Skip to main content

Abstract

Inflammation was characterized 2,000 years ago by Celsus by the four Latin words: rubor, calor, tumor, and dolor. Inflammation has different phases: the first phase is caused by an increase of vascular permeability resulting in exudation of fluid from the blood into the interstitial space, the second one by infiltration of leukocytes from the blood into the tissues, and the third one by granuloma formation. Accordingly, anti-inflammatory tests have to be divided into those measuring acute inflammation, subacute inflammation, and chronic repair processes. In some cases, the screening is directed to test compounds for local application. Predominantly, however, these studies are aimed to find new drugs against polyarthritis and other rheumatic diseases. Since the etiology of polyarthritis is considered to be largely immunological, special tests have been developed to investigate various immunological and allergic factors (see “Antiarthrotic and Immunomodulatory Activity”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

In Vitro Methods for Anti-Inflammatory Activity

  • Alla SA, Buschko J, Quitterer U, Maidhof A, Haasemann M, Breipohl G, Knolle J, Müller-Esterl W (1993) Structural features of human bradykinin B2 receptor probed by agonists, antagonists, and anti-idiotypic antibodies. J Biol Chem 268:17277–17285

    CAS  PubMed  Google Scholar 

  • Bascands JL, Pecher C, Rounaud S, Emond C, Tack JL, Bastie MJ, Burch R, Regoli D, Girolami JP (1993) Evidence for existence of two distinct bradykinin receptors on rat mesangial cells. Am J Physiol 264:F548–F556

    CAS  PubMed  Google Scholar 

  • Bouthillier J, Deblois D, Marceau F (1987) Studies on the induction of pharmacological responses to des-Arg9-bradykinin in vitro and in vivo. Br J Pharmacol 92:257–264

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brenner NJ, Stonesifer GY, Schneck KA, Burns HD, Ransom RW (1993) [125I]PIP HOE 140, a high affinity radioligand for bradykinin B2 receptors. Life Sci 53:1879–1886

    CAS  PubMed  Google Scholar 

  • Burch RM, Kyle DJ (1992) Minireview: recent developments in the understanding of bradykinin receptors. Life Sci 50:829–838

    CAS  PubMed  Google Scholar 

  • Burch RM, Farmer SG, Steranka LR (1990) Bradykinin receptor antagonists. Med Res Rev 10:237–239

    CAS  PubMed  Google Scholar 

  • Burch RM, Kyle DJ, Stormann TM (1993) Molecular biology and pharmacology of bradykinin receptors: the pharmacological classification of kinins. RG Landes, Austin, pp 6–18

    Google Scholar 

  • Butt SK, Dawson LG, Hall JM (1995) Bradykinin B1 receptors in the rabbit urinary bladder: induction of responses, smooth muscle contraction, and phosphatidylinositol hydrolysis. Br J Pharmacol 114:612–617

    PubMed Central  CAS  PubMed  Google Scholar 

  • Calixto JB, Medeiros R, Fernandes ES, Ferreira J, Caprini DA, Campos MM (2004) Kinin B1 receptors: key G-protein coupled receptors and their role in inflammatory and painful processes. Br J Pharmacol 143:803–818

    PubMed Central  CAS  PubMed  Google Scholar 

  • Campos MM, Souza GEP, Calixto JB (1996) Upregulation of B1 receptor mediating des-Arg9-BK-induced rat paw edema by systemic treatment with bacterial endotoxin. Br J Pharmacol 117:793–798

    PubMed Central  CAS  PubMed  Google Scholar 

  • Drummond GR, Cocks TM (1995) Endothelium-dependent relaxations mediated by inducible B1 and constitutive B2 kinin receptors in the bovine coronary artery. Br J Pharmacol 116:2473–2481

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eggerickx D, Raspe E, Bertrand D, Vassart G, Parmentier M (1992) Molecular cloning, functional expression and pharmacological characterization of a human bradykinin B2 receptor gene. Biochem Biophys Res Commun 187:1306–1313

    CAS  PubMed  Google Scholar 

  • Emond C, Bascands JL, Pecher C, Cabos-Boutot G, Pradelles P, Regoli D, Girolami JP (1990) Characterization of a B2-bradykinin receptor in rat mesangial cells. Eur J Pharmacol 190:381–392

    CAS  PubMed  Google Scholar 

  • Falcone RC, Hubbs SJ, Vanderloo JD, Prosser JC, Little J, Gomes B, Aharony D, Krell RD (1993) Characterization of bradykinin receptors in guinea pig gall bladder. J Pharmacol Exp Ther 266:1291–1299

    CAS  PubMed  Google Scholar 

  • Farmer SG, Burch RM, Meeker SA, Wilkins DE (1989) Evidence for a pulmonary B3 bradykinin receptor. Mol Pharmacol 36:1–8

    CAS  PubMed  Google Scholar 

  • Félétou M, Germain M, Thurieau C, Fauchère JL, Canet E (1994) Agonistic and antagonistic properties of the bradykinin B2 receptor antagonist, Hoe 140, in isolated blood vessels from different species. Br J Pharmacol 112:683–689

    PubMed Central  PubMed  Google Scholar 

  • Feres T, Paiva ACM, Paiva TB (1992) BK1 and BK2 bradykinin receptors in the rat duodenum smooth muscle. Br J Pharmacol 107:991–995

    PubMed Central  CAS  PubMed  Google Scholar 

  • Field JL, Hall JM, Morton IKM (1992) Putative novel bradykinin B3 receptors in the smooth muscle of the guinea-pig taenia caeci and trachea. Recent progress on kinins. Birkhäuser, Basel, pp 540–545

    Google Scholar 

  • Field JL, Butt SK, Morton IKM, Hall JM (1994) Bradykinin B2 receptors and coupling mechanisms in the smooth muscle of guinea-pig taenia caeci. Br J Pharmacol 113:607–613

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fortin JP, Marceau F (2006) Advances in the development of bradykinin receptor ligands. Curr Top Med Chem 6:1353–1363

    CAS  PubMed  Google Scholar 

  • Galizzi JP, Bodinier MC, Chapelain B, Ly SM, Coussy L, Giraud S, Neliat G, Jean T (1994) Up-regulation of [3H]-des-arg10-kallidin binding to the bradykinin B1 receptor by interleukin-1β in isolated smooth muscle cells: correlation with B1 agonist-induced PGI2 production. Br J Pharmacol 113:389–394

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gobeil F, Regoli D (1994) Characterization of kinin receptors by bioassays. Braz J Med Biol Res 27:1781–1791

    CAS  PubMed  Google Scholar 

  • Graneß A, Liebmann C (1994) Affinity cross-linking of bradykinin B2 receptors in guinea pig ileum membranes. Eur J Pharmacol 268:271–274

    PubMed  Google Scholar 

  • Hallé S, Gobeil F Jr, Ouelette J, Lambert C, Regoli D (2000) In vitro and in vivo effects of kinin B1 and B2 receptor agonists and antagonists in inbred control and cardiomyopathic hamsters. Br J Pharmacol 129:1641–2648

    PubMed Central  PubMed  Google Scholar 

  • Heitsch H (2002) Non-peptide antagonists and agonists of the bradykinin B2 receptor. Curr Med Chem 9:913–928

    CAS  PubMed  Google Scholar 

  • Hess JKF, Borkowski JA, Young GS, Strader CD, Ramson RW (1992) Cloning and pharmacological characterization of a human bradykinin (BK-2) receptor. Biochem Biophys Res Commun 184:260–268

    CAS  PubMed  Google Scholar 

  • Hock FJ, Wirth K, Albus U, Linz W, Gerhards HJ, Wiemer G, Henke S, Breipohl G, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin antagonist: in vitro studies. Br J Pharmacol 102:769–773

    PubMed Central  CAS  PubMed  Google Scholar 

  • Innis RB, Manning DC, Stewart JM, Snyder SH (1981) [3H]Bradykinin receptor binding in mammalian tissue membranes. Proc Natl Acad Sci U S A 78:2630–2634

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kachur JF, Allbee W, Danjo W, Gaginella TS (1987) Bradykinin receptors: functional similarities in guinea pig gut muscle and mucosa. Regul Pept 17:63–70

    CAS  PubMed  Google Scholar 

  • Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL (2005) International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 57:27–77

    CAS  PubMed  Google Scholar 

  • Liebmann C, Bossé R, Escher E (1994a) Discrimination between putative bradykinin B2 receptor subtypes in guinea pig ileum smooth muscle membranes with a selective, iodinatable, bradykinin analogue. Mol Pharmacol 46:949–956

    CAS  PubMed  Google Scholar 

  • Liebmann C, Mammery K, Graneß A (1994b) Bradykinin inhibits adenylate cyclase activity in guinea pig membranes via a separate high-affinity bradykinin B2 receptor. Eur J Pharmacol 288:35–43

    CAS  PubMed  Google Scholar 

  • Manning DC, Vavrek R, Stewart JM, Snyder SH (1986) Two bradykinin binding sites with picomolar affinities. J Pharmacol Exp Ther 237:504–512

    CAS  PubMed  Google Scholar 

  • Marceau F, Regoli D (2004) Bradykinin receptor ligands: therapeutic perspectives. Nat Rev Drug Discov 3:845–852

    CAS  PubMed  Google Scholar 

  • Marceau F, Hess JF, Bachvarov DR (1998) The B1 receptors for kinins. Pharmacol Rev 50:357–386

    CAS  PubMed  Google Scholar 

  • McEachern AE, Shelton ER, Bhakta S, Obernolte R, Bach C, Zuppan P, Fujisaki J, Aldrich RW, Jarnagin K (1991) Expression cloning of a rat B2 bradykinin receptor. Proc Natl Acad Sci U S A 88:7724–7728

    PubMed Central  CAS  PubMed  Google Scholar 

  • McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Methods 14:213–228

    CAS  PubMed  Google Scholar 

  • Meini S, Bellucci F, Cucchi P, Giuliani S, Quartara L, Giolitti A, Zappitelli S, Rotondaro L, Boels K, Maggi CA (2004) Bradykinin B2 and GPR100 receptors: a paradigm for receptor signal transduction pharmacology. Br J Pharmacol 143:938–941

    PubMed Central  CAS  PubMed  Google Scholar 

  • Menke JG, Borkowski JA, Bierilo KK, MacNeill T, Derrick AW, Schneck KA, Ransom RW, Strader CD, Linemeyer DL, Hess JF (1994) Expression cloning of a human bradykinin B1 receptor. J Biol Chem 269:21583–21586

    CAS  PubMed  Google Scholar 

  • Prado GN, Taylor L, Zhou X, Ricupero D, Mierke DF, Polgar P (2002) Mechanisms regulating the expression, self-maintenance, and signaling-function of the bradykinin B2 and B1 receptors. J Cell Physiol 193:275–286

