Skip to main content

Measurement of Insulin and Other Glucose-Regulating Peptide Hormones

  • Reference work entry
Drug Discovery and Evaluation: Pharmacological Assays
  • 162 Accesses

Abstract

Insulin activity is an important laboratory parameter in the clinical evaluation of several diseases such as diabetes mellitus types I and II, states of impaired glucose tolerance, and insulin-producing tumors (insulinomas), where the insulin secretion released from pancreas β-cells is altered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

Bioassay for Glucagon

  • Bell GI, Sanchez-Pescador R, Laybourn PJ, Najarian RC (1983) Exon duplication and divergence in the human preproglucagon gene. Nature 304:368–371

    CAS  PubMed  Google Scholar 

  • British Pharmacopoeia (1988) Biological assay of glucagon, vol II. Her Majesty’s Stationary Office, London, pp A70–A171

    Google Scholar 

  • Cam MC, McNeill JH (1996) A sensitive radioimmunoassay optimized for reproducible measurement of rat plasma insulin. J Pharmacol Toxicol Methods 35:111–119

    CAS  PubMed  Google Scholar 

  • Ditschuneit H, Faulhaber JD (1975) Radioimmunoassay of insulin. In: Hasselblatt A, v. Bruchhausen F (eds) Insulin, Part 2. Handbook of experimental pharmacology, vol 32/2. Springer, Berlin/Heidelberg/New York, pp 655–670

    Google Scholar 

  • Freedlender AE, Vandenhoff GE, Macleod MS, Malcolm RR (1984) Radioimmunoassay of insulin. In: Larner J, Pohl SL (eds) Methods in diabetes research. Laboratory methods, Part B, vol I. Wiley, New York, pp 295–305

    Google Scholar 

  • Grodsky GM, Forsham PH (1960) An immunochemical assay of total extractable insulin in man. J Clin Invest 39:1070–1079

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hales CN, Randle PJ (1963) Immunoassay of insulin with insulin-antibody precipitate. Biochem J 88:137–146

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harris V, Faloona GR, Unger RH (1978) Glucagon. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay, 2nd edn. Academic, New York/San Francisco/London, pp 643–656

    Google Scholar 

  • Melani F, Ditschuneit H, Bartelt KM, Friedrich H, Pfeiffer EF (1965) Über die radioimmunologische Bestimmung von Insulin im Blut. Klin Wochenschr 43:1000–1007

    CAS  PubMed  Google Scholar 

  • Melani F, Lawecki J, Bartelt KM, Pfeiffer EF (1967) Immunologisch nachweisbares Insulin (IMI) bei Stoffwechselgesunden, Fettsüchtigen und adipösen Diabetikern nach intravenöser Gabe von Glukose, Tolbutamid und Glucagon. Diabetologia 3:422–426

    CAS  PubMed  Google Scholar 

  • Morgan CR, Lazarow A (1963) Immunoassay of insulin: two antibody system. Plasma insulin levels of normal, subdiabetic and diabetic rats. Diabetes 12:115–126

    Google Scholar 

  • Rodbard D, Frazier GR (1975) Statistical analysis of radioligand assay data. Methods Enzymol 37B:3–22

    Google Scholar 

  • Sheetz MJ, Tager HS (1988) Receptor-linked proteolysis of membrane-bound glucagon yields a membrane associated hormone fragment. J Biol Chem 263:8509–8514

    CAS  PubMed  Google Scholar 

  • Starr JI, Horwitz DL, Rubenstein AH, Mako ME (1979) Insulin, proinsulin and C-peptide. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay, 2nd edn. Academic, New York, pp 613–642

    Google Scholar 

  • Tucker JD, Dhanvantari S, Brubaker PL (1996) Proglucagon processing in islet and intestinal cell lines. Regul Pept 62:29–35

    CAS  PubMed  Google Scholar 

  • Unger RH, Eisentraut AM, McCall MS, Keller S, Lanz HC, Madison LL (1959) Glucagon antibodies and their use for immunoassay for glucagon. Proc Soc Exp Biol Med 102:621–623

    CAS  PubMed  Google Scholar 

  • von Schenk H (1984) Radioimmunoassay of glucagon. In: Larner J, Pohl SL (eds) Methods in diabetes research. Laboratory methods, Part A, vol I. Wiley, New York, pp 327–345

    Google Scholar 

  • Wright PH, Makulu DR, Malaisse WJ, Roberts NM, Yu PL (1968) A method for the immunoassay of insulin. Diabetes 17:537–546

    CAS  PubMed  Google Scholar 

  • Yalow RS, Berson SA (1959) Assay of plasma insulin in human subjects by immunological methods. Nature (London) 21:1648–1649

