Skip to main content
  • 279 Accesses

Abstract

Much of the early research on anterior pituitary hormones was performed with extracts obtained from animal pituitary glands and with animal models for the specific analytical determination of the concentrations of anterior pituitary hormones in serum, in pituitary tissue, and in some cases by measurement of urinary excretion, for hormones which are excreted during pregnancy, for example. Biosynthetic hormone preparations are now available for human therapy, and species-specific hormone standards are also available for numerous animal species. For an understanding of the development of endocrine research, and the approach to understanding physiology that was necessary, helpful, and effective, reference is made extensively to historical methods that are no longer required. As with other fields, the receptors for hypothalamic hormones and anterior pituitary hormones have been characterized and studied, for both a better understanding of regulation and in several cases structure–activity studies. This approach has also been very helpful in understanding how the sensitivity of the pituitary gland is regulated by both negative feedback of gonadal steroids and the impact of hypothalamic hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

Hypophysectomy in Rats

  • Anselmino KJ, Pecharz RI (1935) Über die Technik der Hypophysenexstirpation bei verschiedenen Versuchstieren. Z Exp Med 93:660–665

    Google Scholar 

  • Biedl A (1916) Innere Sekretion. Ihre physiologischen Grundlagen und ihre Bedeutung für die Pathologie. Dritte Auflage, zweiter Teil. Urban and Schwarzenberg, Berlin, pp 111–126

    Google Scholar 

  • Bomskov C (1939) Die Exstirpation der Hypophyse im Tierversuch. In: Methodik der Hormonfoschung. 2. Band, G. Thieme, Leipzig, pp 553–587

    Google Scholar 

  • Burn JH, Finney DJ, Goodwin LG (1952) Biological standardization. Anterior lobe of the pituitary gland. Oxford University Press, Oxford, pp 268–279

    Google Scholar 

  • Collip JB, Selye H, Thompson DL (1933a) Beiträge zur Kenntnis der Physiologie des Gehirnanhanges. Virchows Arch 290:23–46

    Google Scholar 

  • Collip JB, Selye H, Thompson DL (1933b) Gonad-stimulating hormones in hypophysectomised animals. Nature 131:56

    Google Scholar 

  • Loeser A, Thompson KW (1934) Hypophysenvorderlappen, Jod und Schilddrüse. Endokrinologie 14:144–150

    CAS  Google Scholar 

  • Smith PE (1927) The disabilities caused by hypophysectomy and their repair. The tuberal (hypothalamic) syndrome in the rat. J Am Med Assoc 88:158–161

    CAS  Google Scholar 

  • Thompson KW (1932) A technique for hypophysectomy of the rat. Endocrinology 16:257–263

    Google Scholar 

  • Vogel HG (1965) Evaluation of synthetic peptides with ACTH-activity. Acta Endocrinol Suppl 100:34

    Google Scholar 

  • Vogel HG (1969a) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropin-Aktivität. A: Vergleich mit dem III. Internationalen Standard für Corticotropin. Arzneimittelforschung 19:20–24

    CAS  Google Scholar 

  • Vogel HG (1969b) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropin-Aktivität. B: Prüfung einer Depot-Zubereitung von β1–23-Corticotropin-23-amidacetat. Arzneimittelforschung 19:25–27

    CAS  PubMed  Google Scholar 

Gonadotropins

  • Dahl KD, Stone MP (1991) FSH isoforms, radioimmunoassays, bioassays, and their significance. J Androl 13:11–22

    Google Scholar 

  • Imse V, Holzapfel G, Hinney B, Kuhn W, Wuttke W (1992) Comparison of luteinizing hormone pulsatility in the serum of women suffering from polycystic ovarian disease using a bioassay and five different immunoassays. J Clin Endocrinol Metab 74:1053–1061

    CAS  PubMed  Google Scholar 

  • Iwasawa A, Tomizawa KL, Wakabayashi K, Kato Y (1994) Time-resolved fluoroimmunoassay (TR-FIA) of gonadotropins. Exp Clin Endocrinol 102:39–43

    CAS  PubMed  Google Scholar 

  • Poyner DR, Hanley MR (1992) Molecular biology of peptide and glycoprotein hormone receptors. In: Braun MR (ed) Molecular biology of G-protein-coupled receptors. Birkhäuser, Boston, pp 198–232

    Google Scholar 

  • Simoni M, Nieschlag E (1991) In vitro bioassays of follicle-stimulating hormone: methods and clinical applications. J Endocrinol Invest 14:983–997

    CAS  PubMed  Google Scholar 

  • Storring PL, Gaines Das RE (1989) The International Standard for pituitary FSH: collaborative study of the Standard and of four other purified human FSH preparations of differing molecular composition by bioassays, receptor assays and different immunoassay systems. J Endocrinol 123:275–293

    CAS  PubMed  Google Scholar 

  • Ulloa-Aguirre A, Espinoza R, Damian-Matsumura P, Chappel SC (1988) Immunological and biological potencies of the different molecular species of gonadotrophins. Hum Reprod 3:491–501

    CAS  PubMed  Google Scholar 

Follicle-Stimulating Hormone (FSH)

  • British Pharmacopoeia (1988) Biological assay of menotrophin. Follicle stimulating hormone activity. Appendix XIV C. HMSO, London, p A165

    Google Scholar 

  • Brown PS (1955) The assay of gonadotrophin from urine of non-pregnant human subjects. J Endocrinol 13:59–64

    CAS  PubMed  Google Scholar 

  • Brown PS, Wells M (1966) Observations on the assay of human urinary follicle-stimulating hormone by the augmentation test in mice. J Endocrinol 35:199–206

    CAS  PubMed  Google Scholar 

  • Christiansen P (1972a) Studies on the rat ovarian augmentation method for follicle stimulating hormone. Acta Endocrinol 70:636–646

    CAS  PubMed  Google Scholar 

  • Christiansen P (1972b) The rat ovarian augmentation method for follicle stimulating hormone. Specificity of the test. Acta Endocrinol (Kbh) 70:647–653

    CAS  Google Scholar 

  • Evans HM, Simpson ME, Tolksdorf S, Jensen H (1939) Biological studies of the gonadotropic principles in sheep pituitary substance. Endocrinology 25:529–546

    CAS  Google Scholar 

  • Gans E, van Rees GP (1966) Studies on the testicular augmentation assay method for follicle stimulating hormone. Acta Endocrinol 52:573–582

    CAS  PubMed  Google Scholar 

  • Igarashi M, McCann SM (1964) A new sensitive bioassay for follicle-stimulating hormone. Endocrinology 74:440–445

    CAS  PubMed  Google Scholar 

  • Lamond DR, Bindon BM (1966) The biological assay of follicle-stimulating hormone in hypophysectomized immature mice. J Endocrinol 34:365–376

    CAS  PubMed  Google Scholar 

  • Parlow AF, Reichert LE Jr (1963) Species differences in follicle-stimulating hormone as revealed by the slope in the Steelman–Pohley assay. Endocrinology 73:740–743

    CAS  PubMed  Google Scholar 

  • Segaloff A (1962) The gonadotropins. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 591–608

    Google Scholar 

  • Steelman SL, Pohley FM (1953) Assay of follicle stimulating hormone based on the augmentation with human chorionic gonadotropin. Endocrinology 53:604–616

    CAS  PubMed  Google Scholar 

  • Storring PL, Gaines Das RE (1989) The International Standard for pituitary FSH: collaborative study of the Standard and of four other purified human FSH preparations of differing molecular composition by bioassays, receptor assays and different immunoassay systems. J Endocrinol 123:275–293

    CAS  PubMed  Google Scholar 

  • Storring PL, Zaidi AA, Mistry YG, Fröysa B, Stenning BE, Diczfalusy E (1981) A comparison of preparations of highly purified human pituitary follicle-stimulating hormone: differences in the follicle-stimulating hormone potencies as determined by in-vivo bioassay, in-vitro bioassay and immunoassay. J Endocrinol 91:353–362

    CAS  PubMed  Google Scholar 

  • Uberoi NK, Meyer RK (1967) Uterine weight of the immature rat as a measure of augmentation of pituitary gonadotrophins by human chorionic gonadotrophin (HCG). Fertil Steril 18:420–428

    CAS  PubMed  Google Scholar 

  • Wide L, Hobson B (1986) Influence of the assay method used on the selection of the most active forms of FSH from the human pituitary. Acta Endocrinol 113:17–22

    CAS  PubMed  Google Scholar 

[3H]Thymidine Uptake in Cultured Mouse Ovaries

  • Boggins J, Ryle M (1972) An in-vitro procedure for the quantitative measurement of follicle-stimulating activity. J Endocrinol 54:355–356

    Google Scholar 

  • Boland NI, Humpherson PG, Leese HJ, Gosden RG (1993) Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biol Reprod 48:798–806

    CAS  PubMed  Google Scholar 

  • Ryle M (1971) The activity of human follicle-stimulating hormone preparations as measured by a response in vitro. J Endocrinol 51:97–107

    CAS  PubMed  Google Scholar 

Granulosa Cell Aromatase Assay in Vitro

  • Ax RL, Ryan RJ (1979) FSH stimulation of 3H-glucosamine incorporation into proteoglycans by porcine granulosa cells in vitro. J Clin Endocrinol Metab 49:646–648

    CAS  PubMed  Google Scholar 

  • Beers WH, Strickland S (1978) A cell culture assay for follicle-stimulating hormone. J Biol Chem 253:3877–3881

    CAS  PubMed  Google Scholar 

  • Bhargava G, Poretsky L, Denman H, Jandorek R, Miller LK (1989) Hormonally active long-term culture of human ovarian cells: initial characterization. Metabolism 38:195–196

    CAS  PubMed  Google Scholar 

  • Combarnous Y, Guillou F, Martinat N (1984) Comparison of in vitro follicle-stimulating hormone (FSH) activity of equine gonadotropins (luteinizing hormone, FSH, and chorionic gonadotropin) in male and female rats. Endocrinology 115:1821–1827

    CAS  PubMed  Google Scholar 

  • Dahl KD, Papkoff H, Hsueh AJW (1989) Effects of diverse mammalian and nonmammalian gonadotropins in a rat granulosa cell bioassay for follicle-stimulating hormone. Gen Comp Endocrinol 73:368–373

    CAS  PubMed  Google Scholar 

  • Dorrington JH, Moon YS, Armstrong DT (1975) Estradiol-17β biosynthesis in cultured granulosa cells from hypophysectomized immature rats; stimulation by follicle-stimulating hormone. Endocrinology 97:1328–1331