    CAS  PubMed  Google Scholar 

  • Pruneau D, Bélichard P (1993) Induction of bradykinin B1 receptor-mediated relaxation in the isolated rabbit carotid artery. Eur J Pharmacol 239:63–67

    CAS  PubMed  Google Scholar 

  • Regoli D, Gobeil F, Nguyen QT, Jukic D, Seoane PR, Salvino JM, Sawutz DG (1994) Bradykinin receptor types and B2 subtypes. Life Sci 55:735–749

    CAS  PubMed  Google Scholar 

  • Rhaleb NE, Carretero OA (1994) The role of B1 and B2 receptors and of nitric oxide in bradykinin-induced relaxation and contraction of isolated rat duodenum. Life Sci 55:1351–1363

    CAS  PubMed  Google Scholar 

  • Rhaleb NE, Rouissi N, Jukic D, Regoli D, Henke S, Breipohl G, Knolle J (1992) Pharmacological characterization of a new highly potent B2 receptor antagonist (HOE 140: D-arg-[hyp3, thi5, D-tic7, oic8]bradykinin. Eur J Pharmacol 210:115–120

    CAS  PubMed  Google Scholar 

  • Schneck KA, Hess JF, Stonisifer GY, Ransom RW (1994) Bradykinin B1 receptors in rabbit aorta smooth muscle in culture. Eur J Pharmacol Mol Pharmacol Sect 266:277–282

    CAS  Google Scholar 

  • Seguin L, Widdowson PS (1993) Effects of nucleotides on [3H]bradykinin binding in guinea pig: further evidence for multiple B2 receptor subtypes. J Neurochem 60:652–757

    Google Scholar 

  • Seguin L, Widdowson PS, Giesen-Crouse E (1992) Existence of three subtypes of bradykinin B2 receptors in guinea pig. J Neurochem 59:2125–2133

    CAS  PubMed  Google Scholar 

  • Simpson PB, Woollacott AJ, Hill RG, Seabrook GR (2000) Functional characterization of bradykinin analogues on recombinant human bradykinin B1 and B2 receptors. Eur J Pharmacol 392:1–9

    CAS  PubMed  Google Scholar 

  • Tropea MM, Gummelt D, Herzig MS, Leeb-Lundberg LMF (1994) B1 and B2 kinin receptors on cultured rabbit superior mesenteric artery smooth muscle cells: receptor specific stimulation of inositol phosphate formation and arachidonic acid release by des-arg9-bradykinin and bradykinin. J Pharmacol Exp Ther 264:930–937

    Google Scholar 

  • Wiemer G, Wirth K (1992) Production of cyclic GMP via activation of B1 and B2 kinin receptors in cultured bovine aortic endothelial cells. J Pharmacol Exp Ther 262:729–733

    CAS  PubMed  Google Scholar 

  • Wirth K, Breipohl G, Stechl J, Knolle J, Henke S, Schölkens B (1991) DesArg9-D-Arg[Hyp3, Thi5, D-Tic7, Oic8]bradykinin (desArg10-[Hoe140]) is a potent bradykinin B1 receptor antagonist. Eur J Pharmacol 205:217–218

    CAS  PubMed  Google Scholar 

  • Wirth KJ, Schölkens BA, Wiemer G (1994) The bradykinin B2 receptor antagonist WIN 64338 inhibits the effect of des-arg9-bradykinin in endothelial cells. Eur J Pharmacol 288:R1–R2

    CAS  PubMed  Google Scholar 

  • Wirth KJ, Wiemer G, Schölkens BA (1992) Des-Arg10[HOE 140] is a potent B1 bradykinin antagonist. Recent progress on kinins. Birkhäuser, Basel, pp 406–413

    Google Scholar 

  • Yang CM, Luo SF, Hsia HC (1995) Pharmacological characterization of bradykinin receptors in canine cultured tracheal smooth muscle cells. Br J Pharmacol 144:67–72

    Google Scholar 

Substance P and the Tachykinin Family

  • Beaujouan JC, Saffroy M, Torrens Y, Glowinski J (1997) Potency and selectivity of the tachykinin NK3 receptor antagonist SR 14801. Eur J Pharmacol 319:307–316

    CAS  PubMed  Google Scholar 

  • Beresford IJM, Sheldrick RLG, Ball DI, Turpin MP, Walsh DM, Hawcock AB, Coleman RA, Hagan RM, Tyers MB (1995) GR159897, a potent non-peptide antagonist at tachykinin NK2 receptors. Eur J Pharmacol 272:241–248

    CAS  PubMed  Google Scholar 

  • Bonnet J, Kucharczyk N, Robineau P, Lonchampt M, Dacquet C, Regoli D, Fauchère JL, Canet E (1996) A water soluble, stable dipeptide NK1 receptor-selective neurokinin receptor antagonist with potent in vivo pharmacological effects: S18523. Eur J Pharmacol 310:37–46

    CAS  PubMed  Google Scholar 

  • Bristow LJ, Young L (1994) Chromodacryorrhea and repetitive hind paw tapping. Models of peripheral and central tachykinin NK1 receptor activation in gerbils. Eur J Pharmacol 253:245–252

    CAS  PubMed  Google Scholar 

  • Cascieri MA, Ber E, Fong TM, Sadowski S, Bansal A, Swain C, Seward E, Frances B, Burns D, Strader CD (1992) Characterization of the binding of a potent, selective, radioiodinated antagonist to the human neurokinin-1 receptor. Mol Pharmacol 42:458–463

    CAS  PubMed  Google Scholar 

  • Chang MM, Leeman SE, Niahl HD (1971) Amino acid sequence of substance P. Nature 232:86–88

    CAS  Google Scholar 

  • Chapman V, Buritova J, Honoré P, Besson JM (1996) Physiological contribution of neurokinin 1 receptor activation, and interactions with NMDA receptors, to inflammatory-evoked spinal c-Fos expression. J Neurophysiol 76:1817–1827

    CAS  PubMed  Google Scholar 

  • Emonds-Alt X, Doutremepuich JD, Heaulme M, Neliat G, Santucci V, Steinberg R, Vilain P, Bichon D, Ducoux JP, Proietto V, van Broeck D, Soubrié P, le Fur G, Brelière JC (1993) In vitro and in vivo biological activities of SR140333, a novel potent non-peptide tachykinin NK1 receptor antagonist. Eur J Pharmacol 250:403–413

    CAS  PubMed  Google Scholar 

  • Edmonds-Alt X, Bichon D, Ducoux JP, Heaulme M, Miloux B, Poncelet M, Proietto V, van Broeck D, Vilain P, Soubrié P, le Fur G, Brelière JC (1995) SR 142801, the first potent non-peptide antagonist of the tachykinin NK3 receptor. Life Sci 56:PL 27–PL 32

    Google Scholar 

  • Guard S, Watson S, Maggio JE, Too HP, Waitling KJ (1990) Pharmacological analysis of [3H]-senktide binding to NK3 tachykinin receptors in guinea-pig ileum longitudinal muscle-myenteric plexus and cerebral cortex membranes. Br J Pharmacol 99:767–773

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hagan RM, Ireland SJ, Jordan CC, Beresford IJM, Deal MJ, Ward P (1991) Receptor-selective, peptidase resistant agonists at neurokinin NK-1 and NK-2 receptors: new tools for investigating neurokinin function. Neuropeptides 19:127–135

    CAS  PubMed  Google Scholar 

  • Hagan RM, Beresford IJM, Stables J, Dupere J, Stubbs CM, Elliott PJ, Sheldrick RLG, Chollet A, Kawashima E, McElroy AB, Ward P (1993) Characterization, CNS distribution and function of NK2 receptors studied using potent NK2 receptor antagonists. Regul Pept 46:9–19

    CAS  PubMed  Google Scholar 

  • Henry JL (1987) Discussion of nomenclature for tachykinins and tachykinin receptors. In: Henry JL et al (eds) Substance P and neurokinins. Springer, Heidelberg, p XVII

    Google Scholar 

  • Herbert JM, Bernat A (1996) Effect of SR 140333, a selective NK1 antagonist, on antigen-induced oedema formation in rat skin. J Lipid Mediat Cell Signal 13:223–232

    CAS  PubMed  Google Scholar 

  • Hökfelt T, Kellerth JO, Nilsson G, Pernow B (1975) Substance P: localization in the central nervous system and in some primary sensory neurons. Science 190:889–890

    PubMed  Google Scholar 

  • Jung M, Calassi R, Maruani J, Barnouin MC, Souilhac J, Poncelet M, Gueudet C, Edmonds-Alt X, Soubriè P, Brelière JC, le Fur G (1994) Neuropharmacological characterization of SR 140333, a non peptide antagonist of NK1 receptors. Neuropharmacology 33:167–179

    CAS  PubMed  Google Scholar 

  • Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, Reines SA, Lui G, Snavely D, Wyatt-Knowles E, Hale JJ, Mills SG, MacCoss M, Swain CJ, Harrison T, Hill RG, Hefti F, Scolnik EM, Cascieri MA, Chicchi GG, Sadowski S, Williams AR, Hewson L, Smith D, Carlson EJ, Hargreaves J, Rupniak NMJ (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281:1640–1645

    CAS  PubMed  Google Scholar 

  • Kudlacz EM, Knippenberg RW, Shatzer SA, Kehne JH, McCloskey TC, Burkholder TP (1997) The peripheral NK-1/NK-2 receptor antagonist MDL 105,172A inhibits tachykinin-mediated respiratory effects in guinea-pigs. J Auton Pharmacol 17:109–119

    CAS  PubMed  Google Scholar 

  • Lecci A, Giulani S, Tramontana M, Criscuoli M, Maggi CA (1997) MEN 11,420, a peptide tachykinin NK2 receptor antagonist, reduces motor responses induced by intravesical administration of capsaicin in vivo. Naunyn Schmiedeberg’s Arch Pharmacol 356:182–188

    CAS  Google Scholar 

  • Lembeck F (1953) Zur Frage der zentralen Übertragung afferenter Impulse. III. Mitteilung. Das Vorkommen und die Bedeutung der Substanz P in den dorsalen Wurzeln des Rückenmarks. Arch Exp Pathol Pharmakol 219:197–213

    CAS  Google Scholar 

  • Lembeck F, Holzer P (1979) Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn Schmiedeberg’s Arch Pharmacol 310:175–183

    CAS  Google Scholar 

  • Longmore J, Swain CJ, Hill RG (1995) Neurokinin receptors. Drug News Perspect 8:5–12

    Google Scholar 

  • Maggi CA (2000) The troubled story of tachykinins and neurokinins. Trends Pharmacol Sci 21:173–175

    CAS  PubMed  Google Scholar 

  • Maggi CA, Patacchini R, Rovero P, Giachetti A (1993) Tachykinin receptors and tachykinin receptor antagonists. J Auton Pharmacol 13:23–93