    Google Scholar 

  • Yalow RS, Berson SA (1960) Immunoassay of endogenous plasma insulin in man. J Clin Invest 39:1157–1175

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yalow R, Black H, Villazon M, Berson SA (1960) Comparison of plasma insulin levels following administration of tolbutamide and glucose. Diabetes 9:356–362

    CAS  PubMed  Google Scholar 

Receptor Binding and In Vitro Activity of Glucagon

  • Azizeh BY, Van Tine BA, Sturm NS, Hutzler AM, David C, Trivedi D, Hruby VJ (1995) [des His1, des Phe6, Glu9]-glucagon amide: a newly designed “pure” glucagon antagonist. Bioorg Med Chem Lett 5:1849–1852

    CAS  Google Scholar 

  • Azizeh BY, Ahn J-M, Caspari R, Shenderovich MD, Trivedi D, Hruby VJ (1997) The role of phenylalanine in position 6 in glucagon’s mechanism of action: multiple replacement analogs of glucagon. J Med Chem 40:2555–2562

    CAS  PubMed  Google Scholar 

  • Goldstein S, Blecher M (1976) Isolation of glucagon receptor proteins from rat liver plasma membranes. In: Blecher M (ed) Methods in receptor research, Part I. Marcel Decker, New York/Basel, pp 119–142

    Google Scholar 

  • Hagopian WA, Tager HS (1983) Receptor binding and cell-mediated metabolism of [125I]monoiodoglucagon by isolated hepatocytes. J Biol Chem 259:8986–8993

    Google Scholar 

  • Jørgensen KH, Larsen UD (1972) Purification of 125I-glucagon by ion exchange chromatography. Horm Metab Res 4:223–224

    PubMed  Google Scholar 

  • Lin MC, Wright DE, Hruby VJ, Rodbell M (1975) Structure-function relationships in glucagon: properties of highly purified des-His1-, monoiodo-, and [des-Asn28, Thr29](homoserine lactone27)-glucagon. Biochemistry 14:1559–1563

    Google Scholar 

  • Neville DM (1968) Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta 154:540–552

    CAS  PubMed  Google Scholar 

  • Pohl SL, Birnbaumer L, Rodbell M (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. J Biol Chem 246:1849–1856

    CAS  PubMed  Google Scholar 

  • Wright DE, Rodbell M (1979) Glucagon1–6 binds to the glucagon receptor and activates hepatic adenylate cyclase. J Biol Chem 254:268–269

    CAS  PubMed  Google Scholar 

Glucagon-Like Peptide I

  • Adelhorst K, Hedegaard BB, Knudsen LB, Kirk O (1994) Structure-activity studies of glucagon-like peptide-1. J Biol Chem 289:6275–6278

    Google Scholar 

  • Baer AR, Dupré J (1989) Suppression of insulin binding by prolonged enteral or parenteral nutrient infusion in the rat: role of gastric inhibitory polypeptide. Can J Physiol Pharmacol 67:1105–1109

    CAS  PubMed  Google Scholar 

  • Creutzfeldt W, Ebert R (1985) New developments in the incretin concept. Diabetologia 28:565–573

    CAS  PubMed  Google Scholar 

  • Dillon JS, Tanizawa Y, Wheeler MB, Leng XH, Ligon BB, Rabin DU, Yoo-Warren H, Permutt MA, Boyd AE III (1993) Cloning and functional expression of the human glucagon-like peptide 1 (GLP-1) receptor. Endocrinology 133:1907–1910

    Google Scholar 

  • Dillon JS, Tanizawa Y, Wheeler MB, Leng XH, Ligon BB, Rabin DU, Yoo-Warren H, Permutt MA, Boyd AE III (1993) Cloning and functional expression of the human glucagon-like peptide 1 (GLP-1) receptor. Endocrinology 133:1907–1910

    Google Scholar 

  • Fehmann HC, Habener JF (1991a) Homologous desensitization of the insulinotropic glucagon-like peptide-1(7–37) receptor in insulinoma (HIT-T15) cells. Endocrinology 128:2880–2888

    CAS  PubMed  Google Scholar 

  • Fehmann HC, Habener JF (1991b) Functional receptors for the insulinotropic hormone glucagon-like peptide-1(7–37) on a somatostatin secreting cell line. FEBS Lett 279:335–340

    CAS  PubMed  Google Scholar 

  • Fehmann HC, Habener JF (1992) Insulinotropic hormone glucagon-like peptide-1(7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma βTC-1 cells. Endocrinology 130:159–166