    CAS  PubMed  Google Scholar 

  • Fauser BCJM, Soto D, Czekala NM, Hsueh AJW (1989) Granulosa cell aromatase bioassay: changes of bioactive FSH levels in the female. J Steroid Biochem 33:721–726

    CAS  PubMed  Google Scholar 

  • Hsueh AJW, Erickson GF, Papkoff H (1983) Effect of diverse mammalian gonadotrophins on estrogen and progesterone production by cultured rat granulosa cells. Arch Biochem Biophys 225:505–511

    CAS  PubMed  Google Scholar 

  • Hsueh AJW, Adashi EY, Jones PBC, Welsh TH (1984) Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev 5:76–127

    CAS  PubMed  Google Scholar 

  • Jia XC, Hsueh AJW (1985) Sensitive in vitro bioassay for the measurement of serum follicle-stimulating hormone. Neuroendocrinology 41:445–448

    CAS  PubMed  Google Scholar 

  • Jia XC, Hsueh AJW (1986) Granulosa cell aromatase bioassay for follicle-stimulating hormone: validation and application of the method. Endocrinology 119:1570–1577

    CAS  PubMed  Google Scholar 

  • Matzkin H, Homonnai ZT, Galiani D, Paz G, Dekel N (1990) Serum bioactive and immunoreactive follicle-stimulating hormone in oligozoospermic and azoospermic men: application of a modified granulosa cell bioassay. Fertil Steril 53:709–714

    CAS  PubMed  Google Scholar 

  • Simoni M, Nieschlag E (1991) In vitro bioassays of follicle-stimulating hormone: methods and clinical applications. J Endocrinol Invest 14:983–997

    CAS  PubMed  Google Scholar 

  • Steelman SL, Pohley FM (1953) Assay of follicle stimulating hormone based on the augmentation with human chorionic gonadotropin. Endocrinology 53:604–616

    CAS  PubMed  Google Scholar 

  • Storring PL, Gaines Das RE (1989) The International Standard for pituitary FSH: collaborative study of the Standard and of four other purified human FSH preparations of differing molecular composition by bioassays, receptor assays and different immunoassay systems. J Endocrinol 123:275–293

    CAS  PubMed  Google Scholar 

  • Thakur AN, Coles R, Sesay A, Earley B, Jacobs HS, Ekins RP (1990) A rat granulosa cell plasminogen activator bioassay for FSH in human serum. J Endocrinol 126:159–168

    CAS  PubMed  Google Scholar 

  • Wang C, Leung A (1983) Gonadotropins regulate plasminogen activator production by rat granulosa cells. Endocrinology 112:1201–1207

    CAS  PubMed  Google Scholar 

  • YoungLai EV, Yie SM, Yeo J (1992) Development patterns of bioactive and immunoreactive FSH in the female rabbit: effects of ovarectomy. Eur J Obstet Gynecol Reprod Biol 46:45–49

    CAS  PubMed  Google Scholar 

Sertoli Cell Aromatase Assay in Vitro

  • Dorrington JH, Armstrong DT (1975) Follicle-stimulating hormone stimulates estradiol-17β synthesis in cultured Sertoli cells. Proc Natl Acad Sci U S A 72:2677–2681

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dorrington JH, Roller NF, Fritz IB (1975b) Effects of follicle-stimulating hormone on cultures of Sertoli cell preparations. Mol Cell Endocrinol 3:57–70

    CAS  PubMed  Google Scholar 

  • England BG, Niswender GD, Midgley AR (1974) Radioimmunoassay of estradiol-17β without chromatography. J Clin Endocrinol Metab 38:42–50

    CAS  PubMed  Google Scholar 

  • Foulds LM, Robertson DM (1983) Electrofocusing fractionation and characterization of pituitary follicle-stimulating hormone from male and female rats. Mol Cell Endocrinol 31:117–130

    CAS  PubMed  Google Scholar 

  • Harlin J, Khan SA, Diczfalusy E (1988) Molecular composition of luteinizing hormone and follicle-stimulating hormone in commercial gonadotropin preparations. Fertil Steril 46:1055–1061

    Google Scholar 

  • Khan SA, Syed V, Fröysa B, Lindberg M, Diczfalusy E (1984) Influence of gonadectomy on isoelectrofocusing profiles of pituitary gonadotropins in rhesus monkeys. J Med Primatol 14:177–194

    Google Scholar 

  • Marana R, Robertson DM, Suginami H, Diczfalusy E (1979) The assay of human follicle-stimulating hormone preparations: the choice of a suitable standard. Acta Endocrinol 92:599–614

    CAS  PubMed  Google Scholar 

  • Padmanabhan V, Chappel SC, Beitins I (1987) An improved in vitro bioassay for follicle-stimulating hormone (FSH): suitable for measurement of FSH in unextracted human serum. Endocrinology 121:1089–1098

    CAS  PubMed  Google Scholar 

  • Rao AJ, Ramachandran J (1975) Cyclic AMP production in isolated rat seminiferous tubule cell preparations: a potential in vitro assay for follicle stimulating hormone. Life Sci 17:411–416

    CAS  PubMed  Google Scholar 

  • Ritzén EM, Fröysa B, Gustafsson B, Westerholm G, Diczfalusy E (1982) Improved bioassay of follitropin. Horm Res 16:42–48

    PubMed  Google Scholar 

  • Sairam MR, Manjunath P (1982) Studies on pituitary follitropin. XI. Induction of hormonal antagonistic activity by chemical deglycosylation. Mol Cell Endocrinol 28:139–150

    CAS  PubMed  Google Scholar 

  • Shah GV, Ritzén EM (1984) Validation of a bioassay for follitropin in urine samples. J Endocrinol Invest 7(Suppl 3):59–66

    PubMed  Google Scholar 

  • Simoni M, Nieschlag E (1991) In vitro bioassays of follicle-stimulating hormone: methods and clinical applications. J Endocrinol Invest 14:983–997

    CAS  PubMed  Google Scholar 

  • Storring PL, Gaines Das RE (1989) The International Standard for pituitary FSH: collaborative study of the Standard and of four other purified human FSH preparations of differing molecular composition by bioassays, receptor assays and different immunoassay systems. J Endocrinol 123:275–293

    CAS  PubMed  Google Scholar 

  • Storring PL, Zaidi AA, Mistry YG, Fröysa B, Stenning BE, Diczfalusy E (1981) A comparison of preparations of highly purified human pituitary follicle-stimulating hormone: differences in the follicle-stimulating hormone potencies as determined by in-vivo bioassay, in-vitro bioassay and immunoassay. J Endocrinol 91:353–362

    CAS  PubMed  Google Scholar 

  • Van Damme MP, Robertson DM, Marana R, Ritzén EM, Diczfalusy E (1979) A sensitive and specific in vitro bioassay method for the measurement of follicle-stimulating hormone activity. Acta Endocrinol 91:224–237

    PubMed  Google Scholar 

  • Wide L, Hobson BM (1983) Qualitative difference in follicle-stimulating hormone activity in the pituitaries of young women compared to that of men and elderly women. J Clin Endocrinol Metab 56:371–375

    CAS  PubMed  Google Scholar 

  • Wide L, Hobson B (1986) Influence of the assay method used on the selection of the most active forms of FSH from the human pituitary. Acta Endocrinol 113:17–22

    CAS  PubMed  Google Scholar 

  • Zaidi AA, Robertson DM, Diczfalusy E (1981) Studies on the biological and immunological properties of human follitropin: profile of two international reference preparations and of an aqueous extract of pituitary glands after electrofocusing. Acta Endocrinol 97:157–165

    CAS  PubMed  Google Scholar 

  • Zaidi AA, Fröysa B, Diczfalusy E (1982) Biological and immunological properties of different molecular species of human follicle-stimulating hormone: electrofocusing profiles of eight highly purified preparations. J Endocrinol 92:195–204

    CAS  PubMed  Google Scholar 

Receptor Binding Assay for FSH

  • Andersen TT, Curatolo LM, Reichert LE Jr (1983a) Follitropin binding to receptors in testis: studies on the reversibility and thermodynamics of the reaction. Mol Cell Endocrinol 33:37–52

    CAS  PubMed  Google Scholar 

  • Andersen TT, Curatolo LM, Reichert LE Jr (1983b) Follitropin binding to receptors in testis: studies on the reversibility and thermodynamics of the reaction. Mol Cell Endocrinol 33:37–52

    CAS  PubMed  Google Scholar 

  • Burgon PG, Robertson DM, Stanton PG, Hearn MTW (1993) Immunological activities of highly purified isoforms of human FSH correlate with in vitro bioactivities. J Endocrinol 139:511–518

    CAS  PubMed  Google Scholar 

  • Calvo FO, Keutmann HT, Bergert ER, Ryan RJ (1986) Deglycosylated human follitropin: characterization and effects on adenosine cyclic 3′,5′-phosphate production in porcine granulosa cells. Biochemistry 25:3938–3943

    CAS  PubMed  Google Scholar 

  • Cheng KW (1975) A radioreceptor assay for follicle-stimulating hormone. J Clin Endocrinol Metab 41:581–589

    CAS  PubMed  Google Scholar 

  • Foulds LM, Robertson DM (1983) Electrofocusing fractionation and characterization of pituitary follicle-stimulating hormone from male and female rats. Mol Cell Endocrinol 31:117–130

    CAS  PubMed  Google Scholar 

  • Grasso P, Heindel JJ, Powell CJ, Reichert LE Jr (1993) Effects of mono(2-ethylhexyl)phthalate, a testicular toxicant, on follicle-stimulating hormone binding to membranes of cultured rat Sertoli cells. Biol Reprod 48:454–459

    CAS  PubMed  Google Scholar 

  • Ketelslegers JM, Catt KJ (1974) Receptor binding properties of 125I-hFSH prepared by enzymatic iodination. J Clin Endocrinol Metab 39:1159–1162

    CAS  PubMed  Google Scholar 

  • Lee CY, Ryan RJ (1973) Interaction of ovarian receptors with human luteinizing hormone and human chorionic gonadotropin. Biochemistry 12:4609–4619

    CAS  PubMed  Google Scholar 

  • Marana R, Robertson DM, Suginami H, Diczfalusy E (1979) The assay of human follicle-stimulating hormone preparations: the choice of a suitable standard. Acta Endocrinol 92:599–614

    CAS  PubMed  Google Scholar 

  • Reichert LE Jr (1976) Follicle-stimulating hormone: measurement by a rat testes tubule receptor assay. In: Blecher M (ed) Methods in receptor research. Part I. Dekker, New York, pp 99–118