    CAS  PubMed  Google Scholar 

  • Mussap CJ, Geraghty DP, Burcher E (1993) Tachykinin receptors. A radioligand binding perspective. J Neurochem 6:1987–2009

    Google Scholar 

  • Nguyen-Le XK, Nguyen QT, Gobeil F, Pheng LH, Emonds-Alt X, Brelière JC, Regoli D (1996) Pharmacological characterization of SR 142801: a new non-peptide antagonist of the neurokinin NK-3 receptor. Pharmacology 52:283–291

    CAS  PubMed  Google Scholar 

  • Palframan RT, Costa SKP, Wilsoncroft P, Antunes E, de Nucci G, Brain SD (1996) The effect of a tachykinin NK1 receptor antagonist, SR 14033, on oedema formation induced in rat skin by venom from the Phoneutria nigriventer spider. Br J Pharmacol 118:295–298

    PubMed Central  CAS  PubMed  Google Scholar 

  • Patacchini R, Maggi CA (1995) Tachykinin receptors and receptor subtypes. Arch Int Pharmacodyn Ther 329:161–184

    CAS  PubMed  Google Scholar 

  • Patacchini R, Barthò L, Holzer P, Maggi CA (1995) Activity of SR 142801 at peripheral tachykinin receptors. Eur J Pharmacol 278:17–25

    CAS  PubMed  Google Scholar 

  • Ren K, Iadarola MJ, Dubner R (1996) An isobolographic analysis of the effects of N-methyl-d-aspartate and tachykinin NK1 receptor antagonists on inflammatory hyperalgesia in rats. Br J Pharmacol 117:196–202

    PubMed Central  CAS  PubMed  Google Scholar 

  • Robineau P, Lonchampt M, Kucharczyk N, Krause JE, Regoli D, Fauchère JL, Prost JF, Canet E (1995) In vitro and in vivo pharmacology of S 16474, a novel dual tachykinin NK1 and NK2 receptor antagonist. Eur J Pharmacol 294:677–684

    CAS  PubMed  Google Scholar 

  • Rupniak MNJ (1999) Use of substance P receptor antagonists as a research tool in psychopharmacology. Neurotransmission 15(3):3–11

    Google Scholar 

  • Rupniak NMJ, Kramer MS (1999) Discovery of the antidepressant and anti-emetic efficacy of substance P receptor (NK1) antagonists. Trends Pharmacol Sci 20:484–490

    Google Scholar 

  • Rupniak NMJ, Williams AR (1994) Differential inhibition of foot tapping and chromodacryorrhoea in gerbils by CNS penetrant and non-penetrant NK1 receptor antagonists. Eur J Pharmacol 265:179–183

    CAS  PubMed  Google Scholar 

  • Sakurada T, Katsumata K, Yogo H, Tan-No K, Sakurada S, Kisara K (1993) Antinociception induced by CP 96,345, a non-peptide NK-1 receptor antagonist, in the mouse formalin and capsaicin tests. Neurosci Lett 151:142–145

    CAS  PubMed  Google Scholar 

  • Sarau HM, Griswold DE, Potts W, Foley JJ, Schmidt DB, Webb EF, Martin LD, Brawner ME, Elshourbagy NA, Medhurst AD, Giardina GAM, Hay DWP (1997) Nonpeptide tachykinin receptor antagonists: I. Pharmacological and pharmacokinetic characterization of SB 223412, a novel, potent and selective neurokinin-3 receptor antagonist. J Pharmacol Exp Ther 281:1303–1311

    CAS  PubMed  Google Scholar 

  • Smith G, Harrison S, Bowers J, Wiseman J, Birch P (1994) Non-specific effects of the tachykinin NK1 receptor antagonist, CP-99,994, in antinociceptive tests in rat, mouse and gerbil. Eur J Pharmacol 271:481–487

    PubMed  Google Scholar 

  • Snider RM, Constantine JW, Lowe JA III, Longo KP, Lebel WS, Woody HA, Drozda SE, Desai MC, Vinick FJ, Spencer RW, Hess HJ (1991) A potent nonpeptide antagonist of the substance P (NK1) receptor. Science 251:435–437

    CAS  PubMed  Google Scholar 

  • Vassout A, Schaub M, Gentsch C, Ofner S, Schilling W, Veenstra S (1994) P7/CGP 49823, a novel NK1 receptor antagonist: behavioural effects. Neuropeptides 26(Suppl 1):38

    Google Scholar 

  • Von Euler US, Gaddum JH (1931) An unidentified depressor substance in certain tissue extracts. J Physiol 72:74–89

    Google Scholar 

3H-Substance P Receptor Binding

  • Iversen LL, Jessell T, Kanazawa I (1976) Release and metabolism of substance P in rat hypothalamus. Nature 264:81–83

    CAS  PubMed  Google Scholar 

  • Lee CM, Javitch JA, Snyder SH (1983) 3H-Substance P binding to salivary gland membranes. Mol Pharmacol 23:563–569

    CAS  PubMed  Google Scholar 

  • Liu YF, Quirion R (1991) Presence of various carbohydrate moieties including β-galactose and N-acetylglucosamine residues on solubilized porcine brain neurokinin-1/substance P receptors. J Neurochem 57:1944–1950

    CAS  PubMed  Google Scholar 

  • McLean S, Ganong AH, Seeger TF, Bryce DK, Pratt KG, Reynolds LS, Siok CJ, Lowe JA III, Heym J (1991) Activity of binding sites in brain of a nonpeptide substance P (NK1) receptor antagonist. Science 251:437–439

    CAS  PubMed  Google Scholar 

  • McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Methods 14:213–228

    CAS  PubMed  Google Scholar 

  • Mizrahi J, D’Orléans-Juste P, Drapeau G, Escher E, Regoli D (1983) Partial agonists and antagonists for substance P. Eur J Pharmacol 91:139–140

    CAS  PubMed  Google Scholar 

  • Perrone MH, Diehl RE, Haubrich DR (1983) Binding of [3H]substance P to putative substance P receptors in rat brain membranes. Eur J Pharmacol 95:131–133

    CAS  PubMed  Google Scholar 

Neurokinin Receptor Binding

  • Appell KC, Chung TDY, Solly KJ, Chelsky D (1998) Biological characterization of neurokinin antagonists discovered through screening of a combinatorial library. J Biomol Screen 3:19–27

    CAS  Google Scholar 

  • Beattie DT, Beresford IJM, Connor HE, Marshall FH, Hawcock AB, Hagen RM, Bowers J, Birch PJ, Ward P (1995) The pharmacology of GR203040, a novel, potent and selective tachykinin NK1 receptor antagonist. Br J Pharmacol 116:3149–3157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beresford IJM, Ball DI, Sheldrick RGL, Turpin MP, Walsh DM, Hawcock AB, Coleman RM, Tyers MB (1995) GR 159897, a potent, non-peptide antagonist at NK2 receptors. Eur J Pharmacol 272:241–248

    CAS  PubMed  Google Scholar 

  • Bonnet J, Kucharczyk N, Robineau P, Lonchampt M, Dacquet C, Regoli D, Fauchère JL, Canet E (1996) A water soluble, stable dipeptide NK1 receptor-selective neurokinin receptor antagonist with potent in vivo pharmacological effects: S18523. Eur J Pharmacol 310:37–46

    CAS  PubMed  Google Scholar 

  • Buell G, Schulz MF, Arkinstall SJ, Maury K, Missotten M, Adami N, Talabot F, Kawashima E (1992) Molecular characterization, expression and localization of human neurokinin-3 receptor. FEBS Lett 299:90–95

    CAS  PubMed  Google Scholar 

  • Cascieri MA, Ber E, Fong TM, Sadowski S, Bansal A, Swain C, Seward E, Frances B, Burns D, Strader CD (1992) Characterization of the binding of a potent, selective, radioiodinated antagonist to the human neurokinin-1 receptor. Mol Pharmacol 42:458–463

    CAS  PubMed  Google Scholar 

  • Cascieri MA, Fong TM, Strader CD (1995) Molecular characterization of a common binding site for small molecules within the transmembrane domain of G-protein coupled receptors. J Pharmacol Toxicol Methods 33:179–185

    CAS  PubMed  Google Scholar 

  • Emonds-Alt X, Doutremepuich JD, Heaulme M, Neliat G, Santucci V, Steinberg R, Vilain P, Bichon D, Ducoux JP, Proietto V, van Broeck D, Soubrié P, le Fur G, Brelière JC (1993) In vitro and in vivo biological activities of SR140333, a novel potent non-peptide tachykinin NK1 receptor antagonist. Eur J Pharmacol 250:403–413

    CAS  PubMed  Google Scholar 

  • Emonds-Alt X, Bichon D, Ducoux JP, Heaulme M, Miloux B, Poncelet M, Proietto V, Van Broeck D, Vilain P, Neliat G, Soubrié P, Le Fur G, Brelière JC (1995) SR 142801, the first potent non-peptide antagonist of the tachykinin NK3 receptor. Life Sci 56:27–32

    Google Scholar 

  • Guard S, Watson SP, Maggio JE, Too HP, Watling KJ (1990) Pharmacological analysis of [3H]-senktide binding to NK3 tachykinin receptors in guinea pig ileum longitudinal muscle-myenteric plexus and cerebral cortex membranes. Br J Pharmacol 99:767–773

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hagan RM, Beresford IJ, Stables J, Dupere J, Stubbs CM, Elliott PJ, Sheldrick RL, Chollet A, Kawashima E, McElroy AB, Ward P (1993) Characterization, CNS distribution and function of NK2 receptors studied using potent NK2 receptor antagonists. Regul Pept 46:9–19

    CAS  PubMed  Google Scholar 

  • Jordan RE, Smart D, Grimson P, Suman-Chauhan N, McKnight AT (1998) Activation of the cloned human NK3 receptor in Chinese hamster ovary cells characterized by the cellular acidification using the Cytosensor microphysiometer. Br J Pharmacol 125:761–766

    PubMed Central  CAS  PubMed  Google Scholar 

  • Longmore J, Swain CJ, Hill RG (1995) Neurokinin receptors. Drug News Perspect 8:5–12

    Google Scholar 

  • Maggi CA, Patacchini R, Rovero P, Giachetti A (1993) Tachykinin receptors and tachykinin receptor antagonists. J Auton Pharmacol 13:23–93

    CAS  PubMed  Google Scholar 

  • Matuszek MA, Zeng XP, Strigas J, Burcher E (1998) An investigation of tachykinin NK2 receptor subtypes in the rat. Eur J Pharmacol 352:103–109