    CAS  PubMed  Google Scholar 

  • Fehmann HC, Göke B, Göke R, Trautmann ME, Arnold R (1989) Synergistic effect of glucagon-like peptide-1 (7–36) amide and glucose-dependent insulin-releasing polypeptide on the endocrine rat pancreas. FEBS Lett 252:109–112

    CAS  PubMed  Google Scholar 

  • Fehmann HC, Göke B, Weber V, Göke R, Trautmann ME, Richter G, Arnold R (1990) Interaction of glucagon-like peptide-1 (7–36)amide and cholecystokinin-8 in the endocrine and exocrine rat pancreas. Pancreas 5:361–365

    CAS  PubMed  Google Scholar 

  • Fehmann HC, Göke R, Göke B, Bächle R, Wagner B, Arnold R (1991a) Priming effect of glucagon-like peptide-1 (7–36) amide, glucose-dependent insulinotropic polypeptide and cholecystokinin-8 at the isolated perfused rat pancreas. Biochim Biophys Acta 1091:356–363

    CAS  PubMed  Google Scholar 

  • Fehmann HC, Göke R, Eissele R, Arnold R (1991b) Helodermin and islet hormone release in isolated rat pancreas. Int J Pancreatol 8:289–303

    CAS  PubMed  Google Scholar 

  • Fehmann HC, Göke R, Göke B (1992) Glucagon-like peptide-1(7–37)/(7–36)amide is a new incretin. Mol Cell Endocrinol 85:C39–C44

    CAS  PubMed  Google Scholar 

  • Fehmann HC, Göke R, Göke B (1995) Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr Rev 16:390–410

    CAS  PubMed  Google Scholar 

  • Gazdar AF, Chick WL, Oie HK, Sims HL, King DL, Weir GC, Lauris V (1980) Continuous, clonal insulin- and somatostatin-secreting cell line established from a transplantable rat islet cell tumor. Proc Natl Acad Sci U S A 77:3519–3523

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gedulin BR, Nikoulina SE, Smith PA, Gedulin G, Nielsenn LL, Baron AD, Parkes DG, Young AA (2005) Exenatide (exendin-4) improves insulin sensitivity and β-cell mass in insulin-resistant obese fa/fa Zucker rats independent of glycemia and body weight. Endocrinology 146:2069–2076

    CAS  PubMed  Google Scholar 

  • Göke R, Conlon JM (1988) Receptors for glucagon-like peptide-1(7–36)amide on rat insulinoma-derived cells. J Endocrinol 116:357–362

    PubMed  Google Scholar 

  • Göke R, Fehmann HC, Richter G, Trautmann M, Göke B (1989a) Interaction of glucagon-like peptide-1(7–36)amide and somatostatin-14 in RINm5F cells and in the perfused rat pancreas. Pancreas 4:668–673

    PubMed  Google Scholar 

  • Göke R, Trautmann ME, Haus E, Richter G, Fehmann HC, Arnold R, Göke B (1989b) Signal transmission after GLP-1(7–36)amide binding in RINm5F cells. Am J Physiol 257(Gastrointest Liver Physiol 20):G397–G401

    Google Scholar 

  • Göke R, Oltmer B, Sheikh SP, Göke B (1992) Solubilization of active GLP-1(7–36)amide receptors from RINm5F plasma membranes. FEBS Lett 300:232–236

    PubMed  Google Scholar 

  • Göke R, Wagner B, Fehmann HC, Göke B (1993a) Glucose-dependency of the insulin stimulatory effect of glucagon-like peptide-1(7–36)amide on the rat pancreas. Res Exp Med 193:97–103

    Google Scholar 

  • Göke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, Göke B (1993b) Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide-1(7–36)amide receptor of insulin-secreting β-cells. J Biol Chem 268:19650–19655

    PubMed  Google Scholar 

  • Gutniak M, Ørskov C, Holst JJ, Ahrén B, Efendic S (1992) Antidiabetogenic effect of glucagon-like peptide-1(7–36)amide in normal subjects and patients with diabetes mellitus. New Engl J 326:1316–1322

    CAS  Google Scholar 

  • Hjorth SA, Schwartz TW (1996) Glucagon and GLP-1 receptors: lessons from chimeric ligands and receptors. Acta Physiol Scand 157:343–345

    CAS  PubMed  Google Scholar 

  • Holz GG, Kühtreiber WM, Habener JF (1993) Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7–37). Nature 361:362–365

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jehle PM, Jehle D, Fußgänger RD, Adler G (1995) Effects of glucagon-like peptide-1 (GLP-1) in RINm5F insulinoma cells. Exp Clin Endocrinol 103:31–36