    Google Scholar 

  • Reichert LE, Bhalla VK (1974) Development of a radioligand receptor assay for human follicle stimulating hormone. Endocrinology 94:483–491

    CAS  PubMed  Google Scholar 

  • Schwartz S, Bell J, Rechnitz S, Rabinowitz D (1973) Binding of human FSH and its subunits to rat testes. Eur J Clin Invest 3:475–481

    CAS  PubMed  Google Scholar 

  • Simoni M, Jockenhovel F, Nieschlag E (1993a) Biological and immunological properties of the international standard for FSH 83/575: isoelectrofocusing profile and comparison with other FSH preparations. Acta Endocrinol 128:281–288

    CAS  PubMed  Google Scholar 

  • Simoni M, Weinbauer GF, Nieschlag E (1993b) Molecular composition of two different batches of urofollitropin: analysis by immunofluorometric assay, radioligand receptor assay and in vitro bioassay. J Endocrinol Invest 16:21–27

    CAS  PubMed  Google Scholar 

  • Storring PL, Gaines Das RE (1989) The International Standard for pituitary FSH: collaborative study of the Standard and of four other purified human FSH preparations of differing molecular composition by bioassays, receptor assays and different immunoassay systems. J Endocrinol 123:275–293

    CAS  PubMed  Google Scholar 

  • Wakabayashi N, Suzuki A, Hoshino H, Nishimori K, Mizuno S (1997) The cDNA cloning and transient expression of a chicken gene encoding a follicle-stimulating hormone receptor. Gene 197:121–127

    CAS  PubMed  Google Scholar 

  • Zaidi AA, Robertson DM, Diczfalusy E (1981) Studies on the biological and immunological properties of human follitropin: profile of two international reference preparations and of an aqueous extract of pituitary glands after electrofocusing. Acta Endocrinol 97:157–165

    CAS  PubMed  Google Scholar 

Prostate Weight in Hypophysectomized Rats

  • British Pharmacopoeia (1988) Biological assay of menotrophin. Luteinising hormone activity. Appendix XIV C. HMSO, London, pp A165–A166

    Google Scholar 

  • Greep RO, van Dyke HB, Chow BF (1942) Gonadotropins of the swine pituitary. I. Various biological effects of purified thylakentrin (FSH) and pure metakentrin (ICSH). Endocrinology 30:635–649

    CAS  Google Scholar 

  • Segaloff A (1962) The gonadotropins. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 591–608

    Google Scholar 

  • Segaloff A, Steelman SL, Flores A (1956) Prolactin as a factor in the ventral prostate assay for luteinizing hormone. Endocrinology 59:233–240

    CAS  PubMed  Google Scholar 

Superovulation in Immature Rats

  • Zarrow MX, Cladwell AL Jr, Hafez ESE, Pincus G (1958) Superovulation in the immature rat as a possible assay for LH and HCG. Endocrinology 63:748–758

    CAS  PubMed  Google Scholar 

Ascorbic Acid Depletion of Ovaries in PMSG/hCG-Primed Rats

  • Parlow AF (1961) Bio-assay of pituitary luteinizing hormone by depletion of ovarian ascorbic acid. In: Albert A (ed) Human pituitary gonadotrophins, vol III. Thomas, Springfield, pp 1–300

    Google Scholar 

  • Parlow AF, Reichert LE Jr (1963) Influence of follicle-stimulating hormone on the prostate assay of luteinizing hormone (LH, ICSH). Endocrinology 73:377–385

    CAS  PubMed  Google Scholar 

  • Sandow J, Schally AV, Schröder HG, Redding TW, Heptner W, Vogel HG (1972) Pharmacological characteristics of a synthetic releasing hormone LH/FSH-RH (Hoe 471). Arzneimittelforschung 22:1718–1721

    CAS  PubMed  Google Scholar 

Testosterone Production by Leydig Cells in Vitro Induced by LH

  • Ascoli M (1981) Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology 108:88–95

    CAS  PubMed  Google Scholar 

  • Bousfield GR, Liu WK, Ward DN (1989) Effects of removal of carboxy-terminal extension from equine luteinizing hormone (LH) β-subunit on LH and follicle-stimulating hormone receptor-binding activities and LH steroidogenic activity in rat testicular Leydig cells. Endocrinology 124:379–387

    CAS  PubMed  Google Scholar 

  • Chen HC, Shimohigashi Y, Dufau ML, Catt KJ (1992) Characterization and biological properties of chemically deglycosylated human chorionic gonadotropin. J Biol Chem 257:14446–14452

    Google Scholar 

  • Dahl KD, Sarkissian A (1993) Validation of an improved in vitro bioassay to measure LH in diverse species. J Androl 14:124–129

    CAS  PubMed  Google Scholar 

  • Dufau ML, Catt KJ, Tsuruhara J (1972) A sensitive gonadotropin responsive system: radioimmunoassay of testosterone production by the rat testis in vitro. Endocrinology 90:1032–1040

    CAS  PubMed  Google Scholar 

  • Dufau ML, Pock R, Neubauer A, Catt KJ (1976) In vitro bioassay of LH in human serum: the rat interstitial cell testosterone (RICT) assay. J Clin Endocrinol Metab 42:958–969

    CAS  PubMed  Google Scholar 

  • Dufau ML, Tsuruhara T, Horner KA, Podesta E, Catt KJ (1977) Intermediate role of adenosine 3′:5′-cyclic monophosphate and protein kinase during gonadotropin-induced steroidogenesis in testicular interstitial cells. Proc Natl Acad Sci U S A 74:3419–3423

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haavisto AM, Dunkel L, Pettersson K, Huhtaniemi I (1990) LH measurements by in vitro bioassay and a highly sensitive immunofluorometric assay improve the distinction between boys with constitutional delay of puberty and hypogonadotropic hypogonadism. Pediatr Res 27:211–214

    CAS  PubMed  Google Scholar 

  • Harlin J, Khan SA, Diczfalusy E (1988) Molecular composition of luteinizing hormone and follicle-stimulating hormone in commercial gonadotropin preparations. Fertil Steril 46:1055–1061

    Google Scholar 

  • Janszen FHA, Cooke BA, van Driel MJA, van der Molen HJ (1976) Purification and characterization of Leydig cells from rat testes. J Endocrinol 70:345–359

    CAS  PubMed  Google Scholar 

  • Khan SA, Syed V, Fröysa B, Lindberg M, Diczfalusy E (1984) Influence of gonadectomy on isoelectrofocusing profiles of pituitary gonadotropins in rhesus monkeys. J Med Primatol 14:177–194

    Google Scholar 

  • Liu WK, Young JD, Ward BN (1984) Deglycosylated ovine lutropin: preparation and characterization by in vitro binding and steroidogenesis. Mol Cell Endocrinol 37:29–39

    CAS  PubMed  Google Scholar 

  • Rodgers M, Michell R, Lambert A, Peers N, Robertson WR (1992) Human chorionic gonadotropin contributes to the bioactivity of Pergonal. Clin Endocrinol 37:558–564

    CAS  Google Scholar 

  • Stadler U, Rovan E, Aulitzky W, Frick J, Adam H, Kalla N (1989) Bioassay for determination of human serum luteinizing hormone (LH): a routine clinical method. Andrologia 21:580–583

    CAS  PubMed  Google Scholar 

  • Van Damme MP, Robertson DM, Diczfalusy E (1974) An improved in vitro bioassay method for measuring luteinizing hormone (LH) activity using mouse Leydig cell preparations. Acta Endocrinol 77:655–671

    PubMed  Google Scholar 

  • Whitcomb RW, Schneyer AL (1990) Development and validation of a radioligand receptor assay for measurement of luteinizing hormone in human serum. J Clin Endocrinol Metab 71:591–595

    CAS  PubMed  Google Scholar 

Receptor Binding Assay for LH

  • Catt KJ, Ketelslegers JM, Dufau ML (1976) Receptors for gonadotropic hormones. In: Blecher M (ed) Methods in receptor research. Part I. Dekker, New York, pp 175–250

    Google Scholar 

  • Chen W, Bahl OP (1993) High expression of the hormone binding active extracellular domain (1–294) of rat lutropin receptor in Escherichia coli. Mol Cell Endocrinol 91:35–41

    CAS  PubMed  Google Scholar 

  • Jia XC, Perlas E, Su JGJ, Moran F, Lasley BL, Ny T, Hsueh AJW (1993) Luminescence luteinizing hormone/choriogonadotropin (LH/CG) bioassay: measurement of serum bioactive LH/CG during early pregnancy in human and macaque. Biol Reprod 49:1310–1316

    CAS  PubMed  Google Scholar 

  • Lee CY, Ryan RJ (1972) Luteinizing hormone receptors: specific binding of human luteinizing hormone to homogenates of luteinized rat ovaries. Proc Natl Acad Sci U S A 69:3520–3523

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu WK, Yang KP, Nakagawa Y, Ward DN (1974) The role of the amino group in subunit association and receptor site interaction for ovine luteinizing hormone as studied by acylation. J Biol Chem 249:5544–5550

    CAS  PubMed  Google Scholar 

  • Liu WK, Furlong NB, Ward DN (1977) Effects of β subunit acylation on lutropin receptor site binding. J Biol Chem 252:522–527

    CAS  PubMed  Google Scholar 

  • Liu WK, Young JD, Ward BN (1984) Deglycosylated ovine lutropin: preparation and characterization by in vitro binding and steroidogenesis. Mol Cell Endocrinol 37:29–39

    CAS  PubMed  Google Scholar 

  • Selvaraj N, Moudgal NR (1993) Development of an LH receptor assay capable of measuring serum LH/CG in a wide variety of species. J Reprod Fertil 98:611–616

    CAS  PubMed  Google Scholar 

  • Selvaraj N, Dantes A, Limor R, Golander A, Amsterdam A (1996) Establishment of an in vitro bioassay and radioreceptor assay for LH/CG in human sera using immortalized granulosa cells transfected with LH/CG receptor. Endocrine 5:275–283

    CAS  PubMed  Google Scholar 

  • Storring PL, Gaines-Das RE (1993) The second international standard for human pituitary LH: its collaborative study by bioassays and immunoassays. J Endocrinol 138:345–359

    CAS  PubMed  Google Scholar 

Other Gonadotropins

  • Aschheim S, Zondek B (1927) Hypophysenvorderlappenhormon und Ovarialhormon im Harn von Schwangeren. Klin Wchschr 6:1322