    CAS  PubMed  Google Scholar 

  • McLean S, Ganong A, Seymour PA, Bryce DK, Crawford RT, Morrone J, Reynolds LS, Schmidt AW, Zorn S, Watson J, Fossa A, DePasquale M, Rosen T, Nagahisa A, Tsuchiya M, Heym J (1996) Characterization of CP-122,721, a nonpeptide antagonist of the neurokinin NK-1 receptor. J Pharmacol Exp Ther 277:900–908

    CAS  PubMed  Google Scholar 

  • Mussap CJ, Geraghty DP, Burcher E (1993b) Tachykinin receptors: a radioligand perspective. J Neurochem 60:1987–2009

    CAS  PubMed  Google Scholar 

  • Nakanishi S (1991) Mammalian tachykinin receptors. Annu Rev Neurosci 14:123–136

    CAS  PubMed  Google Scholar 

  • Otsuka M, Yoshioka K (1939) Neurotransmitter functions of mammalian tachykinins. Phys Rev 73:229–308

    Google Scholar 

  • Quartara L, Maggi CA (1998) The tachykinin receptor. Part II: Distribution and pathophysiological roles. Neuropeptides 32:1–49

    CAS  PubMed  Google Scholar 

  • Regoli D, Boudon A, Fachere JL (1994) Receptors and antagonists for substance P and related peptides. Pharmacol Rev 46:551–559

    CAS  PubMed  Google Scholar 

  • Renzetti AR, Catalioto RM, Criscuoli M, Cucchi P, Lippi AS, Guelfi M, Quartara L, Maggi CA (1998) Characterization of [3H]MEN 11420, a novel glycosylated peptide antagonist of the tachykinin NK2 receptor. Biochem Biophys Res Commun 248:78–82

    CAS  PubMed  Google Scholar 

  • Rupniak NMJ, Tattersall FD, Williams AR, Rycroft W, Carlson EJ, Cascieri MA, Sadowski S, Ber E, Hale JJ, Mills SG, McCoss M, Seward E, Huscroft I, Owen S, Swain CJ, Hill RG, Hargreaves RJ (1997) In vitro and in vivo predictors of the anti-emetic activity of tachykinin NK1 receptor antagonists. Eur J Pharmacol 326:201–209

    CAS  PubMed  Google Scholar 

  • Snider RM, Constantine SJW, Lowe JA III, Longo KP, Lebel WS, Woody HA, Drozda SE, Desai MC, Vinick FJ, Spencer RW, Hess HJ (1991) A potent nonpeptide antagonist of the substance P (NK1) receptor. Science 251:435–437

    CAS  PubMed  Google Scholar 

  • Watson JW, Gonsalves SF, Fossa AA, McLean S, Seeger T, Obach S, Andrews PLR (1995) The anti-emetic effects of CP-99,994 in the ferret and the dog: Role of the NK1 receptor. Br J Pharmacol 115:84–94

    PubMed Central  CAS  PubMed  Google Scholar 

Characterization of Neurokinin Agonists and Antagonists by Biological Assays

  • Alfieri A, Gardner C (1997) The NK-1 antagonist GR203040 inhibits cyclophosphamide-induced damage in the rat and ferret bladder. Gen Pharmacol 29:245–250

    CAS  PubMed  Google Scholar 

  • Alfieri A, Gardner C (1998) Effects of GR203940, an NK-1 antagonist, on radiation- and cisplatin-induced tissue damage in the ferret. Gen Pharmacol 31:741–746

    CAS  PubMed  Google Scholar 

  • Bonnet J, Kucharczyk N, Robineau P, Lonchampt M, Dacquet C, Regoli D, Fauchère JL, Canet E (1996) A water soluble, stable dipeptide NK1 receptor-selective neurokinin receptor antagonist with potent in vivo pharmacological effects: S18523. Eur J Pharmacol 310:37–46

    CAS  PubMed  Google Scholar 

  • Bristow LJ, Young L (1994) Chromodacryorrhea and repetitive hind paw tapping. Models of peripheral and central tachykinin NK1 receptor activation in gerbils. Eur J Pharmacol 253:245–252

    CAS  PubMed  Google Scholar 

  • Broccardo M, Improta G, Tabacco A (1999) Central tachykinin NK3 receptors in the inhibitory action on rat colonic propulsion of a new tachykinin, PG-KII. Eur J Pharmacol 376:67–71

    CAS  PubMed  Google Scholar 

  • Cirillo R, Astolfi M, Conte B, Lopez G, Parlani M, Terracciano R, Fincham CI, Manzini S (1998) Pharmacology of the peptidomimetic, MEN 11149, a new potent, selective and orally effective tachykinin NK1 receptor antagonist. Eur J Pharmacol 341:201–209

    CAS  PubMed  Google Scholar 

  • Croci T, Emonds-Alt X, Le Fur G, Manara L (1995) In vitro characterization of the non-peptide tachykinin NK-1 and NK-2-receptor antagonists, SR 140333 and SR 48968 in different rat and guinea-pig intestinal segments. Life Sci 56:267–275

    CAS  PubMed  Google Scholar 

  • Daoui S, Cognon C, Naline E, Emonds-Alt X, Advenier C (1998) Involvement of tachykinin NK3 receptors in citric-acid-induced cough and bronchial responses in guinea pigs. Am J Respir Crit Care Med 158:42–48

    CAS  PubMed  Google Scholar 

  • Dion S, D’Orléans-Juste P, Drapeau G, Rhaleb NE, Rouissi N, Tousignant C, Regoli D (1987) Characterization of neurokinin receptors in various isolated organs by use of selective agonists. Life Sci 14:2269–2278

    Google Scholar 

  • D’Orléans-Juste P, Dion S, Drapeau G, Regoli D (1986) Different receptors are involved in the endothelium-mediated relaxation and the smooth muscle contraction of rabbit pulmonary artery in response to substance P and related neurokinins. Eur J Pharmacol 125:37–44

    PubMed  Google Scholar 

  • Emonds-Alt X, Doutremepuich JD, Heaulme M, Neliat G, Santucci V, Steinberg R, Vilain P, Bichon D, Ducoux JP, Proietto V, Van Brock D, Soubrie P, Le Fur G, Breliere JC (1993) In vitro and in vivo biological activities of SR140333, a novel potent non-peptide tachykinin NK1 receptor antagonist. Eur J Pharmacol 250:403–413

    CAS  PubMed  Google Scholar 

  • Emonds-Alt X, Bichon D, Ducoux JP, Heaulme M, Miloux B, Poncelet M, Proietto V, van Broeck D, Vilain P, Neliat G, Soubrié P, Le Fur G, Brelière JC (1995) SR 142801, the first potent non-peptide antagonist of the tachykinin NK3 receptor. Life Sci 56: PL27–PL32

    CAS  PubMed  Google Scholar 

  • Emonds-Alt X, Advenier C, Cognon C, Croci T, Daoul S, Ducoux JP, Landl M, Maline E, Nellat G, Poncelet M, Proletto V, Von Broeck D, Vilain P, Soubrié P, Le Fur G, Maffrand JP, Brelière JC (1997) Biochemical and pharmacological activities of SR 144190, a new potent non-peptide tachykinin NK2 receptor antagonist. Neuropeptides 31:449–458

    CAS  PubMed  Google Scholar 

  • Gitter BD, Bruns RF, Howbert JJ, Waters DC, Threlkeld PG, Cox LM, Nixon JA, Lobb KL, Mason NR, Stengel PW, Cockerham SL, Silbaugh SA, Gehlert DL, Schober DA, Iyengar S, Calligaro DO, Regoli D, Hipskind PA (1995) Pharmacological characterization of LY303870: a novel, potent and selective nonpeptide substance P (neurokinin-1) receptor antagonist. J Pharmacol Exp Ther 275:737–744

    CAS  PubMed  Google Scholar 

  • Graham EA, Turpin MP, Stubbs CM (1993) P100 characterization of the tachykinin-induced hindlimb thumping response in gerbils. Neuropeptides 4:228–229

    Google Scholar 

  • Herbert JM, Bernat A (1996) Effect of SR 140333, a selective NK1 antagonist, on antigen-induced oedema formation in rat skin. J Lipid Mediat Cell Signal 13:223–232

    CAS  PubMed  Google Scholar 

  • Hill R (2000a) NK1 (substance P) receptor antagonists – why are they not analgesic in humans? Trends Pharmacol Sci 21:244–246

    CAS  PubMed  Google Scholar 

  • Hill R (2000b) Reply: will changing the testing paradigms show that NK1 receptor antagonists are analgesic in humans? Trends Pharmacol Sci 21:265

    Google Scholar 

  • Hosoki R, Yanagisawa M, Onishi Y, Yoshioka K, Otska M (1998) Pharmacological profiles of new orally active nonpeptide tachykinin NK1 receptor antagonists. Eur J Pharmacol 341:235–241

    CAS  PubMed  Google Scholar 

  • Jung M, Calassi R, Maruani J, Barnouin MC, Souilhac J, Poncelet M, Gueudet C, Edmonds-Alt X, Soubriè P, Brelière JC, le Fur G (1994) Neuropharmacological characterization of SR 140333, a non peptide antagonist of NK1 receptors. Neuropharmacology 33:167–179

    CAS  PubMed  Google Scholar 

  • Lecci A, Giulani S, Tramontana M, Criscuoli M, Maggi CA (1997) MEN 11,420, a peptide tachykinin NK2 receptor antagonist, reduces motor responses induced by intravesical administration of capsaicin in vivo. Naunyn Schmiedeberg’s Arch Pharmacol 356:182–188

    CAS  Google Scholar 

  • Maggi CA, Patacchini R, Giulani S, Rovero P, Dion S, Regoli D, Giachetti A, Meli A (1990) Competitive antagonists discriminate between NK-2 tachykinin receptor subtypes. Br J Pharmacol 100:588–592

    CAS  Google Scholar 

  • Mastrangelo D, Mathison R, Huggel HJ, Dion S, D’Orléans-Juste P, Rhaleb NE, Drapeau G, Rovero P, Regoli D (1987) The rat isolated portal vein: a preparation sensitive to neurokinins, particularly to neurokinin B. Eur J Pharmacol 134:321–326

    CAS  PubMed  Google Scholar 

  • Medhurst AD, Parson AA, Roberts JC, Hay DWP (1997) Characterization of NK3 receptors in rabbit isolated iris sphincter muscle. Br J Pharmacol 120:93–101

    CAS  PubMed  Google Scholar 

  • Minami N, Endo T, Kikuchi K, Ihira E, Hirafuji M, Hamaue N, Monma Y, Sakurada T, Tanno K, Kisara K (1998) Antiemetic effects of sendide, a peptide tachykinin NK1 receptor antagonist, in the ferret. Eur J Pharmacol 363:49–55

    CAS  PubMed  Google Scholar 

  • Nagata K, Saito H, Matsuki N (1991) Efficient Ca2+ mobilization induced by neurokinin A in rat vas deferens. Eur J Pharmacol 204:295–300