    Google Scholar 

  • Komatsu R, Matsuyama T, Namba M, Watanabe N, Itoh H, Kono N, Tarui S (1989) Glucagonostatic and insulinotropic action of glucagon-like peptide 1(7–36)-amide. Diabetes 38:902–905

    CAS  PubMed  Google Scholar 

  • Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7–37: a physiological incretin in man. Lancet 1987:1300–1303

    Google Scholar 

  • Lankat-Buttgereit B, Göke R, Fehmann HC, Richter G, Göke B (1994) Molecular cloning of a cDNA encoding for the GLP-1 receptor expressed in rat lung. Exp Clin Endocrinol 102:341–347

    CAS  PubMed  Google Scholar 

  • Meurer JA, Colca JR, Burton PS, Elhammer AP (1999) Properties of native and in vitro glycosylated forms of the glucagon-like peptide-1 receptor antagonist exendin(9–39). Metabolism 48:716–724

    CAS  PubMed  Google Scholar 

  • Montrose-Rafizadeh C, Yang H, Rodgers BD, Beday A, Pritchette LA, Eng J (1997) High potency antagonists of the pancreatic glucagon-like peptide-1 receptor. J Biol Chem 272:21201–21206

    CAS  PubMed  Google Scholar 

  • Nathan DM, Schreiber E, Fogel H, Mojsov S, Habener JF (1992) Insulinotropic action of glucagon-like peptide-1-(7–37) in diabetic and nondiabetic subjects. Diabetes Care 15:270–276

    CAS  PubMed  Google Scholar 

  • Nauck MA, Heimesaat MM, Ørskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory peptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ørskov C, Wettergren A, Holst JJ (1993) Biological effects and metabolic rates of glucagonlike peptide-1 7–36 amide and glucagonlike peptide-1 7–37 in healthy subjects are indistinguishable. Diabetes 42:658–661

    PubMed  Google Scholar 

  • Praz GA, Halban PA, Wollheim CB, Blondel B, Strauss JA, Reynold AE (1983) Regulation of immunoreactive insulin release from a rat cell line (RINm5F). Biochem J 210:345–352

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schepp W, Schmidtler J, Riedel T, Dehne K, Schusdziarra V, Holst JJ, Eng J, Raufman JP, Classen M (1994) Exendin-4 and exendin-(9–39)NH2: agonist and antagonist, respectively, at the rat parietal cell receptor for glucagon-like peptide-1-(7–36)NH2. Eur J Pharmacol Mol Pharmacol Sect 269:183–191

    CAS  Google Scholar 

  • Schepp W, Dehne K, Riedel T, Schmidtler J, Schaffer K, Classen M (1996) Oxyntomodulin: a cAMP-dependent stimulus of rat parietal cell function via the receptor for glucagon-like peptide-1 (7–36)NH2. Digestion 57:398–405

    CAS  PubMed  Google Scholar 

  • Shechter Y, Tsubery H, Fridkin M (2003) [2-Sulfo-9-fluorenylmethoxycarbony]3-exendin-4 – a long-acting glucose-lowering prodrug. Biochem Biophys Res Commun 305:386–391

    CAS  PubMed  Google Scholar 

  • Thorens B (1992) Expression cloning of the pancreatic β cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci U S A 89:8641–8645

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CMB, Meeran K, Chol SJ, Taylor GM, Heath MM, Lambert PD, Wilding JPH, Smith DM, Ghatei MA, Herbert J, Bloom SR (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72

    CAS  PubMed  Google Scholar 

  • Valverde I, Merida E, Delgado E, Trapote MA, Villanueva-Penacarillo ML (1993) Presence and characterization of glucagon-like peptide-1(7–36)amide receptors in solubilized membranes of rat adipose tissue. Endocrinol 132:75–79

    CAS  Google Scholar 

  • Van Delft J, Uttenthal LO, Hermida OG, Fontela T, Ghiglione M (1997) Identification of amidated forms of GLP-1 in rat tissues using a highly sensitive radioimmunoassay. Regul Pept 70:191–198

    PubMed  Google Scholar 

  • Volz A, Göke R, Lankat-Buttgereit B, Fehmann HC, Bode HP, Göke B (1995) Molecular cloning, functional expression, and signal transduction of the GIP-receptor cloned from a human insulinoma. FEBS Lett 373:23–29

    CAS  PubMed  Google Scholar 

  • Watanabe Y, Kawai K, Ohashi S, Yokota C, Suzuki S, Yamashita K (1994) Structure-activity of glucagon-like peptide-1(7–36)amide: insulinotropic activities in perfused rat pancreas, and receptor binding and cyclic AMP production in RINm5F cells. J Endocrinol 140:45–52