    Google Scholar 

  • Hamburger C, Pedersen-Bjergaard K (1937) The assay of gonadotropic hormones. Standardisation curves for pregnant mare’s serum hormone and human pregnant urine hormone. Q J Pharm Pharmacol 10:662–676

    CAS  Google Scholar 

  • Zondek B (1935) Die hormonale Schwangerschaftsreaktion aus dem Harn bei Mensch und Tier. In: Zondek B (ed) Hormone des Ovariums und des Hypophysenvorderlappens. Springer, Berlin/Heidelberg/New York, pp 534–578

    Google Scholar 

Biological Assay of hCG in Immature Male Rats

  • British Pharmacopoeia (1988) Biological assay of chorionic gonadotrophin. Appendix XIV C. HMSO, London, pp A164–A165

    Google Scholar 

  • United States Pharmacopoeia USP 23 (1995) Chorionic gonadotropin. United States Pharmacopoeial Convention, Rockville, pp 718–719

    Google Scholar 

Receptor Binding Assay for hCG

  • Catt KJ, Dufau ML, Tsuruhara T (1972) Radioligand-receptor assay of luteinizing hormone and chorionic gonadotropin. J Clin Endocrinol Metab 34:123–132

    CAS  PubMed  Google Scholar 

  • Catt KJ, Ketelslegers JM, Dufau ML (1976) Receptors for gonadotropic hormones. In: Blecher M (ed) Methods in receptor research. Part I. Dekker, New York, pp 175–250

    Google Scholar 

  • Keutmann HT, McIlroy PJ, Bergert ER, Ryan RJ (1983) Chemically deglycosylated chorionic gonadotropin subunits: characterization and biological properties. Biochemistry 22:3067–3072

    CAS  PubMed  Google Scholar 

  • Lee CY, Ryan RJ (1973) Interaction of ovarian receptors with human luteinizing hormone and human chorionic gonadotropin. Biochemistry 12:4609–4619

    CAS  PubMed  Google Scholar 

  • Saxena BB (1976) Gonadotropin receptors. In: Blecher M (ed) Methods in receptor research. Part I. Dekker, New York, pp 251–299

    Google Scholar 

  • Selvaraj N, Dantes A, Limor R, Golander A, Amsterdam A (1996b) Establishment of an in vitro bioassay and radioreceptor assay for LH/CG in human sera using immortalized granulosa cells transfected with LH/CG receptor. Endocrine 5:275–283

    CAS  PubMed  Google Scholar 

Human Menopausal Gonadotropin (hMG)

  • British Pharmacopoeia (1988) Biological assay of menotrophin. Follicle-stimulating activity. Appendix XIV C. HMSO, London, pp A165–A166

    Google Scholar 

Pregnant Mares’ Serum Gonadotropin (PMSG)

  • Hamburger C (1950) Gonadotropins, Chap VII. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 173–203

    Google Scholar 

Immunoassays of Gonadotropins

  • Armbruster DA, Haws LC (1990) Assay of follitropin and lutropin by fluorescence enzyme immunoassay. J Clin Lab Anal 4:170–174

    CAS  PubMed  Google Scholar 

  • Faiman C, Ryan RJ (1967) Serum follicle-stimulating hormone and luteinizing hormone concentrations during the menstrual cycle as determined by radioimmunoassays. J Clin Endocrinol Metab 27:1711–1716

    CAS  PubMed  Google Scholar 

  • Haavisto AM, Pettersson K, Bergendahl M, Perheentupa A, Roser FJ, Huhtaniemi I (1993) A supersensitive immunofluorometric assay for rat luteinizing hormone. Endocrinology 132:1687–1691

    CAS  PubMed  Google Scholar 

  • Rosenfield RL, Helke J (1992) Is an immunoassay available for the measurement of bioactive LH in serum? J Androl 13:1–10

    CAS  PubMed  Google Scholar 

  • Seth J, Hanning I, Bacon RRA, Hunter WM (1989) Progress and problems in immunoassays for pituitary gonadotrophins: evidence from the UK external quality assessment schemes, (EQAS) 1980–1988. Clin Chim Acta 186:67–82

    CAS  PubMed  Google Scholar 

  • Terouanne B, Alameddine S, Martin JL, Nicolas JC, Cristol P, Sultan C, de Paulet AC (1989) Dosage par bioluminescence de l’hormone lutéinisante dans le plasma et l’urine. Ann Biol Clin 47:15–21

    CAS  Google Scholar 

  • Ulloa-Aguirre A, Espinoza R, Damian-Matsumura P, Chappel SC (1988) Immunological and biological potencies of the different molecular species of gonadotrophins. Hum Reprod 3:491–501

    CAS  PubMed  Google Scholar 

  • Weiss P, Zech H, Schönholzer HP, Fritzsche H (1992) Abbott IMx and Serono MAIAclone assays compared for lutropin determinations in urine. Clin Chem 38:2280–2283

    CAS  PubMed  Google Scholar 

  • Wheeler MJ (1991) The radioimmunoassay of gonadotrophins. In: Greenstein B (ed) Neuroendocrine research methods, vol 2. Harwood, Chur, pp 487–498

    Google Scholar 

  • Wide L, Hobson BM (1983) Qualitative difference in follicle-stimulating hormone activity in the pituitaries of young women compared to that of men and elderly women. J Clin Endocrinol Metab 56:371–375

    CAS  PubMed  Google Scholar 

  • YoungLai EV, Yie SM, Yeo J (1992) Development patterns of bioactive and immunoreactive FSH in the female rabbit: effects of ovarectomy. Eur J Obstet Gynecol Reprod Biol 46:45–49

    CAS  PubMed  Google Scholar 

Gonadotropin Inhibition

  • Byrnes WW, Meyer RK (1951) The inhibition of gonadotrophic hormone secretion by physiological doses of estrogen. Endocrinology 48:133–136

    CAS  PubMed  Google Scholar 

  • Shipley EG (1962) Anti-gonadotropic steroids, inhibition of ovulation and mating. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 179–274

    Google Scholar 

Inhibition of Gonadotropin Secretion in Intact Animals

  • McGinty DA, Djerassi C (1958) Some chemical and biological properties of 19-nor-17α-ethinyltetosterone. Ann N Y Acad Sci 71:500–515

    CAS  PubMed  Google Scholar 

  • Saunders FJ, Drill VA (1958) Some biological activities of 17-ethynyl and 17-alkyl derivatives of 17-hydroxyestrenones. Ann N Y Acad Sci 71:516–531

    CAS  PubMed  Google Scholar 

  • Shipley EG (1962) Anti-gonadotropic steroids, inhibition of ovulation and mating. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 179–274

    Google Scholar 

Inhibition of Ovulation and Luteinization

  • Austin CR, Bruce HM (1956) Effect of continuous oestrogen administration on oestrus, ovulation and fertilization in rats and mice. J Endocrinol 13:376–383

    CAS  PubMed  Google Scholar 

  • Hahn DW, Allen GO, McGuire JL (1977) The pharmacological profile of norgestimate, a new orally active progestin. Contraception 16:541–553

    CAS  PubMed  Google Scholar 

  • Hebborn P (1971) Progestional agents. In: Turner RD, Hebborn P (eds) Screening methods in pharmacology, vol II. Academic, New York, pp 105–119

    Google Scholar 

  • Junkmann K (1957) Long acting steroids in reproduction. Recent Prog Horm Res 13:389–427

    CAS  PubMed  Google Scholar 

  • May M (1971) Anovulatory agents. In: Turner RD, Hebborn P (eds) Screening methods in pharmacology, vol II. Academic, New York, pp 101–104

    Google Scholar 

  • Phillips A, Hahn DW, Klimek S, McGuire JL (1987) A comparison of the potencies and activities of progestogens used in contraceptives. Contraception 36:181–192

    CAS  PubMed  Google Scholar 

  • Sawyer CH (1952) Progesterone initially facilitates and later inhibits release of pituitary ovulating hormone in the rabbit. Fed Proc Fed Am Soc Exp Biol 11:138

    Google Scholar 

  • Shipley EG (1962) Anti-gonadotropic steroids, inhibition of ovulation and mating. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 179–274

    Google Scholar 

  • Shipley EG (1965) Effectiveness of topical application of a number of progestins. Steroids 5:699–717

    CAS  Google Scholar 

  • Uilenbroek JTJ (1991) Hormone concentrations and ovulatory response in rats treated with antiprogestagens. J Endocrinol 129:423–429

    CAS  PubMed  Google Scholar 

Ovary–Spleen Transplantation

  • Biskind MS, Biskind GS (1990) Development of tumors in the rat ovary after transplantation into the spleen. Historical milestone paper. Cancer J 3:113–116

    Google Scholar 

  • D’Albora H, Cassina MP, Barreiro JP, Sapiro R, Domínguez R (1992) Differences in follicular growth and ovulation ability in the autografted right and left ovary of hemiovarectomised prepubertal rats. Med Sci Res 20:755–757

    Google Scholar 

  • Desclin L (1959) Action du benzoate d’oestradiol et du propionate de testostérone sur la structure de l’ovaire implanté dans la rate. Ann Endocrinol (Paris) 20:222–227

    Google Scholar 

  • Mardones E, Iglesias R, Lipschutz A (1956) The antiluteinizing potency of five derivatives of progesterone. Endocrinology 58:212–219

    CAS  PubMed  Google Scholar 

  • Shipley EG (1962) Anti-gonadotropic steroids, inhibition of ovulation and mating. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 179–274

    Google Scholar 

Inhibition of Fertility

  • Dhar JD, Dwivedi A, Srivastava A, Setty BS (1994) Structure activity relationship of some 2,3-diaryl-2H-1-benzopyrans to their anti-implantation, estrogenic and antiestrogenic activities in the rat. Contraception 49:609–616

    CAS  PubMed  Google Scholar 

  • Philibert D, Moguilewsky M, Mary I, Lecaque D, Tournemine C, Secchi J, Deraedt R (1985) Pharmacological profile of RU 486 in animals. In: Baulieu EE, Segal SJ (eds) The antiprogestin steroid RU 486 and human fertility control. Plenum, New York, pp 49–68

    Google Scholar 

  • Shipley EG (1962) Anti-gonadotropic steroids, inhibition of ovulation and mating. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 179–274

    Google Scholar 

Prolactin

  • Jacobs LS (1979) Prolactin. In: Jaffe BM, Behrmann HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 199–222

    Google Scholar 

  • Jeffcoate SL, Bacon RRA, Beastall GH, Divers MJ, Franks S, Seth J (1986) Assays for prolactin: guidelines for the provision of a clinical biochemistry service. Ann Clin Biochem 23:638–651