    CAS  PubMed  Google Scholar 

  • Nantel F, Roussi N, Rhaleb D, Jukic D, Regoli D (1991) Pharmacological evaluation of the angiotensin, kinin and neurokinin receptors on the rabbit vena cava. J Cardiovasc Pharmacol 18:398–405

    CAS  PubMed  Google Scholar 

  • Nguyen-Le XK, Nguyen QT, Gobeil F, Pheng LH, Emonds-Alt X, Brelière JC, Regoli D (1996) Pharmacological characterization of SR 142801: a new non-peptide antagonist of the neurokinin NK-3 receptor. Pharmacology 52:283–291

    CAS  PubMed  Google Scholar 

  • Patacchini R, Barthò L, Holzer P, Maggi CA (1995) Activity of SR 142801 at peripheral tachykinin receptors. Eur J Pharmacol 278:17–25

    CAS  PubMed  Google Scholar 

  • Regoli D, Nguyen QT, Jukic D (1994) Neurokinin receptor subtypes characterized by biological assays. Life Sci 54:2035–2047

    CAS  PubMed  Google Scholar 

  • Rinder J, Lundberg JM (1996) Effects of hCGRP 8–37 and the NK1-receptor antagonist SR 140.333 on capsaicin-evoked vasodilation in the pig nasal mucosa in vivo. Acta Physiol Scand 156:115–122

    CAS  PubMed  Google Scholar 

  • Robineau P, Lonchampt M, Kucharczyk N, Krause JE, Regoli D, Fauchère JL, Prost JF, Canet E (1995) In vitro and in vivo pharmacology of S 16474, a novel dual tachykinin NK1 and NK2 receptor antagonist. Eur J Pharmacol 294:677–684

    CAS  PubMed  Google Scholar 

  • Rouissi N, Claing A, Nicolau M, Jukic D, D’Orléans-Juste P, Regoli D (1993) Substance P (NK-1 receptor) antagonists: in vivo and in vitro activities in rats and guinea pigs. Life Sci 52:1141–1147

    CAS  PubMed  Google Scholar 

  • Rubino A, Thomann H, Henlin JM, Schilling W, Criscione L (1992) Endothelium-dependent relaxant effect of neurokinins on rabbit aorta is mediated by the NK1 receptor. Eur J Pharmacol 212:237–243

    CAS  PubMed  Google Scholar 

  • Rupniak NMJ, Williams AR (1994) Differential inhibition of foot tapping and chromodacryorrhoea in gerbils by CNS penetrant and non penetrant tachykinin NK1 receptor antagonists. Eur J Pharmacol 265:179–183

    CAS  PubMed  Google Scholar 

  • Rupniak NMJ, Webb JK, Williams AR, Carlson E, Boyce S, Hill HG (1995) Antinociceptive activity of the tachykinin NK1 receptor antagonist, CP-99994, in conscious gerbils. Br J Pharmacol 116:1937–1943

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rupniak NMJ, Tattersall FD, Williams AR, Rycroft W, Carlson EJ, Cascieri MA, Sadowski S, Ber E, Hale JJ, Mills SG, MacCoss M, Seward E, Huscroft I, Owen S, Swain CJ, Hill RG, Hargreaves RJ (1997) In vitro and in vivo predictors of the anti-emetic activity of tachykinin NK1 receptor antagonists. Eur J Pharmacol 326:201–209

    CAS  PubMed  Google Scholar 

  • Sarau HM, Griswold DE, Potts W, Foley JJ, Schmidt DB, Webb EF, Martin LD, Brawner ME, Elshourbagy NA, Medhurst AD, Giardina GAM, Hay DWP (1997) Nonpeptide tachykinin receptor antagonists: I. Pharmacological and pharmacokinetic characterization of SB 223412, a novel, potent and selective neurokinin-3 receptor antagonist. J Pharmacol Exp Ther 281:1303–1311

    CAS  PubMed  Google Scholar 

  • Singh L, Field MJ, Hughes J, Kuo BS, Suman-Chauhan N, Tuladhar BR, Wright DS, Naylor RJ (1997) The tachykinin NK1 receptor antagonist PD 154075 blocks cisplatin-induced delayed emesis in the ferret. Eur J Pharmacol 321:209–216

    CAS  PubMed  Google Scholar 

  • Snider RM, Constantine JW, Lowe JA III, Longo KP, Lebel WS, Woody HA, Drozda SE, Desai MC, Vinick FJ, Spencer RW, Hess HJ (1991) A potent nonpeptide antagonist of the substance P (NK1) receptor. Science 251:435–437

    CAS  PubMed  Google Scholar 

  • Smith G, Harrison S, Bowers J, Wiseman J, Birch P (1994) Non-specific effects of the tachykinin NK1 receptor antagonist, CP-99,994, in antinociceptive tests in rat, mouse and gerbil. Eur J Pharmacol 271:481–487

    PubMed  Google Scholar 

  • Tian J, Wei EQ, Chen JS, Zhang WP (1997) Effect of SR 140333, a neurokinin NK1 receptor antagonist, on airway reactivity to methacholine in sedated rats. Acta Pharmacol Sin 18:485–488

    CAS  Google Scholar 

  • Tramontana M, Patacchini R, Lecci A, Giuliani S, Maggi CA (1998) Tachykinin NK2 receptors in the hamster urinary bladder: in vitro and in vivo characterization. Naunyn-Schmiedeberg’s Arch Pharmacol 358:293–300

    CAS  Google Scholar 

  • Urban LA, Fox A (2000) NK1 receptor antagonists – are they really without effects in the pain clinic? Trends Pharmacol Sci 21:462–464

    CAS  PubMed  Google Scholar 

  • Vassout A, Schaub M, Gentsch C, Ofner S, Schilling W, Veenstra S (1994) P7/CGP 49823, a novel NK1 receptor antagonist: behavioural effects. Neuropeptides 26(Suppl 1):38

    Google Scholar 

  • Walpole CSJ, Brown MCS, James IF, Campbell EA, McIntyre P, Docherty R, Ko S, Hedley L, Ewan S, Buchheit KH, Urban LA (1998) Comparative, general pharmacology of SDZ NKT 343, a novel, selective NK1 receptor antagonist. Br J Pharmacol 124:83–92

    PubMed Central  CAS  PubMed  Google Scholar 

Assay of Polymorphonuclear Leukocyte Chemotaxis In Vitro

  • Atkins PC, Norman ME, Zweiman B (1978) Antigen-induced neutrophil chemotactic activity in man. J Allergy Clin Immunol 62:149–155

    CAS  PubMed  Google Scholar 

  • Boyden S (1962) The chemotactic effects of mixtures of antibody and antigen on polymorphonuclear leukocytes. J Exp Med 115:453–466

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bray MA, Ford-Hutchinson AW, Shipley ME, Smith MJH (1980) Calcium ionophore A23187 induces release of chemokinetic and aggregating factors from polymorphonuclear leucocytes. Br J Pharmacol 71:507–512

    PubMed Central  CAS  PubMed  Google Scholar 

  • Camussi G, Tetta C, Bussolino F, Baglioni C (1990) Antiinflammatory peptides (antiflammins) inhibit synthesis of platelet-activating factor, neutrophil aggregation and chemotaxis, and intradermal inflammatory reactions. J Exp Med 171:913–927

    CAS  PubMed  Google Scholar 

  • Ferrante A, Thong YH (1980) Optimal conditions for simultaneous purification of mononuclear and polymorphonuclear leukocytes from human blood by the Hypaque-Ficoll method. J Immunol Methods 36:109–117

    CAS  PubMed  Google Scholar 

  • Figari IS, Mori NA, Palladino MA (1987) Regulation of neutrophil migration and superoxide production by recombinant tumor necrosis factors-α and -β: Comparison to recombinant interferon-γ and interleukin-1α. Blood 70:979–984

    CAS  PubMed  Google Scholar 

  • Harvath L, Falk W, Leonard EJ (1980) Rapid quantitation of neutrophil chemotaxis: use of a polyvinylpyrrolidone-free polycarbonate membrane in a multiwell assembly. J Immunol Methods 37:39–45

    CAS  PubMed  Google Scholar 

  • Issekutz AC, Issekutz TB (1989) Quantitation of blood cell accumulation and vascular responses in inflammatory reactions. In: Chang JY, Lewis AJ (eds) Pharmacological methods in the control of inflammation. Alan R. Liss, New York, pp 129–150

    Google Scholar 

  • Matzner Y, Drexler R, Levy M (1984) Effect of dipyrone, acetylsalicylic acid and acetaminophen on human neutrophil chemotaxis. Eur J Clin Invest 14:440–443

    CAS  PubMed  Google Scholar 

  • Nelson RD, Quie PG, Simmons RL (1975) Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J Immunol 115:1650–1656

    CAS  PubMed  Google Scholar 

  • Roch-Arveiller M, Roblin G, Allain M, Giroud JP (1985) A visual technique of chemotactic assessment for pharmacological studies. J Pharmacol Methods 14:313–321

    CAS  PubMed  Google Scholar 

  • Shalaby MR, Palladino MA, Hirabayashi SE, Eessalu TE, Lewis GT, Shepard HM, Aggarwal BB (1987) Receptor binding and activation of polymorphonuclear neutrophils by tumor necrosis factor-alpha. J Leukoc Biol 41:196–204

    CAS  PubMed  Google Scholar 

  • Watanabe K, Kinoshita S, Nakagawa H (1989) Very rapid assay of polymorphonuclear leukocyte chemotaxis in vitro. J Pharmacol Methods 22:13–18

    CAS  PubMed  Google Scholar 

Polymorphonuclear Leukocytes Aggregation Induced by FMLP

  • Bradford PG, Rubin RP (1986) The differential effects of nedocromil sodium and sodium cromoglycate on the secretory response of rabbit peritoneal neutrophils. Eur J Respir Dis 69(Suppl 147):238–240

    Google Scholar 

  • Bray MA, Ford-Hutchinson AW, Shipley ME, Smith MJH (1980) Calcium ionophore A23187 induces release of chemokinetic and aggregating factors from polymorphonuclear leucocytes. Br J Pharmacol 71:507–512

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bourgoin S, Borgeat P, Poubelle PE (1991) Granulocyte-macrophage colony-stimulating factor (GM-CSF) primes human neutrophils for enhanced phosphatidylcholine breakdown by phospholipase D. Agents Actions 34:32–34

    CAS  PubMed  Google Scholar 

  • Moqbel R, Walsh GM, Kay AB (1986) Inhibition of human granulocyte activation by nedocromil sodium. Eur J Respir Dis 69(Suppl 147):227–229

    Google Scholar 

COX-1 and COX-2 Inhibition

  • Ainscow EK, Brand MD (1999) Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Eur J Biochem 263:671–685