    CAS  PubMed  Google Scholar 

Insulin-Like Growth Factors

  • Ballard FJ, Wallace JC, Francis GL, Read LC, Tomas FM (1996) Des(1–3)IGF-I: a truncated form of insulin-like growth factor-I. Int J Biochem Cell Biol 28:1085–1087

    CAS  PubMed  Google Scholar 

  • Boge A, Sauerwein H, Meyer HHD (1994) An enzyme immunoreceptor assay for the quantitation of insulin-like growth factor-1 and insulin receptors in bovine muscle tissue. Anal Biochem 216:406–412

    CAS  PubMed  Google Scholar 

  • Burvin R, LeRoith D, Harel H, Zloczower M, Marbach M, Karnieli E (1998) The effect of acute insulin-like growth factor-II administration on glucose metabolism in the rat. Growth Horm IGF Res 8:205–210

    CAS  PubMed  Google Scholar 

  • Cascieri MA, Saperstein R, Hayes NS, Green BG, Chicchi GG, Applebaum J, Bayne ML (1988) Serum half-live and biological activity of mutants of human insulin-like growth factor I which do not bind to serum binding proteins. Endocrinol 123:373–381

    CAS  Google Scholar 

  • Damon SE, Haugk KL, Swisshelm K, Quinn LS (1997) Developmental regulation of mac25/insulin-like growth factor-binding protein-7 expression in skeletal myogenesis. Exp Cell Res 237:192–195

    CAS  PubMed  Google Scholar 

  • DeMeyts P (1994) The structural basis of insulin and insulin-like growth factor-I receptor binding and negative cooperativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia 37(Suppl 2):S135–S148

    CAS  Google Scholar 

  • Dideriksen LH, Jørgensen LN, Drejer K (1992) Carcinogenic effect on female rats after 12 months administration of the insulin analog B10 Asp. Diabetes 41(Suppl I):143A

    Google Scholar 

  • Drejer K (1992) The bioactivity of insulin analogs from in vitro receptor binding to in vivo glucose uptake. Diabetes Metab Rev 8:259–286

    CAS  PubMed  Google Scholar 

  • Ernst CW, White ME (1996) Hormonal regulation of IGF-binding protein-2 expression in C2C12 myoblasts. J Endocrinol 149:417–429

    CAS  PubMed  Google Scholar 

  • Fantl WJ, Johnson DE, Williams LT (1993) Signalling by receptor tyrosine kinases. Annu Rev Biochem 62:453–481

    CAS  PubMed  Google Scholar 

  • Froesch ER, Schmid C, Schwander J, Zapf J (1985) Actions of insulin-like growth factors. Ann Rev Physiol 47:443–467

    CAS  Google Scholar 

  • Frystyk J, Baxter RC (1998) Competitive assay for determination of rat insulin-like growth factor binding protein-3. Endocrinology 139:1454–1457

    CAS  PubMed  Google Scholar 

  • Gammeltoft S, Drejer K (1991) Increased mitogenic potency of high affinity insulin analogs in mouse NIH 3 T3 fibroblasts. J Cell Biol Suppl 15B:54

    Google Scholar 

  • Gazzano-Santoro H, Chen A, Mukku V (1998) A cell-based potency assay for insulin-like growth factor-1. Biologicals 26:61–68

    CAS  PubMed  Google Scholar 

  • Hodgson D, May FEB, Westley BR (1995) Mutations at positions 11 and 60 of insulin-like growth factor 1 reveal differences between its interaction with the type I insulin-like-growth-factor receptor and the insulin receptor. Eur J Biochem 233:299–309

    CAS  PubMed  Google Scholar 

  • Jonsson KB, Frost A, Larrson R, Ljunghall S, Ljunggren O (1997) A new fluorometric assay for the determination of osteoblastic proliferation: effects of glucocorticoids and insulin-like growth factor-1. Calcif Tissue Int 60:30–36

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Agrawal K, Jackson IT, Vega JB (1996) The effect of insulin-like growth factor 1 on craniofacial bone healing. Plast Reconstr Surg 97:1129–1135

    CAS  PubMed  Google Scholar 

  • Laron Z (1999) Somatomedin-1 (recombinant insulin-like growth factor-1): clinical pharmacology and potential treatment of endocrine and metabolic disorders. Biodrugs 11:55–70