    CAS  PubMed  Google Scholar 

  • Leroy-Martin B, Peyrat JP, Amrani S, Lorthioir M, Leonardelli J (1995) Analyse immunocytochimique des recepteurs prolactiniques (R-PRL) humains a l’aide d’anticorps anti-idiotypes dans le cancers du sein humain. Ann Pathol 15:192–197

    CAS  PubMed  Google Scholar 

  • Shiu RPC, Friesen HG (1976) Prolactin receptors. In: Blecher M (ed) Methods in receptor research. Part II. Dekker, New York, pp 565–598

    Google Scholar 

  • Riddle O, Bates RW, Dykshorn SW (1933) The preparation, identification and assay of prolactin–a hormone of the anterior pituiarity. Am J Physiol 160:191–216

    Google Scholar 

Radioimmunoassay of Rat Prolactin

  • Jeffcoate SL, Bacon RRA, Beastall GH, Divers MJ, Franks S, Seth J (1986) Assays for prolactin: guidelines for the provision of a clinical biochemistry service. Ann Clin Biochem 23:638–651

    CAS  PubMed  Google Scholar 

Pigeon Crop Method

  • Cowei AT, Forsyth IA (1935) Biology of prolactin. Pharmacol Ther 1:437–457

    Google Scholar 

  • Lyons WR, Page E (1935) Detection of mammatropin in the urine of lactating women. Proc Soc Exp Biol Med 32:1049–1050

    Google Scholar 

  • Meites J, Turner CW (1950) Lactogenic hormone. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 237–260

    Google Scholar 

  • Riddle O, Bates RW (1939) Sex and internal secretions, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Segaloff A (1962) The gonadotropins. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 591–608

    Google Scholar 

Lactation in Rabbits

  • Bergman AJ, Meites J, Turner CM (1940) A comparison of methods of assay of the lactogenic hormone. Endocrinology 26:716–722

    CAS  Google Scholar 

  • Lyons WR (1942) The direct mammotropic action of lactogenic hormone. Proc Soc Exp Biol Med 51:308–311

    CAS  Google Scholar 

  • Lyons WR, Catchpole HR (1933) Availability of the rabbit for assay of the hypophyseal lactogenic hormone. Proc Soc Exp Biol Med 31:305–309

    Google Scholar 

  • Meites J, Turner CW (1950) Lactogenic hormone. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 237–260

    Google Scholar 

  • Segaloff A (1962) The gonadotropins. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 591–608

    Google Scholar 

Growth Hormone (GH)

  • Amit T, Ish-Shalom S, Glaser B, Youdim MBH, Hochberg Z (1992) Growth-hormone-binding protein in patients with acromegaly. Horm Res 37:205–211

    CAS  PubMed  Google Scholar 

  • Chochinov RH, Daughaday WH (1978) Somatomedin A, Somatomedin C and NSILA-s. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 959–977

    Google Scholar 

  • Greenwood FC, Hunter WM, Glover JS (1963) The preparation of 131I-labelled human growth hormone of high specific radioactivity. Biochem J 89:114–123

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hofland LJ, van Koetsfeld PM, Verleun TM, Lamberts SWJ (1989) Glycoprotein alpha-subunit and prolactin release by cultured pituitary adenoma cells from acromegalic patients: correlation with GH release. Clin Endocrinol (Oxf) 30:601–611

    CAS  Google Scholar 

  • Hughes JP (1985) The nature and regulation of the receptors for pituitary growth hormone. Annu Rev Physiol 47:469–482

    CAS  PubMed  Google Scholar 

  • Ilondo MM, Vanderschueren-Lodeweyckx M, DeMeyts P (1991) Measuring growth hormone activity through receptor and binding protein assays. Horm Res 36(Suppl 1):21–36

    CAS  PubMed  Google Scholar 

  • Isaksson OGP, Edén S, Jansson JO (1985) Mode of action of pituitary growth hormone on target cells. Annu Rev Physiol 47:483–499

    CAS  PubMed  Google Scholar 

  • Mertani HC, Pechoux C, Garcia-Caballero T, Waters MJ, Morel G (1995) Cellular localization of the growth hormone receptor/binding protein in the human anterior pituitary gland. J Clin Endocrinol Metab 80:3361–3367

    CAS  PubMed  Google Scholar 

  • Peake GT, Morris J, Buckman MT (1978) Growth hormone. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 327–339

    Google Scholar 

  • Roswell EC, Mukku VR, Chen AB, Hoff EH, Chu H, McKay PA, Olson KC, Battersby JE, Gehant RL, Meunier A, Garnick ER (1996) Novel assays based on human growth hormone receptor as alternatives to the rat weight gain bioassay for recombinant human growth hormone. Biologicals 24:25–39

    Google Scholar 

  • Rudd BT (1991) Growth, growth hormone and the somatomedins: a historical perspective and current concepts. Ann Clin Biochem 28:542–555

    CAS  PubMed  Google Scholar 

  • Russell JA (1955) Methods of detection and assay of growth hormone. In: Smith RW, Gaebler OH, Long CNH (eds) The hypophyseal growth hormone, nature and actions. McGraw-Hill, New York, pp 17–27

    Google Scholar 

  • Strasburger CJ, Wu Z, Pflaum CD, Dressendorfer SA (1996) Immunofunctional assay of human growth hormone (hGH) in serum: a possible consensus for quantitative hGH measurement. J Clin Endocrinol Metab 81:2613–2620

    CAS  PubMed  Google Scholar 

  • Wang BS, Lumanglas AL, Bona CA, Moran TM (1996) Functional characterization of monoclonal antibodies specific to growth hormone receptor. Mol Immunol 33:1197–1202

    CAS  PubMed  Google Scholar 

Weight Gain in Female Rats (“Growth Plateau Rats”)

  • Greenspan FS, Li CH, Simpson ME, Evans HM (1950) Growth hormone. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 273–290

    Google Scholar 

  • Groesbeck MD, Parlow AF (1987) Highly improved precision of the hypophysectomized female rat body weight gain bioassay for growth hormone by increased frequency of injections, avoidance of antibody formation, and other simple modifications. Endocrinology 120:2582–2590

    CAS  PubMed  Google Scholar 

  • Li CH, Evans HM, Simpson ME (1945) Isolation and properties of the anterior pituitary growth hormone. J Biol Chem 159:353–366

    CAS  Google Scholar 

  • Marx W, Simpson ME, Evans HM (1942) Bioassay of the growth hormone of the anterior pituitary. Endocrinology 30:1–10

    CAS  Google Scholar 

  • Papkoff H, Li CH (1962) Hypophyseal growth hormone. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 671–704

    Google Scholar 

  • Roswell EC, Mukku VR, Chen AB, Hoff EH, Chu H, McKay PA, Olson KC, Battersby JE, Gehant RL, Meunier A, Garnick ER (1996) Novel assays based on human growth hormone receptor as alternatives to the rat weight gain bioassay for recombinant human growth hormone. Biologicals 24:25–39

    Google Scholar 

Tibia Test in Hypophysectomized Rats

  • Bentham J, Ohlsson C, Lindahl A, Isaksson O, Nilsson A (1993) A double-staining technique for detection of growth hormone and insulin-like growth factor-1 binding to rat tibial epiphyseal chondrocytes. J Endocrinol 137:361–367

    CAS  PubMed  Google Scholar 

  • Geschwind II, Li CH (1955) The tibia test for growth hormone. In: Smith RW, Gaebler OH, Long CNH (eds) Hypophyseal growth hormone, nature and actions. McGraw-Hill, New York, pp 28–58

    Google Scholar 

  • Greenspan FS, Li CH, Simpson ME, Evans HM (1949) Bioassay of hypophyseal growth hormone: the tibia test. Endocrinology 45:455–463

    CAS  PubMed  Google Scholar 

  • Greenspan FS, Li CH, Simpson ME, Evans HM (1950) Growth hormone. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 273–290

    Google Scholar 

  • Papkoff H, Li CH (1962) Hypophyseal growth hormone. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 671–704

    Google Scholar 

35S Uptake

  • Collins EJ, Baker VF (1960) Growth hormone and radiosulfate incorporation: I. A new assay method for growth hormone. Metabolism 9:556–560

    CAS  PubMed  Google Scholar 

  • Papkoff H, Li CH (1962) Hypophyseal growth hormone. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 671–704

    Google Scholar 

Inhibition of Glucose Uptake in Adipocytes in Vitro

  • Dole V, Meinertz J (1969) Microdetermination of long chain fatty acids in plasma and tissues. J Biol Chem 235:2595–2599

    Google Scholar 

  • Foster CM, Borondy M, Padmanabhan V, Schwartz J, Kletter GB, Hopwood NJ, Beitins IZ (1993) Bioactivity of human growth hormone in serum: validation of an in vitro bioassay. Endocrinology 132:2073–2082

    CAS  PubMed  Google Scholar 

  • Xu BC, Chen WY, Gu T, Ridgway D, Wiehl P, Okada S, Kopchick JJ (1995) Effects of growth hormone antagonists on 3T3-F422A preadipocyte differentiation. J Endocrinol 146:131–139

    CAS  PubMed  Google Scholar 

Eluted Stain Bioassay for Human Growth Hormone

  • Dattani MT, Hindmarsh PC, Brook CGD, Robinson ICAF, Weir T, Marshall NJ (1993) Enhancement of growth hormone bioactivity by zinc in the eluted stain assay system. Endocrinology 1993:2803–2808

    Google Scholar 

  • Dattani MT, Hindmarsh PC, Brook CGD, Robinson ICAF, Kopchick JJ, Marshall NJ (1995) G120R, a human growth hormone antagonist, shows zinc-dependent agonist and antagonist activity on Nb2 cells. J Biol Chem 270:9222–9226

    CAS  PubMed  Google Scholar 

  • Ealey PA, Yateman ME, Holt SJ, Marshall NJ (1988) ESTA: a bioassay system for the determination of potencies of hormones and antibodies which mimic their action. J Mol Endocrinol 1:R1–R4

    CAS  PubMed  Google Scholar 

  • Ealey PA, Yateman ME, Sandhu R, Dattani MD, Hassan MK, Holt SJ, Marshall NJ (1995) The development of an eluted stain bioassay (ESTA) for human growth hormone. Growth Regul 5:36–44

    CAS  PubMed  Google Scholar 

  • Strasburger CJ, Dattani MT (1997) New growth hormone assays: potential benefits. Acta Pediatr Suppl 412:5–11