    CAS  PubMed  Google Scholar 

  • Anderson GD, Hauser SD, McGarity KL, Bremer ME, Isakson PC, Gregory SA (1996) Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis. J Clin Invest 97:2672–2679

    PubMed Central  CAS  PubMed  Google Scholar 

  • Berg J, Christoph T, Widerna M, Bodenteich A (1997) Isoenzyme-specific cyclooxygenase inhibitors: a whole cell assay system using the human erythroleukemic cell line HEL and the human monocytic cell line Mono Mac 6. J Pharmacol Toxicol Methods 37:179–186

    CAS  PubMed  Google Scholar 

  • Bing JR (2003) Cyclooxygenase-2 inhibitors. Is there an association with coronary or renal events? Curr Atheroscler Rep 5:114–117

    PubMed  Google Scholar 

  • Bombardier C, Leine L, Reich A, Shapiro D, Burgos-Vargas R, Davis B, Day R, Ferraz MB, Hawkey CJ, Hochberg MC, Kvien TK, Schnitzer TJ, VIGOR Study Group (2000) Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatic arthritis. N Engl J Med 343:1520–1528

    CAS  PubMed  Google Scholar 

  • Boopathy R, Balasubramanian AS (1988) Purification and characterization of sheep platelet cyclooxygenase. Biochem J 239:371–377

    Google Scholar 

  • Borgeat P, Samuelsson B (1979) Arachidonic acid metabolism in polymorphonuclear leukocytes: effect of ionophore A 23187. Proc Natl Acad Sci U S A 76:2148–2152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boyum A (1976) Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol 5(Suppl 5):9–15

    PubMed  Google Scholar 

  • Brand MD (1996) Top down metabolic control analysis. J Theor Biol 182:351–360

    CAS  PubMed  Google Scholar 

  • Brand MD (1998) Top-down elasticity analysis and its application to energy metabolism in isolated mitochondria and intact cells. Mol Cell Biochem 184:13–20

    CAS  PubMed  Google Scholar 

  • Brideau C, Kargman S, Liu S, Dallob AL, Ehich EW, Rodger IW, Chan C-C (1996) A human whole blood assay for clinical evaluation of biochemical efficacy of cyclooxygenase inhibitors. Inflamm Res 45:68–74

    CAS  PubMed  Google Scholar 

  • Bruns RF, Thomsen WJ, Pugsley TA (1983) Binding of leukotrienes C4 and D4 to membranes from guinea pig lung: regulation by ions and guanine nucleotides. Life Sci 33:645–653

    CAS  PubMed  Google Scholar 

  • Chan CC, Boyce S, Brideau C, Charleson S, Cromlish W, Ethier D, Evans J, Ford-Hutchinson AW, Forrest MJ, Gauthier JY, Gordon R, Gresser M, Guay J, Kargman S, Kennedy B, Leblanc Y, Léger S, Mancini J, O’Neill GP, Ouellet M, Patrick D, Percival H, Perrier H, Prasit P, Rodger I, Tagari P, Thérien M, Vickers P, Visco D, Wang Z, Webb J, Wong E, Xu LJ, Young RN, Zamboni R, Riendeau D (1999) Rofecoxib [Vioxx, MK-0966; 4-(4′-Methylsulfonylphenyl)-3-phenyl-2-(5H)-furanone]: A potent and orally active cyclooxygenase-2 inhibitor. Pharmacological biochemical profiles. J Pharmacol Ex Ther 290:551–560

    CAS  Google Scholar 

  • Chandrasekharan NV, Dai H, Roos KLT, Evanson NK, Tomsik J, Elton TS (2002) COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure and expression. Proc Natl Acad Sci U S A 99:13926–13931

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng JB, Cheng EIP, Kohi F, Townley RG (1986) [3H]Leukotriene B4 binding to the guinea-pig spleen membrane preparation: a rich tissue source for a high-affinity leukotriene B4 receptor site. J Pharmacol Exp Ther 236:126–132

    CAS  PubMed  Google Scholar 

  • Cochran FR, Finch-Arietta MB (1989) Optimization of cofactors which regulate RBL-1 arachidonate 5-lipoxygenase. Biochem Biophys Res Commun 161:1327–1332

    CAS  PubMed  Google Scholar 

  • Coleman RA, Smith WL, Narumiya S (1994) VIII. International union of pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46:205–229

    CAS  PubMed  Google Scholar 

  • Copeland RA, Williams JM, Giannaras J, Nurnberg S, Covington M, Pinto D, Pick S, Trzaskos JM (1994) Mechanism of selective inhibition of the inducible isoform of prostaglandin G/H synthase. Proc Natl Acad Sci U S A 91:11202–11206

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crofford LJ (1997) COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol 24(Suppl 49):15–19

    Google Scholar 

  • Cromlish WA, Kennedy BP (1996) Selective inhibition of cyclooxygenase-1 and -2 using intact insect cell assays. Biochem Pharmacol 52:1777–1785

    CAS  PubMed  Google Scholar 

  • Evans AT, Formukong EA, Evans FJ (1987) Actions of cannabis constituents on enzymes of arachidonate metabolism: anti-inflammatory potential. Biochem Pharmacol 36:2035–2037

    CAS  PubMed  Google Scholar 

  • Faust D, Akoglu B, Faust AC, Milovic V (2003) Human peritoneal macrophages in culture: a model for studying inflammatory disorders in vitro. Clin Exp Med 3:15–19

    CAS  PubMed  Google Scholar 

  • FitzGerald GA, Loll P (2001) COX in a crystal ball: current status and future promise of prostaglandin research. J Clin Invest 107:1335–1337

    PubMed Central  CAS  PubMed  Google Scholar 

  • Funk CD, Funk LB, Kennedy ME, Pong AS, Fitzgerald GA (1991) Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment. FASEB J 5:2304–2312

    CAS  PubMed  Google Scholar 

  • Gierse JK, McDonald JJ, Hauser SD, Rangwala SH, Koboldt CM, Seibert K (1996) A single amino acid difference between cyclooxygenase-1 (COX-1) and -2 /COX-2) reverses the selectivity of COX-2 specific inhibitors. J Biol Chem 271:15810–15814

    CAS  PubMed  Google Scholar 

  • Halushka PV, Mais DE, Mayeux PR, Morinelli TA (1989) Thromboxane, prostaglandin and leukotriene receptors. Annu Rev Pharmacol Toxicol 10:213–239

    Google Scholar 

  • Hankey GJ, Eikelboom JW (2003) Cyclooxygenase-2 inhibitors. Are they really atherothrombotic, and if not, why not? Stroke 34:2736–2740

    CAS  PubMed  Google Scholar 

  • Harvey J, Osborne DJ (1983) A rapid method for detecting inhibitors of both cyclooxygenase and lipoxygenase metabolites of arachidonic acid. J Pharmacol Methods 9:147–155

    CAS  PubMed  Google Scholar 

  • Hawkey CJ (1999) COX-2 inhibitors. Lancet 353:307–314

    CAS  PubMed  Google Scholar 

  • Hedberg A, Hall SE, Ogletree ML, Harris DN, Liu ECK (1988) Characterization of [5,6-3H]SQ 29,548 as a high affinity radioligand, binding to thromboxane A2/prostaglandin H2-receptors in human platelets. J Pharmacol Exp Ther 245:786–792

    CAS  PubMed  Google Scholar 

  • Herrmann F, Lindemann A, Gauss J, Mertelsmann R (1990) Cytokine-stimulation of prostaglandin synthesis from endogenous and exogenous arachidonic acids in polymorphonuclear leukocytes involving activation and new synthesis of cyclooxygenase. Eur J Immunol 20:2513–2516

    CAS  PubMed  Google Scholar 

  • Hock FJ, Wirth K, Albus U, Linz W, Gerhards HJ, Wiemer G, Henke S, Breipohl G, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin antagonist: in vitro studies. Br J Pharmacol 102:769–773

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu W, Guo Z, Chu F, Bai A, Yi X, Cheng G, Li J (2003) Synthesis and biological evaluation of substituted 2-sulfonyl-phenyl-3–3-phenyl-indoles: a new series of selective COX-2 inhibitors. Bioorg Med Chem 11:1153–1160

    CAS  PubMed  Google Scholar 

  • Hull MA, Thomson JL, Hawkey CJ (2005) Expression of cyclooxygenase 1 and 2 by human gastric endothelial cells. Gut 45:529–536

    Google Scholar 

  • Irvine RF (1982) Review article: how is the level of free arachidonic acid controlled in mammalian cells? Biochem J 204:3–16

    PubMed Central  CAS  PubMed  Google Scholar 

  • Izumi T, Shimizu T, Seyama Y, Ohishi N, Takaku F (1986) Tissue distribution of leukotriene A4 hydrolase activity in guinea pig. Biochem Biophys Res Commun 135:139–145

    CAS  PubMed  Google Scholar 

  • Jakschik BA, Kuo CG (1983) Characterization of leukotriene A4 and B4 biosynthesis. Prostaglandins 25:767–781

    CAS  PubMed  Google Scholar 

  • Jones TR, Labelle M, Belley M, Champion E, Charette L, Evans J, Ford-Hutchinson AW, Gauthier JY, Lord A, Masson P, McAuliffe M, McFarlane CS, Metters KM, Pickett C, Piechuta H, Rochette C, Rodger IW, Sawyer N, Young RN, Zamboni R, Abraham WM (1995) Pharmacology of montelukast sodium (Singular™), a potent and selective leukotriene D4 receptor antagonist. Can J Physiol Pharmacol 73:191–201

    CAS  PubMed  Google Scholar 

  • Joo YH, Kim JK, Kang SH, Noh MS, Ha JY, Choi JK, Lim KM, Chung S (2004) 2,3-Diarylpyranon-4-ones: a new series of selective cyclooxygenase-2 inhibitors. Bioorg Med Chem Lett 14:2195–2198

    CAS  Google Scholar 

  • Kalajdzic T, Faour WH, He QW, Fahmi H, Martel-Pelletier J, Pelletier JP, di Battista JA (2002) Nimesulide, a preferential cyclooxygenase 2 inhibitor suppresses peroxisome proliferator-activated receptor induction of cyclooxygenase 2 gene expression in human synovial fibroblasts. Arthritis Rheum 46:494–506

    CAS  PubMed  Google Scholar 

  • Kalgutkar AS, Crews BC, Rowlinson SW, Marnett AB, Kozak KR, Remmel RP, Marnett LJ (2000) Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: facile conversion of nonsteroidal antiinflammatory drugs into potent and highly selective COX-2 inhibitors. Proc Natl Acad Sci U S A 97:925–930