    CAS  PubMed  Google Scholar 

  • Lee Y-R, Oshita Y, Tsuboi R, Ogawa H (1996) Combination of insulin-like growth factor (IGF)-I and IGF-binding protein-1 promotes fibroblast-embedded collagen gel contraction. Endocrinology 137:5278–5283

    CAS  PubMed  Google Scholar 

  • Moxley RT, Arner P, Moss A, Skottner A, Fox M, James D, Livingston JN (1990) Acute effects of insulin-like growth factor I and insulin on glucose metabolism in vivo. Am J Physiol Endocrinol Metab 259:E561–E567

    CAS  Google Scholar 

  • Naruse K, Sakakibara F, Nakamura J, Koh N, Hotta N (1996) Enhancement and inhibition of mitogenic action of insulin-like growth factor I by high glucose in cultured bovine retinal pericytes. Life Sci 58:267–276

    CAS  PubMed  Google Scholar 

  • Nevo Z (1982) Somatomedins as regulators of proteoglycan synthesis. Connect Tissue Res 10:109–113

    CAS  PubMed  Google Scholar 

  • Nielsen FC, Haselbacher G, Christiansen J, Lake M, Grønborg M, Gammeltoft S (1993) Biosynthesis of 10 kDa and 7.5 kDa insulin-like growth factor II in a human rhab-domyosarcoma cell line. Mol Cell Endocrinol 93:87–95

    CAS  PubMed  Google Scholar 

  • Pierson RW, Temin HM (1972) The partial purification from calf serum of a fraction with multiplication-stimulating activity for chicken fibroblasts in the cell culture and with non-suppressible insulin-like activity. J Cell Physiol 79:319–330

    CAS  PubMed  Google Scholar 

  • Rechler MM (1985) The nature and regulation of the receptors for insulin-like growth factors. Ann Rev Physiol 47:425–442

    CAS  Google Scholar 

  • Rinderknecht E, Humbel RE (1978a) The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 253:2769–2776

    CAS  PubMed  Google Scholar 

  • Rinderknecht E, Humbel RE (1978b) Primary structure of human insulin-like growth factor II. FEBS Lett 89:283–286

    CAS  PubMed  Google Scholar 

  • Roth RA (1988) Structure of the receptor for insulin-like growth factor II: the puzzle amplified. Science 239:1269–1271

    CAS  PubMed  Google Scholar 

  • Salamon EA, Luo J, Murphy LJ (1989) The effect of acute and chronic insulin administration on insulin-like growth factor expression in the pituitary-intact and hypophysectomized rat. Diabetologia 32:348–353

    CAS  PubMed  Google Scholar 

  • Salmon WD, Daughaday WH (1957) A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vivo. J Lab Clin Med 49:825–836

    CAS  PubMed  Google Scholar 

  • Sara VR, Hall K (1990) Insulin-like growth factors and their binding proteins. Physiol Rev 70:591–614

    CAS  PubMed  Google Scholar 

  • Schäffer L, Kjeldsen T, Andersen AS, Wiberg FC, Larsen UD, Cara JF, Mirmira RG, Nakagawa SH, Tager HS (1993) Interaction of a hybrid insulin/insulin-like growth factor-I analog with chimeric insulin/type I insulin-like growth factor receptors. J Biol Chem 268:3044–3047

    PubMed  Google Scholar 

  • Shizume K, Marumoto Y, Sakano KI (1996) Hypoglycemic effect of insulin-like growth factor II (IGF-II) is mediated mainly through insulin and/or IGF-I receptor but not IGF-II receptor. Clin Pediatr Endocrinol 5(Suppl 8):77–83

    Google Scholar 

  • Schlessinger J, Ullrich A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9:383–391

    CAS  PubMed  Google Scholar 

  • Schmitz F, Hartmann H, Stümpel F, Creutzfeldt W (1991) In vivo metabolic action of insulin-like growth factor I in adult rats. Diabetologie 34:144–149

    CAS  Google Scholar 

  • Schwander J, Hauri C, Zapf J, Froesch ER (1983) Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: dependence on growth hormone status. Endocrinol 113:297–305

    CAS  Google Scholar 

  • Simpson HL, Umpleby AM, Russell-Jones DL (1998) Insulin-like growth factor-1 and diabetes. A review. Growth Horm IGF Res 8:83–95

    CAS  PubMed  Google Scholar 

  • Steinke J, Sirek A, Lauris V, Lukens FDW, Renold AE (1962) Measurement of small quantities of insulin-like activity with rat adipose tissue. III. Persistence of serum insulin-like activity after pancreatectomy. J Clin Invest 41:1699–1707