    Google Scholar 

Reverse Hemolytic Plaque Assay for Growth Hormone

  • Luque EH, Munoz de Toro M, Smith POF, Neill JD (1986) Subpopulations of lactotropes detected with the reverse hemolytic plaque assay show different responsiveness to dopamine. Endocrinology 118:2120–2124

    CAS  PubMed  Google Scholar 

  • Neill JD, Frawley S (1983) Detection of hormone release from individual cells in mixed populations using a reverse hemolytic plaque assay. Endocrinology 112:1135–1137

    CAS  PubMed  Google Scholar 

  • Niimi M, Sato M, Murao K, Takahara J, Kawanishi K (1994a) Effect of excitatory amino acid receptor agonists on secretion of growth hormone as assessed by the reverse hemolytic plaque assay. Neuroendocrinology 60:173–178

    CAS  PubMed  Google Scholar 

  • Niimi M, Sato M, Wada Y, Tamaki M, Takahara J, Kawanishi K (1994b) Analysis of growth hormone release from rat anterior pituitary cells by reverse hemolytic plaque assay: influence of interleukin-1. Life Sci 55:1807–1913

    CAS  PubMed  Google Scholar 

  • Smith PF, Luque EH, Neill JD (1986) Detection and measurement of secretion from individual neuroendocrine cells using a reverse hemolytic plaque assay. In: Conn PM (ed) Methods in enzymology, vol 124. Academic, New York, pp 443–464

    Google Scholar 

Determination of Growth Hormone Isoforms by 22-kDa GH Exclusion Assay

  • Boguszewski CL, Hynsjö L, Johannsson G, Bengtsson BÅ, Carlsson LMS (1996) 22-kDa growth hormone exclusion assay: a new approach to measurement of non-22 kDa growth hormone isoforms in human blood. Eur J Endocrinol 135:573–582

    CAS  PubMed  Google Scholar 

  • Strasburger CJ, Dattani MT (1997) New growth hormone assays: potential benefits. Acta Pediatr Suppl 412:5–11

    Google Scholar 

Steroid Regulation of Growth Hormone Receptor and GH-Binding Protein

  • Carmignac D, Well T, Carlsson L, Clark RG, Robinson ICAF (1992) Growth hormone (GH)-binding protein in normal and GH-deficient dwarf rats. J Endocrinol 135:447–457

    CAS  PubMed  Google Scholar 

  • Carmignac D, Gabrielsson BG, Robinson ICAF (1993) Growth hormone binding protein in the rat: effects of gonadal steroids. Endocrinology 133:2445–2452

    CAS  PubMed  Google Scholar 

  • Chomczynski P, Saachi N (1987) Single step method for RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    CAS  PubMed  Google Scholar 

  • Gabrielsson BG, Carmignac DF, Flavell DM, Robinson ICAF (1995) Steroid regulation of growth hormone (GH) receptor and GH-binding protein messenger ribonucleic acids in the rat. Endocrinology 136:209–217

    CAS  PubMed  Google Scholar 

  • Martini JF, Villares SM, Nagano M, Delehaye-Zervas MC, Eymard B, Kelly PA, Postel-Vinay MC (1995) Quantitative analysis by polymerase chain reaction of growth hormone receptor gene expression in human liver and muscle. Endocrinology 136:1355–1360

    CAS  PubMed  Google Scholar 

  • Möller C, Arner P, Sonnenfeld T, Norstedt G (1991) Quantitative comparison of insulin-like growth factor mRNA levels in human and rat tissues analyzed by a solution hybridization assay. J Mol Endocrinol 7:213–222

    PubMed  Google Scholar 

  • Nilsson A, Swolin D, Enerback S, Ohlsson C (1995) Expression of functional growth hormone receptors in cultured human osteoblast-like cells. J Clin Endocrinol Metab 80:3483–3488

    CAS  PubMed  Google Scholar 

Adrenocorticotropin (ACTH)

  • Bangham DR, National Institute for Medical Research, London (1962) The third international standard for corticotropin and an international working standard for corticotropin. Acta Endocrinol 40:552–554

    Google Scholar 

  • British Pharmacopoeia (1988) vol II. HMSO, London, pp A166–167

    Google Scholar 

  • Chayen J, Daly JR, Loveridge N, Bitensky L (1976) The cytochemical bioassay of hormones. Recent Prog Horm Res 32:33–79

    CAS  PubMed  Google Scholar 

  • Deutsches Arzneibuch (1986) 9. Ausgabe, V.2.2.2. Deutscher Apotheker, Stuttgart, p 49

    Google Scholar 

  • Fisher JD (1962) Adrenocorticotropin. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 641–669

    Google Scholar 

  • Geiger R, Sturm K, Vogel G, Siedel W (1964) Synthetische Analoge des Corticotropins. Zur Bedeutung der aminoterminalen Sequenz Ser-Tyr-Ser für die adrenocorticotrope Wirkung. Z Naturforsch 19b:858–860

    CAS  Google Scholar 

  • Inouye K, Otsuka H (1987) ACTH: structure–function relationship. In: Li CH (ed) Hormonal proteins and peptides, vol XIII. Academic, New York, pp 1–29

    Google Scholar 

  • Rerup C (1957) The subcutaneous assay of corticotrophin A. Acta Endocrinol 25:17–32

    CAS  PubMed  Google Scholar 

  • Rerup C (1958) The subcutaneous assay of corticotrophin A. II. The replacement of gelatine by saline. Acta Endocrinol 28:300–310

    CAS  PubMed  Google Scholar 

  • Roe JH, Kuether CA (1943) The determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenylhydrazine derivative of dehydroascorbinic acid. J Biol Chem 147:399–407

    CAS  Google Scholar 

  • Sayers MA, Sayers G, Woodbury LA (1948) The assay of adreno-corticotropic hormone by the adrenal ascorbic acid-depletion method. Endocrinology 42:379–393

    CAS  PubMed  Google Scholar 

  • Schuler W, Schär B, Desaulles P (1963) Zur Pharmakologie eines ACTH-wirksamen, vollsynthetischen Polypeptids, des β 124-Corticotropins, Ciba 30920-Ba, Synacthen. Schweiz Med Wschr 93:1027–1030

    CAS  PubMed  Google Scholar 

  • The United State Pharmacopeia USP 23 (1995) Corticotropin injection. The United States Pharmacopeial Convention, Rockville, pp 426–428

    Google Scholar 

  • Vogel HG (1965) Evaluation of synthetic peptides with ACTH-activity. Acta Endocrinol Suppl 100:34

    Google Scholar 

  • Vogel HG (1969a) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. A: Vergleich mit dem III. Internationalen Standard für Corticotropin. Arzneimittelforschung 19:20–24

    CAS  Google Scholar 

  • Vogel HG (1969b) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. B: Prüfung einer Depot-Zubereitung von β1–23-Corticotropin-23-amidacetat. Arzneimittelforschung 19:25–27

    CAS  PubMed  Google Scholar 

Corticosterone Blood Levels in Dexamethasone-Blocked Rats

  • Fisher JD (1962) Adrenocorticotropin. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 641–669

    Google Scholar 

  • Pekkarinen A (1965) Bioassay of corticotrophin preparations with the international working standard on living guinea pigs. Acta Endocrinol Suppl 100:35

    Google Scholar 

  • Retiene K, Ditschuneit H, Fischer M, Kopp K, Pfeiffer EF (1962) Corticotropin-Bestimmung anhand des Corticosteron-Anstieges im Nebennieren-Venenblut hypophysektomierter Ratten. Vergleich von Dexamethasonblockade und Hypophysektomie. Acta Endocrinol 41:211–218

    CAS  Google Scholar 

  • Sandow J, Geiger R, Vogel HG (1977) Pharmacological effects of a short chain ACTH-analogue. Naunyn-Schmiedebergs Arch Pharmacol 297:162

    Google Scholar 

  • Schuler W, Schär B, Desaulles P (1963) Zur Pharmakologie eines ACTH-wirksamen, vollsynthetischen Polypeptids, des β 124-Corticotropins, Ciba 30920-Ba, Synacthen. Schweiz Med Wschr 93:1027–1030

    CAS  PubMed  Google Scholar 

  • Staehelin M, Barthe P, Desaulles P (1965) On the mechanism of the adrenal gland response to adrenocorticotropic hormone in hypophysectomized rats. Acta Endocrinol 50:55–64

    CAS  PubMed  Google Scholar 

  • Vogel HG (1965) Evaluation of synthetic peptides with ACTH-activity. Acta Endocrinol Suppl 100:34

    Google Scholar 

  • Vogel HG (1969a) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. A: Vergleich mit dem III. Internationalen Standard für Corticotropin. Arzneimittelforschung 19:20–24

    CAS  Google Scholar 

  • Vogel HG (1969b) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. B: Prüfung einer Depot-Zubereitung von β1–23-Corticotropin-23-amidacetat. Arzneimittelforschung 19:25–27

    CAS  PubMed  Google Scholar 

In Vitro Corticosteroid Release

  • Allen WM (1950) A simple method for analyzing complicated absorption curves, of use in the colorimetric determination of urinary steroids. J Clin Endocrinol 10:71–83

    CAS  Google Scholar 

  • Bangham DR, Musset MV, Stack-Dunne MP (1962) The third international standard for corticotrophin and an international working standard for corticotrophin. Acta Endocrinol 40:552–554

    Google Scholar 

  • Buckingham JC, Cover PO, Gillies GE (1991) Biological and radioimmunometric assay methods for the determination of corticotrophin. In: Greenstein B (ed) Neuroendocrine research methods, vol 2. Harwood, Chur, pp 601–613

    Google Scholar 

  • der Vies V (1957) Experience with an assay of adrenocorticotropic hormone based on the steroid output of rat adrenals in vitro. Acta Physiol Pharmacol Neerl 5:361–384

    Google Scholar 

  • Fisher JD (1962) Adrenocorticotropin. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 641–669

    Google Scholar 

  • Rerup C (1958) The subcutaneous assay of corticotrophin A. II. The replacement of gelatine by saline. Acta Endocrinol 28:300–310

    CAS  PubMed  Google Scholar 

  • Saffran M, Schally AV (1955) In vitro bioassay of corticotropin: modification and statistical treatment. Endocrinology 56:512–532

    Google Scholar 

  • Saffran M, Matthews EK, Pearlmutter F (1971) Analysis of the response to ACTH by rat adrenal in a flowing system. Recent Prog Horm Res 27:607–630

    CAS  PubMed  Google Scholar 

  • Schuler W, Schär B, Desaulles P (1963) Zur Pharmakologie eines ACTH-wirksamen, vollsynthetischen Polypeptids, des β 124-Corticotropins, Ciba 30920-Ba, Synacthen. Schweiz Med Wschr 93:1027–1030

