubMed  Google Scholar 

  • Namakura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H (1990) Activin-binding protein from rat ovary is follistatin. Science 247:836–838

    Google Scholar 

  • Patel K (1998) Follistatin. Int J Biochem Cell Biol 30:1087–1093

    CAS  PubMed  Google Scholar 

  • Robertson DM, Klein R, de Vos FL, McLachlan RI, Wettenhall REH, Hearn MTW, Burger HG, de Kretser DM (1987) The isolation of polypeptides with FSH suppressing activity from bovine follicular fluid which are structurally different to inhibin. Biochem Biophys Res Commun 149:744–749

    CAS  PubMed  Google Scholar 

  • Shimonaka M, Inouye S, Shimasaki S, Ling N (1991) Follistatin binds to both activin and inhibin through the common beta-subunit. Endocrinology 128:3313–3315

    CAS  PubMed  Google Scholar 

  • Sugino K, Kurosawa N, Nakamura T, Takio K, Shimasaki S, Guillemin R (1993) Molecular heterogeneity of follistatin, an activin-binding protein. J Biol Chem 268:15579–15587

    CAS  PubMed  Google Scholar 

  • Ueno N, Ling N, Ying SY, Esch F, Shimasaki S, Guillemin R (1987) Isolation and partial characterization of follistatin: a single-chain, monomeric protein that inhibits the release of follicle-stimulating hormone. Proc Natl Acad Sci U S A 84:8282–8286

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ying SY, Becker A, Swanson G, Tan P, Ling N, Esch F, Ueno N, Shimasaki S, Guillemin R (1987) Follistatin specifically inhibits pituitary follicle-stimulating hormone release in vitro. Biochem Biophys Res Commun 149:133–139

    CAS  PubMed  Google Scholar 

Immunoassay for Follistatin

  • DePaolo LV, Shimonaka M, Schwall RH, Ling N (1991) In vivo comparison of the follicle-stimulating hormone-suppressing activity of follistatin and inhibin in ovariectomized rats. Endocrinology 128:668–674

    CAS  PubMed  Google Scholar 

  • Evans LW, Muttukrishna S, Groome NP (1998) Development, validation and application of an ultra-sensitive immunoassay for human follistatin. J Endocrinol 156:275–282

    CAS  PubMed  Google Scholar 

  • Galfre G, Milstein C (1981) Preparation of monoclonal antibodies: strategies and procedures. In: Langone JJ, Vunakis HV (eds) Methods in enzymology. Academic, New York, pp 3–36

    Google Scholar 

  • Groome NP, Illingworth PJ, O’Brien M, Priddle J, Weaver K, McNeilly AS (1995) Quantification of inhibin pro-αC-containing forms in human serum by a new ultrasensitive two-site enzyme-linked immunosorbent assay. J Clin Endocrinol Metab 80:2926–2932

    CAS  PubMed  Google Scholar 

  • Ishikawa A, Imagawa M, Hashida S, Yoshitake S, Hamaguchi Y, Ueno T (1983) Enzyme labeling of antibodies and their fragments for enzyme immunoassay and immunocytochemistry. J Immunoassay 4:209–327

    CAS  PubMed  Google Scholar 

  • Nakamura T, Hasegawa Y, Sugino K, Kogawa K, Titani K, Sugino H (1992) Follistatin inhibits activin-induced differentiation of rat follicular granulosa cells in vitro. Biochim Biophys Acta 1135:103–109

    CAS  PubMed  Google Scholar 

  • Xiao S, Robertson DM, Findlay JK (1992) Effects of activin and follicle-stimulating hormone (FSH)-suppressing protein/follistatin on FSH receptors and differentiation of cultured rat granulosa cells. Endocrinology 131:1009–1016

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Sandow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Sandow, J. (2016). Effects on Different Peptide Hormones. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_84

Download citation

Publish with us

Policies and ethics