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212

    CAS  PubMed  Google Scholar 

  • Verspohl EJ, Maddux BA, Goldfine ID (1988) Insulin and insulin-like growth factor I regulate the same biological functions in HEP-G2 cells via their own specific receptors. J Clin Endocrinol Metab 67:169–174

    CAS  PubMed  Google Scholar 

  • Vikman K, Isgaard J, Edén S (1991) Growth hormone regulation of insulin-like growth factor-I mRNA in rat adipose tissue and isolated rat adipocytes. J Endocrinol 131:139–145

    CAS  PubMed  Google Scholar 

  • Zapf J, Waldvogel M, Froesch ER (1975) Binding of nonsuppressible insulin-like activity to human serum: evidence for a carrier protein. Arch Biochem Biophys 168:638–645

    CAS  PubMed  Google Scholar 

Amylin

  • Beaumont K, Kenney MA, Young AA, Rink TJ (1993) High affinity amylin binding sites in rat brain. Mol Pharmacol 44:493–497

    CAS  PubMed  Google Scholar 

  • Bell D, McDermont BJ (1995) Activity of amylin at CGRP1-preferring receptors coupled to positive contractile response in rat ventricular cardiomyocytes. Regul Pept 60:125–133

    CAS  PubMed  Google Scholar 

  • Bell D, Schluter KD, Zhou X-J, McDermont BJ, Piper HM (1995) Hypertrophic effect of calcitonin gene-related peptide (CGRP) and amylin on adult mammalian ventricular cardiomyocytes. J Mol Cell Cardiol 27:2433–2443

    CAS  PubMed  Google Scholar 

  • Bhasvar S, Watkins J, Young A (1998) Synergy between amylin and cholecystokinin for inhibition of food intake in mice. Physiol Behav 64:557–561

    Google Scholar 

  • Bryer-Ash M, Follett L, Hodges N, Wimalawansa SJ (1995) Amylin-mediated reduction in insulin sensitivity corresponds to reduced insulin receptor kinase activity in the rat in vivo. Metab Clin Exp 44:705–711

    CAS  PubMed  Google Scholar 

  • Castle AL, Kou CH, Han DH, Ivy JL (1998) Amylin-mediated inhibition of insulin-stimulated glucose transport in skeletal muscle. Am J Physiol 275:E531–536

    CAS  PubMed  Google Scholar 

  • Clementi G, Caruso A, Cutulli VCM, Prato A, de Bernardis E, Fiore CE, Amico-Roxas M (1995) Anti-inflammatory activity of amylin and CGRP in different experimental models of inflammation. Life Sci 57:PL193–PL197

    CAS  PubMed  Google Scholar 

  • Clementi G, Valerio C, Emmi I, Prato A, Drago F (1996) Behavioral effects of amylin injected intracerebroventricularly in the rat. Peptides 17:589–591

    CAS  PubMed  Google Scholar 

  • Clementi G, Caruso A, Cutuli VMC, Prato A, de Bernardis A, Amico-Roxas M (1997) Effect of amylin in various experimental models of gastric ulcer. Eur J Pharmacol 332:209–213

    CAS  PubMed  Google Scholar 

  • Cornish J, Callon KE, King AR, Cooper GJS, Reid IR (1998) Systemic administration of amylin increases bone mass, linear growth, and adiposity in male mice. Am J Physiol 275:E694–699

    CAS  PubMed  Google Scholar 

  • Göke R, McGregor GP, Göke B (1993) Amylin alters biological effects of GLP-1 in the beta-cell. Digestion 54:355–356

    Google Scholar 

  • Guidobono F, Pagani F, Ticozzi C, Sibilia V, Pecile A, Netti C (1997) Protection by amylin of gastric erosions induced by indomethacin or ethanol in rats. Br J Pharmacol 120:581–596

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guidobono F (1998) Amylin and gastrointestinal activity. Gen Pharmacol 31:173–177

    CAS  PubMed  Google Scholar 

  • Janson J, Soeller WC, Roche PC, Nelson RT, Torchia AJ, Kreutter DK, Butler PC (1996) Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc Natl Acad Sci U S A 93:7283–7288

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leckstrom A, Ziv E, Shafrir E, Westermark P (1997) Islet amyloid polypeptide in Psammomys obesus (sand rat): effects of nutritionally induced diabetes and recovery on low-energy diet or vanadyl sulfate treatment. Pancreas 15:358–366

    CAS  PubMed  Google Scholar 

  • Lutz TA, Rossi R, Althaus J, Del Prete E, Scharrer E (1998) Amylin reduces food intake more potently than calcitonin gene-related peptide (CGRP) when injected into the lateral brain ventricle in rats. Peptides 19:1533–1540