    CAS  PubMed  Google Scholar 

  • Staehelin M, Barthe P, Desaulles P (1965) On the mechanism of the adrenal gland response to adrenocorticotropic hormone in hypophysectomized rats. Acta Endocrinol 50:55–64

    CAS  PubMed  Google Scholar 

  • Tesser GI, Schwyzer R (1966) Synthese des 17,18-Diornithin-β-corticotropin-(1–24)-tetracosapeptides, eines biologisch aktiven Analogons des adrenocorticotropen Hormones. Helvet Chim Acta 49:1013–1022

    CAS  PubMed  Google Scholar 

  • Vogel HG (1969a) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. A: Vergleich mit dem III. Internationalen Standard für Corticotropin. Arzneimittelforschung 19:20–24

    CAS  Google Scholar 

  • Vogel HG (1969b) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. B: Prüfung einer Depot-Zubereitung von β1–23-Corticotropin-23-amidacetat. Arzneimittelforschung 19:25–27

    CAS  PubMed  Google Scholar 

Thymus Involution

  • Fisher JD (1962) Adrenocorticotropin. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 641–669

    Google Scholar 

  • Hayashida T, Li CH (1952) Enhancement of adrenocorticotropic hormone activity by alum in normal 21-day old rats. Endocrinology 50:187–191

    CAS  PubMed  Google Scholar 

  • Hohlweg W, Laschet U, Dörner G, Daume E (1960) Der NTQ-Test, eine einfache Testierungsmethode für Corticotropin- und Depot-Corticotropin-Präparate. Acta Endocrinol 35:501–507

    CAS  PubMed  Google Scholar 

  • Rerup C (1958) The subcutaneous assay of corticotrophin A. II. The replacement of gelatine by saline. Acta Endocrinol 28:300–310

    CAS  PubMed  Google Scholar 

  • Thing E (1953) The thymus involution test for ACTH. Acta Endocrinol 13:343–352

    CAS  PubMed  Google Scholar 

  • Thompson RE, Fisher JD (1953) Correlation of preparative history and method of assay of corticotropin with clinical potency. Endocrinology 52:496–509

    CAS  PubMed  Google Scholar 

Receptor Binding Assay for ACTH

  • Kapas S, Cammas FM, Hinson JP, Clark AJL (1996) Agonistic and receptor binding properties of adrenocorticotropin peptides using the cloned mouse adrenocorticotropin receptor expressed in a stably transfected HeLa cell line. Endocrinology 137:32901–33294

    Google Scholar 

  • Lebrethon MC, Naville D, Begeot M, Saez JM (1994) Regulation of corticotropin receptor number and messenger RNA in cultured human adrenocortical cells by corticotropin and angiotensin II. J Clin Invest 93:1828–1833

    PubMed Central  CAS  PubMed  Google Scholar 

  • Munson PJ, Rodbard D (1980) Ligand, a versatile computerised approach for characterization of ligand binding systems. Anal Biochem 107:220–239

    CAS  PubMed  Google Scholar 

  • Naville D, Penhoat A, Barjhoux L, Jaillard C, Fontanay S, Saez J, Durand P, Begeot M (1996) Characterization of the human ACTH receptor gene and in vitro expression. Endocr Res 22:337–348

    CAS  PubMed  Google Scholar 

  • Naville D, Barjhoux L, Jaillard C, Saez JM, Durand P, Begeot M (1997) Stable expression of normal and mutant human ACTH receptor. Study of ACTH binding and coupling to adenylate cyclase. Mol Cell Endocrinol 129:83–90

    CAS  PubMed  Google Scholar 

  • Penhoat A, Jaillard C, Saez M (1993) Identification and characterization of corticotropin receptors in bovine and human adrenals. J Steroid Biochem Mol Biol 44:21–27

    CAS  PubMed  Google Scholar 

  • Penhoat A, Lebrethon MC, Begeot M, Saez JM (1995) Regulation of ACTH receptor mRNA and binding sites by ACTH and angiotensin II in cultured human and bovine adrenal fasciculata cells. Endocr Res 21:157–168

    CAS  PubMed  Google Scholar 

  • Picard-Hagen N, Penhoat A, Hue D, Jaillard C, Durand P (1997) Glucocorticoids enhance corticotropin receptor mRNA levels in ovine adrenocortical cells. J Mol Endocrinol 19:29–36

    CAS  PubMed  Google Scholar 

  • Schioth HB, Chhajlani V, Muceniece R, Klusa V, Wikberg JES (1996) Major pharmacological distinction of the ACTH receptor from other melanocortin receptors. Life Sci 59:797–801

    CAS  PubMed  Google Scholar 

  • Schioth HB, Muceniece R, Larsson M, Wikberg JES (1997) The melanocortin 1, 3, 4 or 5 receptors do not have a binding epitope for ACTH beyond the sequence of alpha-MSH. J Endocrinol 155:73–78

    CAS  PubMed  Google Scholar 

  • Zavyalov VP, Maiorov VA, Safonova NG, Navolotskaya EV, Volodina EY, Abromov VM (1995) Receptor binding properties of the peptides corresponding to the ACTH-like sequence of human pro-Interleukin-1 α . Immunol Lett 46:125–128

    CAS  Google Scholar 

Thyrotropin (TSH)

  • Bockmann J, Winter C, Wittkowski W, Kreutz MR, Böckers TM (1997) Cloning and expression of a brain-derived TSH receptor. Biochem Biophys Res Commun 238:173–1780

    CAS  PubMed  Google Scholar 

  • Castagiola A, Swillens S, Niccoli P, Dumont JE, Vassart G, Ludgate M (1992) Binding assay for thyrotropin receptor autoantibodies using the recombinant receptor protein. J Clin Endocrinol Metab 75:1540–1544

    Google Scholar 

  • Cole ES, Lee K, Lauziere K et al (1993) Recombinant human thyroid stimulating hormone: development of a biotechnology product for detection of metastatic lesions of thyroid carcinoma. Biotechnology 11:1014–1024

    CAS  PubMed  Google Scholar 

  • Hussain A, Zimmerman CA, Boose JA, Froulich J, Richardson A, Horowitz RS, Collins MT, Lash RW (1996) Large scale synthesis of recombinant human thyrotropin using methotrexate amplification: chromatographic, immunological, and biological characterization. J Clin Endocrinol Metab 81:1184–1188

    CAS  PubMed  Google Scholar 

  • Meinhold H, Altmann R, Bogner U, Finke R, Schleusener H (1994) Evaluation of various immunometric TSH assays. Exp Clin Endocrinol 102:23–26

    Google Scholar 

  • Oda Y, Sanders J, Roberts S, Maruyama M, Kato R, Perez M, Petersen VB, Wedlock N, Furmaniak J, Smith RB (1998) Binding characteristics of antibodies to the TSH receptor. J Mol Endocrinol 20:233–244

    CAS  PubMed  Google Scholar 

  • Spencer CE (1994) Further developments in TSH technology. Exp Clin Endocrinol 102:12–22

    Google Scholar 

  • Utiger RD (1979) Thyrotropin. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 315–325

    Google Scholar 

  • Vassart G, Dumont JE (1992) The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 13:569–611

    Google Scholar 

Thyroid Histology

  • Jones MS (1939) A study of thyrotropic hormone in clinical states. Endocrinology 24:665–671

    CAS  Google Scholar 

  • Junkmann K, Schoeller W (1932) Über das thyreotrope Hormon des Hypophysenvorderlappens. Klin Wschr 11:1176–1177

    CAS  Google Scholar 

  • McGinty DA, McCullough NB (1936) Thyrotropic hormone in non-pituitary tissue. Proc Soc Exp Biol Med 35:24–26

    CAS  Google Scholar 

  • Turner CW (1950) Thyrotropic hormone. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 215–235

    Google Scholar 

  • Turner CW (1969) Thyrotropic hormone. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 515–565

    Google Scholar 

Iodine Uptake

  • Bates RW, Cornfield J (1957) An improved assay method for thyrotropin using depletion of I131 from the thyroid of day-old chicks. Endocrinology 60:225–238

    CAS  PubMed  Google Scholar 

  • McKenzie JM (1958) The bioassay of thyrotropin in serum. Endocrinology 63:372–382

    CAS  PubMed  Google Scholar 

  • Sakiz E, Guillemin R (1964) On a method for calculation and analysis of results in the McKenzie assay for thyrotropin. Proc Soc Exp Biol Med 115:856–860

    CAS  PubMed  Google Scholar 

  • Turner CW (1950) Thyrotropic hormone. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 215–235

    Google Scholar 

  • Turner CW (1962) Thyrotropic hormone. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 617–639

    Google Scholar 

  • Turner CW (1969) Thyrotropic hormone. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 515–565

    Google Scholar 

TSH Bioassay Based on cAMP Accumulation in CHO Cells

  • Horimoto M, Nishikawa M, Yoshikawa N, Inada N (1989) A sensitive and practical bioassay for thyrotropin using cultured FRTL-5 cells: assessment of bioactivity for serum TSH in patients with chronic renal failure. Acta Endocrinol 121:191–196

    CAS  PubMed  Google Scholar 

  • Nissim M, Lee KO, Petrick PA, Dahlberg PA, Weintraub BD (1987) A sensitive thyrotropin (TSH) bioassay on iodide uptake in rat FRTL-5 thyroid cells: comparison with the adenosine 3′,5′-monophosphate response to human serum TSH and enzymatically deglycosylated bovine and human TSH. Endocrinology 121:1278–1287

    CAS  PubMed  Google Scholar 

  • Persani L, Tonacchera M, Beck-Peccoz P, Vitti P, Mammoli C, Chiovato L, Elisei R, Faglia G, Ludgate M, Vassart G, Pinchera A (1993) Measurement of cAMP accumulation on Chinese hamster ovary cells transfected with the recombinant human TSH receptor (CHO-R): a new bioassay for human thyrotropin. J Endocrinol Invest 16:511–519

    CAS  PubMed  Google Scholar 

  • Vitti P, Chiovato L, Ceccarelli P, Lombardi A, Novaes M Jr, Fenci GF, Pinchera A (1986) Thyroid-stimulating antibody mimics thyrotropin in its ability to desensitize the adenosine 3′,5′-monophosphate response to acute stimulation in continuously cultured rat thyroid cells (FRT-L5). J Clin Endocrinol Metab 63:454–458