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kargman S, Wong E, Greig GM, Falgueyret JP, Cromlish W, Ethier D, Yergey JA, Riendeau D, Evans JF, Kennedy B, Tagari P, Francis DA, O’Neill GP (1996) Mechanism of selective inhibition of human prostaglandin G/H synthase-1 and -2 in intact cells. Biochem Pharmacol 52:1113–1125

    CAS  PubMed  Google Scholar 

  • Katsumata M, Gupta C, Goldman AS (1986) A rapid assay for activity of phospholipase A2 using radioactive substrate. Anal Biochem 154:676–681

    CAS  PubMed  Google Scholar 

  • Kemal C, Louis-Flamberg P, Krupinski-Olsen R, Shorter AL (1987) Reductive inactivation of soybean lipoxygenase 1 by catechols: a possible mechanism for regulation of lipoxygenase activity. Biochemistry 26:7064–7072

    CAS  PubMed  Google Scholar 

  • Khanapure SP, Garvey DS, Young DV, Ezawa M, Earl EA, Gaston RD, Fang X, Murty M, Martino A, Shumway M, Trocha M, Marek P, Tam SW, Janero DR, Letts LG (2003) Synthesis and structure-activity relationship of novel, highly potent metharyl and methcycloalkyl cyclooxygenase-2 (COX-2) selective inhibitors. J Med Chem 46:5484–5504

    CAS  PubMed  Google Scholar 

  • Klein T, Nüsing RM, Pfeilschifter J, Ullrich V (1994) Selective inhibition of cyclooxygenase 2. Biochem Pharmacol 48:1605–1610

    CAS  PubMed  Google Scholar 

  • Krause MM, Brand MD, Krauss S, Meisel C, Vergin H, Burmester RG, Buttgereit F (2003) Nonsteroidal antiinflammatory drugs and a selective cyclooxygenase 2 inhibitor uncouple mitochondria in intact cells. Arthritis Rheum 48:1438–1444

    CAS  PubMed  Google Scholar 

  • Kuhl P, Borbe HO, Fischer H, Römer A, Safayhi H (1986) Ebselen reduces the formation of LTB4 in human and porcine leukocytes by isomerisation to its 5S,12R-6-trans-isomer. Prostaglandins 31:1029–1048

    CAS  PubMed  Google Scholar 

  • Lasché EM, Larson RE (1982) Interaction of insulin and prostacyclin production in the rat. Diabetes 31:454–458

    PubMed  Google Scholar 

  • Lee SH, Soyoola E, Chanmugam P, Hart S, Sun W, Zhong H, Liou S, Simmons D, Hwang D (1992) Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem 267:25934–25938

    CAS  PubMed  Google Scholar 

  • Lewis R, Austen KF (1981) Mediation of local homeostasis and inflammation by leukotrienes and other mast cell dependent compounds. Nature 293:103–108

    CAS  PubMed  Google Scholar 

  • Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR (1994) Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci 90:11693–11697

    Google Scholar 

  • Mong S, Wu HL, Hogaboom GK, Clark MA, Crooke ST (1984) Characterization of the leukotriene D4 receptor in guinea-pig lung. Eur J Pharmacol 102:1–11

    CAS  PubMed  Google Scholar 

  • Murata T, Ushikubi F, Matsuoka T, Hirata M, Yamasaki A, Sugimoto Y, Ichikawa A, Aze Y, Tanaka T, Yoshida N, Ueno A, Oh-Ishi S, Narumiya S (1997) Altered pain reception and inflammatory response in mice lacking prostaglandin receptor. Nature 388:678–682

    CAS  PubMed  Google Scholar 

  • Noushargh S, Hoult JRS (1986) Inhibition of human neutrophil degranulation by forskolin in the presence of phosphodiesterase inhibitors. Eur J Pharmacol 122:205–212

    Google Scholar 

  • O’Neill GP, Mancini JA, Kargman S, Yergey J, Kwan MY, Falgueyret JP, Abramovitz M, Kennedy PP, Ouellet M, Cromlish W, Colp S, Evans JP, Ford-Hutchinson AW, Vickers PJ (1994) Overexpression of human prostaglandin G/H synthase-1 and -2 by recombinant vaccinia virus: Inhibition by nonsteroidal anti-inflammatory drugs and biosynthesis of 15-hydroxyeicosatetraenoic acid. Mol Pharmacol 45:245–254

    PubMed  Google Scholar 

  • O’Sullivan MG, Huggins EM Jr, Meade EA, DeWitt DL, McCall CE (1992) Lipopolysaccharide induces prostaglandin H synthase-2 in alveolar macrophages. Biochem Biophys Res Commun 187:1123–1127

    PubMed  Google Scholar 

  • Ouellet M, Percival MD (1995) Effect of inhibitor time-dependency on selectivity towards cyclooxygenase isoforms. Biochem J 306:247–251

    PubMed Central  PubMed  Google Scholar 

  • Powell WS (1987) Reversed-phase high-pressure liquid chromatography of arachidonic acid metabolites formed by cyclooxygenase & lipoxygenases. Anal Biochem 148:59–69

    Google Scholar 

  • Pugsley TA, Spencer C, Boctor AM, Gluckman MI (1985) Selective inhibition of the cyclooxygenase pathway of the arachidonic acid cascade by the nonsteroidal antiinflammatory drug isoxicam. Drug Dev Res 5:171–178

    CAS  Google Scholar 

  • Rådmark O, Shimizu T, Jörnvall H, Samuelsson B (1984) Leukotriene A4 hydrolase in human leukocytes. J Biol Chem 259:12339–12345

    PubMed  Google Scholar 

  • Rao PN, Amini M, Li H, Habeeb AG, Knaus EE (2003) Design, synthesis, and biological evaluation of 6-substituted-3- (4-methanesulfonylphenyl) -4-phenylpyran-2-ones: a novel class of diarylheterocyclic selective cyclooxygenase-2 inhibitors. J Med Chem 46:4872–4882

    CAS  Google Scholar 

  • Riendeau D, Percival MD, Brideau C, Charleson S, Dubé D, Ethier D, Falgueyret JP, Friesen RW, Gordon R, Greig G, Guay J, Mancini J, Ouellet M, Wong E, Xu L, Boyce S, Visco D, Girard Y, Prasit P, Zamboni R, Rodger IW, Gresser M, Ford-Hutchinson AW, Young RN, Chan CC (2001) Etoricoxib (MK-0663): preclinical profile and comparison with other agents that selectively inhibit cyclooxygenase-2. J Pharmacol Exp Ther 296:558–566

    CAS  PubMed  Google Scholar 

  • Riendeau D, Percival MD, Boyce S, Brideau C, Charleson S, Cromlish W, Ethier D, Evans J, Falgueyret JP, Ford-Hutchinson AW, Gordon R, Greig G, Gresser G, Guay J, Kargman S, Léger S, Mancini JA, O’Neill G, Ouellet M, Rodger IW, Thérien M, Wang Z, Webb JK, Wong E, Xu L, Young RN, Zamboni R, Prasit P, Chan CC (1997) Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor. Br J Pharmacol 121:105–117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Safayhi H, Mack T, Sabieraj J, Anazodo MI, Subramanian LR, Ammon HPT (1992) Boswellic acids: novel, specific, non-redox inhibitors of 5-lipoxygenase. J Pharmacol Exp Ther 261:1143–1146

    CAS  PubMed  Google Scholar 

  • Salari H, Braquet P, Borgeat P (1984) Comparative effects of indomethacin, acetylenic acids, 15-HETE, nordihydroguaiaretic acid and BW 755c on the metabolism of arachidonic acid in human leukocytes and platelets. Prostaglandins Leukot Med 13:53–60

    CAS  PubMed  Google Scholar 

  • Samuelsson B (1986) Leukotrienes and other lipoxygenase products. Prog Lipid Res 25:13–18

    CAS  PubMed  Google Scholar 

  • Saussy DL Jr, Mais DE, Burch RM, Halushka PV (1986) Identification of a putative thromboxane A2/prostaglandin H2 receptor in human platelet membranes. J Biol Chem 261:3025–3029

    CAS  PubMed  Google Scholar 

  • Schmidt H, Woodcock BC, Geisslinger G (2004) Benefit-risk assessment of rofecoxib in the treatment of osteoarthritis. Drug Saf 27:185–196

    CAS  PubMed  Google Scholar 

  • Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P (1994) Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci U S A 91:12013–12017

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seibert K, Masferrer J, Zhang Y, Gregory S, Olson G, Hauser S, Leahy K, Perkins W, Isakson P (1995) Mediation of inflammation by cyclooxygenase-2. Agents Actions 46:41–50

    CAS  PubMed  Google Scholar 

  • Shigeta JI, Takahashi S, Okabe S (1998) Role of cyclooxygenase-2 in the healing of gastric ulcers in rats. J Pharmacol Exp Ther 186:1383–1390

    Google Scholar 

  • Shimizu T, Rådmark O, Samuelsson B (1984) Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid. Proc Natl Acad Sci U S A 81:689–693

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith WL, Meade EA, DeWitt DL (1994) Pharmacology of prostaglandin endoperoxide synthase isoenzymes-1 and-2. Ann N Y Acad Sci 71:136–142

    Google Scholar 

  • Takeguchi C, Kohno E, Sih CJ (1971) Mechanism of prostaglandin biosynthesis. I. Characterization and assay of bovine prostaglandin synthetase. Biochemistry 10:2372–2377

    CAS  PubMed  Google Scholar 

  • Uddin MJ, Rao PNP, Knaus EE (2004) Design and synthesis of acyclic triaryl (Z)-olefins: a novel class of cyclooxygenase-2 (COX-2) inhibitors. Bioorg Med Chem 12:5929–5940

    CAS  PubMed  Google Scholar 

  • Vane J (1987) The evolution of non-steroidal anti-inflammatory drugs and their mechanisms of action. Drugs 33(Suppl 1):18–27

    CAS  PubMed  Google Scholar 

  • Vane J (1998) The mechanism of action of anti-inflammatory drugs. Naunyn-Schmiedeberg’s Arch Pharmacol 358(Suppl 1):R8

    Google Scholar 

  • Vane J, Botting R (1987) Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J 1:89–96

    CAS  PubMed  Google Scholar 

  • Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 38:97–120

    CAS  PubMed  Google Scholar 

  • Veenstra J, van de Pol H, van der Torre H, Schaafsma G, Ockhuizen T (1988) Rapid and simple methods for the investigation of lipoxygenase pathways in human granulocytes. J Chromatogr 431:413–417

    CAS  PubMed  Google Scholar 

  • Weithmann KU, Schlotte V, Seiffge D, Jeske S (1993) Concerted action of pentoxifylline in conjunction with acetylsalicylic acid on platelet cyclic AMP and aggregation. Thromb Haemorrh Dis 8:1–8

    Google Scholar 

  • Weithmann KU, Jeske S, Schlotte V (1994) Effect of leflunomide on constitutive and inducible pathways of cellular eicosanoid generation. Agents Actions 41:164–170