    CAS  PubMed  Google Scholar 

  • Macdonald IA (1997) Amylin and the gastrointestinal tract. Diabet Med 14(Suppl 2):S24–S28

    PubMed  Google Scholar 

  • Morley JE, Suarez MD, Mattamal M, Flood JF (1997) Amylin and food intake in mice: effect on motivation to eat and mechanism of action. Pharmacol Biochem Behav 56:123–129

    CAS  PubMed  Google Scholar 

  • Muff R, Born W, Fischer JA (1995) Receptors for calcitonin, calcitonin gene related peptide, amylin, and adrenomedullin. Can J Physiol Pharmacol 73:963–967

    CAS  PubMed  Google Scholar 

  • Mulder H, Gebre-Medhin S, Betsholtz C, Sundler F, Ahrén B (2000) Islet amyloid polypeptide (amylin)-deficient mice develop a more severe form of alloxan-induced diabetes. Am J Physiol Endocrinol Metab 278:E684–E691

    CAS  PubMed  Google Scholar 

  • Perry KJ, Quiza M, Myers DE, Morfis M, Christopoulos G, Sexton PM (1997) Characterization of amylin and calcitonin receptor binding in the mouse α-thyroid-stimulating hormone thyrotroph cell line. Endocrinol 138:3486–4396

    CAS  Google Scholar 

  • Pittner RA, Albrandt K, Beaumont K, Gaeta LSL, Koda JE, Moore CX, Ritterhouse J, Rink TJ (1994) Molecular physiology of amylin. J Cell Biochem 555:19–28

    Google Scholar 

  • Poyner DR (1997) Molecular pharmacology of receptors for calcitonin-gene-related peptide, amylin and adrenomedullin. Biochem Soc Trans 25:1032–1036

    CAS  PubMed  Google Scholar 

  • Rossowski WJ, Jiang NY, Coy DH (1997) Adrenomedullin, amylin, calcitonin gene-related peptide and their fragments are potent inhibitors of gastric acid secretion in rats. Eur J Pharmacol 336:51–63

    CAS  PubMed  Google Scholar 

  • Rink TJ, Beaumont K, Koda J, Young A (1993) Structure and biology of amylin. Trends Pharmacol Sci 14:113–118

    CAS  PubMed  Google Scholar 

  • Sheriff S, Fischer JE, Balasubramaniam A (1992) Characterization of amylin binding sites in a human hepatoblastoma cell line. Peptides 13:1193–1199

    CAS  PubMed  Google Scholar 

  • Van Hulst KL, Born W, Muff R, Oosterwijk C, Blankenstein MA, Lips CJM, Fischer JA, Höppener JWM (1997) Biologically active human islet amyloid polypeptide/Amylin in transgenic mice. Eur J Endocrinol 136:107–113

    PubMed  Google Scholar 

  • Van Rossum D, Hanisch UK, Quirion R (1997) Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 21:649–678

    PubMed  Google Scholar 

  • Villa I, Rubanacci A, Ravasi F, Ferrara AF, Guidobono F (1997) Effects of amylin on human osteoblast-like cells. Peptides 18:537–540

    CAS  PubMed  Google Scholar 

  • Vine W, Smith P, LaChappell R, Blase E, Young A (1998) Effects of amylin on renal function in the rat. Horm Metab Res 30:518–522

    CAS  PubMed  Google Scholar 

  • Wagoner PK, Chen C, Worley JF, Dukes ID, Oxford GS (1993) Amylin modulates β-cell glucose sensing via effects on stimulus-secretion coupling. Proc Natl Acad Sci U S A 90:9145–9149

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wimalawansa SJ (1996) Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev 17:533–585

    CAS  PubMed  Google Scholar 

  • Wimalawansa SJ (1997) Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin: a peptide superfamily. Crit Rev Neurobiol 11:167–239

    CAS  PubMed  Google Scholar 

  • Young AA, Gedulin B, Wolfe-Lopez D, Greene HE, Rink TJ, Cooper GJS (1992) Amylin and insulin in rat soleus muscle: dose response for cosecreted noncompetitive antagonists. Am J Physiol 263:E274–281

    CAS  PubMed  Google Scholar 

  • Young AA, Vine W, Gedulin BR, Pittner R, Janes S, Gaeta LSL, Percy A, Moore CX, Koda JE, Rink TJ, Beaumont K (1996) Preclinical pharmacology of pramlintide in the rat: comparison with human and rat amylin. Drug Dev Res 37:231–248

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Müller, G. (2016). Measurement of Insulin and Other Glucose-Regulating Peptide Hormones. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_66

Download citation

Publish with us

Policies and ethics