    CAS  PubMed  Google Scholar 

Hormones Related to TSH

  • De Felice M, Postiglione MP, Di Lauro R (2004) Minireview: thyrotropin receptor signaling in development and differentiation of the thyroid gland: insights from mouse models and human diseases. Endocrinology 145(9):4027–4062

    Google Scholar 

  • Di Cerbo A, Corda D (1999) Signaling pathways involved in thyroid hyperfunction and growth in Graves’ disease. Biochimie 81(5):415–424

    PubMed  Google Scholar 

  • Dobyns BM, Steelman SL (1953) The thyroid stimulating hormone of the anterior pituitary as distinct from the exophthalmos producing substance. Endocrinology 52:705–711

    CAS  PubMed  Google Scholar 

  • Ludgate M (1999) Animal model of thyroid-associated orbitopathy. Exp Clin Endocrinol Diabetes 107(Suppl 5):S158–S159

    CAS  PubMed  Google Scholar 

Assay of Exophthalmos-Producing Substance (EPS) in Fishes

  • Albert A (1945) The biochemistry of the thyrotropic hormone. Ann N Y Acad Sci 50:466–490

    Google Scholar 

  • Brunish R, Hayashi K, Hayashi J (1962) Purification and properties of exophthalmos-producing substance. Arch Biochem Biophys 98:135–141

    CAS  PubMed  Google Scholar 

  • der Kinderen PJ, Houtstra-Lanz M, Schwarz F (1960) Exophthalmos-producing substance in human serum. J Clin Endocrinol Metab 20:712–718

    Google Scholar 

  • Dobyns BM, Steelman SL (1953) The thyroid stimulating hormone of the anterior pituitary as distinct from the exophthalmos producing substance. Endocrinology 52:705–711

    CAS  PubMed  Google Scholar 

  • Haynie TP, Winzler RJ, Matovinovic J, Carr EA Jr, Beierwaltes WH (1962) Thyroid-stimulating and exophthalmos-producing activity of biochemically altered thyrotropin. Endocrinology 71:782–789

    CAS  PubMed  Google Scholar 

  • Sobonya RE, Dobyns BM (1967) Comparisons of the responses of native Ohio fish and two species of salt-water Fundulus to the exophthalmos-producing substance (EPS) of the pituitary gland. Endocrinology 80:1090–1096

    CAS  PubMed  Google Scholar 

Assay of Long-Acting Thyroid-Stimulating Factor (LATS) in Mice

  • Adams DD (1958) The presence of an abnormal thyroid-stimulating hormone in the serum of some thyrotoxic patients. J Clin Endocrinol Metab 18:699–712

    CAS  PubMed  Google Scholar 

  • Ealey PA, Marshall NJ, Ekins RP (1984) Further studies on the response of a cytochemical bioassay to thyroid stimulators, using reference preparations of thyrotropin and long acting thyroid stimulator. J Endocrinol Invest 7:25–28

    CAS  PubMed  Google Scholar 

  • Ealey PA, Valente WA, Ekins RP, Kohn LD, Marshall NJ (1985) Characterization of monoclonal antibodies raised against solubilized thyrotropin receptors in a cytochemical bioassay for thyroid stimulators. Endocrinology 116:124–131

    CAS  PubMed  Google Scholar 

  • Ikeda H, Nagataki S (1983) Lack of refractoriness to stimulation with long acting thyroid stimulator of thyroid hormone synthesis and thyroid hormone secretion in mice in vivo. Acta Endocrinol 102:392–395

    CAS  PubMed  Google Scholar 

  • Ikeda H, Chiu SC, Kuzuya N, Uchimura H, Nagataki S (1984) Effects of in vivo triiodothyronine and long acting thyroid stimulator (LATS) administration on the in vitro thyroid cAMP response to thyrotrophin and LATS. Acta Endocrinol 106:193–198

    CAS  PubMed  Google Scholar 

  • McKenzie JM (1958) The bioassay of thyrotropin in serum. Endocrinology 63:372–382

    CAS  PubMed  Google Scholar 

Posterior Pituitary Hormones

  • Allison NL, Albrightson-Winslow CR, Brooks DP, Stassen FL, Huffman WF, Stote RM, Kinter LB (1987) Species heterogeneity and antidiuretic activity of hormone antagonists: what are the predictors? In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum, New York, pp 207–214

    Google Scholar 

  • Bell IM, Erb JM, Freidinger RM, Gallicchio SN, Guare JP, Guidotti MT, Halpin RA, Hobbs DW, Homnick CF, Kuo MS, Lis EV, Mathre DJ, Michelson SR, Pawluczyk JM, Pettibone DJ, Reiss DR, Vickers S, Williams PD, Woyden CJ (1998) Development of orally active oxytocin antagonists: studies on 1-(1-(4-[1-(2-methyl-1-oxidopyridin-3-ylmethyl)piperidin-4-yloxy]-2-methoxybenzoyl)-4-yl)-1,4-dihydrobenz[d][1,3]oxazin-2-one (L-372,662) and related pyridines. J Med Chem 41:2146–2163

    CAS  PubMed  Google Scholar 

  • Burnatowska-Hledin MA, Spielman WS (1989) Vasopressin V1 receptors on the principal cells of the rabbit cortical collecting tubule. J Clin Invest 83:84–89

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chan WY, Wo NC, Stoev ST, Cheng LL, Manning M (2000) Discovery and design of novel and selective vasopressin and oxytocin agonists and antagonists: the role of bioassays. Exp Physiol 85(Spec No):7S–18S

    CAS  PubMed  Google Scholar 

  • Dale H, Laidlaw J (1912) A method for standardising pituitary (infundibular) extracts. J Pharmacol Exp Ther 4:73–95

    Google Scholar 

  • Fahrenholz F, Kojro E, Jans D (1988) Renal and hepatic vasopressin receptor proteins: identification and strategies for purification. In: Cowley AW Jr, Liard JF, Ausiello DA (eds) Vasopressin: cellular and integrative functions. Raven, New York, pp 27–32

    Google Scholar 

  • Fromherz K (1926) Bemerkungen zur Auswertung von Hypophysenextrakt am Meerschweinchenuterus. Naunyn-Schmiedebergs Arch Exp Path Pharmakol 113:113–123

    CAS  Google Scholar 

  • Gash DM, Herman JP, Thomas GJ (1987) Vasopressin and animal behavior. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum, New York, pp 517–547

    Google Scholar 

  • Glick SM, Kagan A (1978) Vasopressin. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 341–351

    Google Scholar 

  • Greenberg A, Verbalis JG (2006) Vasopressin receptor antagonists. Kidney Int 69(12):21–30

    Google Scholar 

  • Hedge GA, Huffman LJ (1987) Vasopressin and endocrine function. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum, New York, pp 435–475

    Google Scholar 

  • Hogben LT, Schlapp W (1924) Studies on the pituitary. III. The vasomotor activity of pituitary extracts throughout the vertebrate series. Q J Exp Physiol 14:229–258

    CAS  Google Scholar 

  • Hogben LT, Schlapp W, Macdonald AD (1924) Studies on the pituitary IV. Quantitative comparison of pressor activity. Q J Exp Physiol 14:301–318

    CAS  Google Scholar 

  • Hruby VJ, Chow MS (1990) Conformational and structural considerations in oxytocin-receptor binding and biological activity. Annu Rev Pharmacol Toxicol 30:501–534

    CAS  PubMed  Google Scholar 

  • Jard S, Bockaert J, Rajerison R (1976) Vasopressin receptors. In: Blecher M (ed) Methods in receptor research. Part II. Dekker, New York, pp 667–703

    Google Scholar 

  • Jard S, Gaillard RC, Guillon G, Marie J, Schoenenberg P, Muller AF, Manning M, Sawyer WH (1986) Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol Pharmacol 30:171–177

    CAS  PubMed  Google Scholar 

  • Kagan A, Glick SM (1978) Oxytocin. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 327–339

    Google Scholar 

  • Kuo MS, Bock MG, Freidinger RM, Guidfotti MT, Lis EV, Pawluczyk JM, Perlow DS, Pettibone DJ, Quigley AG, Reiss DR, Williams PD, Woyden CJ (1998) Nonpeptide oxytocin antagonists: potent, bioavailable analogs of L-371,257 containing A 1-R-(pyridyl)ethyl ether terminus. Bioorg Med Chem Lett 8:3081–3086

    CAS  PubMed  Google Scholar 

  • Liard JF (1988) Vasopressin antagonists and their use in animal studies. Kidney Int Suppl 26:S43–S47

    CAS  PubMed  Google Scholar 

  • Mah SC, Hofbauer KG (1987) Pharmacological studies with the vasopressin (V2) antagonist d(CH2)5-d-Tyr(Et)V AVP: acute and chronic effects in Sprague–Dawley and Brattleboro rats. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum, New York, pp 201–206

    Google Scholar 

  • Manning M, Bankowski K, Sawyer WH (1987) Selective agonists and antagonists of vasopressin. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum, New York, pp 335–368

    Google Scholar 

  • Mayinger B, Hensen J (1999) Nonpeptide vasopressin antagonists: a new group of hormone blockers entering the scene. Exp Clin Endocrinol Diabetes 107(3):157–165

    CAS  PubMed  Google Scholar 

  • Serradeil-Le Gal C, Wagnon J, Valette G, Garcia G, Pascal M, Maffrand JP, Le Fur G (2002) Nonpeptide vasopressin receptor antagonists: development of selective and orally active V1a, V2 and V1b receptor ligands. Prog Brain Res 139:197–210

    CAS  PubMed  Google Scholar 

  • Schaumann W (1937) Wirkstoffe des Hinterlappens der Hypophyse. Handbuch exper Pharmakol, vol 3. Springer, Berlin/Heidelberg/New York, pp 61–150

    Google Scholar 

  • Soloff MS (1976) Oxytocin receptors in the mammary gland and uterus. In: Blecher M (ed) Methods in receptor research. Part II. Dekker, New York, pp 511–531

    Google Scholar 

  • Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320(1):1–13

    CAS  PubMed  Google Scholar 

  • Vogel G, Hergott J (1963) Pharmakologische Untersuchungen über O-Methyl-tyrosin2-lysin8-Vasopressin. Arzneimittelforschung 13:415–421

    CAS  PubMed  Google Scholar 

  • Walker BR, Childs ME, Adams EM (1988) Direct cardiac effects of vasopressin: role of V1- and V2-vasopressinergic receptors. Am J Physiol 255:H261–H265

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Sandow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Sandow, J. (2016). Anterior Pituitary Hormones. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_81

Download citation

Publish with us

Policies and ethics