    CAS  PubMed  Google Scholar 

  • Winkler JD, Sarau HM, Foley JJ, Mong S, Crooke ST (1988) Leukotriene B4-induced homologous desensitization of calcium mobilization and phosphoinositide metabolism in U-937 cells. J Pharmacol Exp Ther 246:204–210

    CAS  PubMed  Google Scholar 

  • Wong E, DeLucca C, Boily C, Charleson S, Cromlish W, Denis D, Kargman S, Kennedy BP, Ouellet M, Skorey K, O’Neill GP, Vickers PJ, Riendeau D (1997) Characterization of autocrine inducible prostaglandin H synthase-2 (PGHS-2) in human osteosarcoma cells. Inflamm Res 46:51–59

    CAS  PubMed  Google Scholar 

  • Xie W, Robertson DL, Simmons DL (1992) Mitogen-inducible prostaglandin G/H synthase: a new target for nonsteroidal antiinflammatory drugs. Drug Dev Res 25:249–265

    CAS  Google Scholar 

  • Young JM, Panah S, Satchawatcharaphong C, Cheung PS (1996) Human white blood assays for inhibition of prostaglandin G/H synthase-1 and -2 using A23187 and lipopolysaccharide stimulation of thromboxane B2 production. Inflamm Res 45:245–253

    Google Scholar 

Influence of Cytokines

  • Bird TA, Saklatvala J (1986) Identification of a common class of high-affinity receptors for both types of porcine interleukin-1 on connective tissue cells. Nature 324:263–266

    CAS  PubMed  Google Scholar 

  • Boyum A (1976) Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol 5(Suppl 5):9–15

    PubMed  Google Scholar 

  • Chin J et al (1987) Identification of a high affinity receptor for native interleukin-1α and interleukin-1β on normal human lung fibroblasts. J Exp Med 165:70–86

    CAS  PubMed  Google Scholar 

  • Dinarello CA (1991) Interleukin-1 and interleukin-1 antagonism. Blood 77:1627–1652

    CAS  PubMed  Google Scholar 

  • Dinarello CA (2000) Proinflammatory cytokines. Chest 118:503–508

    CAS  PubMed  Google Scholar 

  • Eugui EM, Delustro B, Rouhafza S, Wilhelm R, Allison AC (1993) Coordinate inhibition by some antioxidants of TNFα, IL-1β and IL-6 production by human peripheral blood mononuclear cells. Ann N Y Acad Sci 696:171–184

    CAS  PubMed  Google Scholar 

  • Gracie JA, Forsey RJ, Chan WL, Gilmour A, Leung BP, Greer MR, Kennedy K, Carter R, Wei XQ, Xu D, Filed M, Foulis A, Liew FY, McInnes IB (1999) A proinflammatory role for IL-18 in rheumatoid arthritis. J Clin Invest 104:1393–1401

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grob PM, David E, Warren TC, DeLeon RP, Farina PR, Homon CA (1990) Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor interleukin-8. J Biol Chem 265:8311–8316

    CAS  PubMed  Google Scholar 

  • Ibelgaufts H (ed) (1992) Lexikon Zytokine. Medikon, München

    Google Scholar 

  • Killian PL (1986) Interleukin-1α and interleukin-1β bind to the same receptor on T cells. J Immunol 136:4509–4514

    Google Scholar 

  • Kim JA, Kim DK, Kang OH, Choi YA, Park HJ, Choi SC, Kim TH, Yun KJ, Nah YH, Lee YM (2005) Inhibitory effect of luteolin on TNF-α-induced IL-8 production in human colon epithelia cells. Int Immunopharmacol 5:209–217

    CAS  PubMed  Google Scholar 

  • Lewis GP, Barrett ML (1986) Immunosuppressive actions of prostaglandins and the possible increase in chronic inflammation after cyclooxygenase inhibitors. Agents Actions 19:59–65

    CAS  PubMed  Google Scholar 

  • Maloff BL, Shaw JE, Di Meo TM, Fox D, Bruin EM (1989) Development of a RIA-based primary screen for IL-1 antagonists. Clin Chim Acta 180:73–78

    CAS  PubMed  Google Scholar 

  • Moser B, Schumacher C, von Tscharner V, Clark-Lewis I, Baggiolini M (1990) Neutrophil-activating peptide 2 and gro/melanoma growth-stimulatory activity interact with neutrophil-activating peptide-1/interleukin-8 receptors on human neutrophils. J Biol Chem 266:10666–10671

    Google Scholar 

  • Tiku K, Tiku ML, Skosey JL (1986) Interleukin-1 production by human polymorphonuclear neutrophils. J Immunol 136:3677–3685

    CAS  PubMed  Google Scholar 

  • Van der Pouw-Kraan T, Van Kooten C, Rensink I, Aarden L (1992) Interleukin (IL)-4 production by human T cells: differential regulation of IL-4 vs. IL-2 production. Eur J Immunol 22:1237–1241

    PubMed  Google Scholar 

  • Warren JS (1993) Inflammation. Drug News Perspect 6:450–459

    Google Scholar 

  • Whicher JT, Thompson D, Billingham MEJ, Kitchen EA (1989) Acute phase proteins. In: Chang JY, Lewis AJ (eds) Pharmacological methods in the control of inflammation. Alan R. Liss, New York, pp 101–128

    Google Scholar 

  • Wong PKK, Campbell IK, Egan PJ, Ernst M, Wicks IP (2003) The role of the interleukin-6 family of cytokines in inflammatory arthritis and bone turnover. Arthritis Rheum 48:1177–1189

    CAS  PubMed  Google Scholar 

Flow Cytometric Analysis of Intracellular Cytokines

  • Abt H, Emmerich M, Miltenyi S, Radbruch A, Tesch H (1989) CD20 positive human B lymphocytes separated with the magnetic cell sorter (MACS) can be induced to proliferation and antibody secretion in vitro. J Immunol Methods 125:19–28

    Google Scholar 

  • Ashcroft RG, Lopez PA (2000) Commercial high speed machines open new opportunities in high throughput flow cytometry. J Immunol Methods 243:13–24

    CAS  PubMed  Google Scholar 

  • Jung T, Schauer U, Heusser C, Neumann C, Rieger C (1993) Detection of intracellular cytokines by flow cytometry. J Immunol Methods 159:197–207

    CAS  PubMed  Google Scholar 

  • Miltenyi S, Möller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11:231

    CAS  PubMed  Google Scholar 

  • Sander B, Andersson J, Andersson U (1991) Assessment of cytokines by immunofluorescence and the paraformaldehyde saponin procedure. Immunol Rev 119:65–93

    CAS  PubMed  Google Scholar 

  • Sander B, Hoiden I, Andersson U, Moller E, Abrams JS (1993) Similar frequencies and kinetics of cytokine producing cells in murine peripheral blood and spleen. Cytokine detection by immunoassay and intracellular immunostaining. J Immunol Methods 166:201–214

    CAS  PubMed  Google Scholar 

  • Slauson SD, Silva HT, Sherwood SW, Morris RE (1999) Flow cytometric analysis of the molecular mechanisms of immunosuppressive action of the active metabolite of leflunomide and its malononitrilamide analogues in a novel whole blood assay. Immunol Lett 67:179–183

    CAS  PubMed  Google Scholar 

Screening for Interleukin-1 Antagonists

  • Akeson A, Bohnke R, Schroeder K, Kastner P, Seligmann B, Robinson J (1996a) An ex vivo method for studying inflammation in cynomolgus monkeys: analysis of interleukin-1 receptor antagonist. J Pharmacol Toxicol Methods 36:155–161

    CAS  PubMed  Google Scholar 

  • Akeson AL, Woods CW, Hsieh LC, Bohnke RA, Ackermann BL, Chan KY, Robinson JL, Yanofsky SD, Jacobs JW, Barrett RW, Bowlin TL (1996b) AF12198, a novel low molecular weight antagonist, selectively binds type I interleukin (IL)-1 receptor and blocks in vivo responses to IL-1. J Biol Chem 271:30517–30523

    CAS  PubMed  Google Scholar 

  • Arend WP (1991) Interleukin 1 receptor antagonist. A new member of the interleukin 1 family. J Clin Invest 88:1445–1451

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arend WP, Malyak M, Guthridge CJ, Gabay C (1998) Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol 16:27–55

    CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–252

    CAS  PubMed  Google Scholar 

  • Carter DB, Deibel MR Jr, Dunn CJ, Tomich CSC, Laborde AL, Slightom JL, Berger AE, Bienkowski MJ, Sun FF, McEwan RN (1990) Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein. Nature (London) 344:633–638

    CAS  Google Scholar 

  • Colagiovanni DB, Shopp GM (1996) Evaluation of the interleukin-1 receptor antagonist (IL-1ra) and tumor necrosis factor binding protein (TNF-BP) in a rodent abscess model of host resistance. Immunopharmacol Immunotoxicol 18:397–419

    CAS  PubMed  Google Scholar 

  • Dower SK, Wignall JM, Schooley K, McMahan CJ, Jackson JL, Prickett KS, Lupton S, Cosman D, Sims JE (1989) Retention of ligand binding activity by the extracellular domain of the IL-1 receptor. J Immunol 142:4314–4320

    CAS  PubMed  Google Scholar 

  • Fujioka N, Mukaida N, Harada A, Akiyama M, Kasahara T, Kuno K, Ooi A, Mai M, Matsushima K (1995) Preparation of specific antibodies against murine IL-1ra and the establishment of IL-1ra as an endogenous regulator of bacteria-induced fulminant hepatitis in mice. J Leukoc Biol 58:90–98

    CAS  PubMed  Google Scholar 

  • Hannum CH, Wilcox CJ, Arend WP, Joslin FG, Dripps DJ, Heimdal PL, Armes LG, Sommer A, Eisenberg SP, Thompson RC (1990) Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature (London) 343:336–340

    CAS  Google Scholar 

  • Lennard AC (1995) Interleukin-1 receptor antagonist. Crit Rev Immunol 15:77–105

    CAS  PubMed  Google Scholar 

  • Miesel R, Ehrlich W, Wohlert H, Kurpisz M, Kröger H (1995) The effects of interleukin-1 receptor antagonist on oxidant-induced arthritis in mice. Clin Exp Rheumatol 13:595–610

    CAS  PubMed  Google Scholar 

  • Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y (2003) IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci U S A 1000:5986–5990

    Google Scholar 

  • Redlich K, Schett G, Steiner G, Hayer S, Wagner EF, Smolen JS (2003) Rheumatoid arthritis therapy after tumor necrosis factor and interleukin-1 blockade. Arthritis Rheum 48:3308–3319

    CAS  PubMed  Google Scholar 

  • Sarrubi E, Yanofsky SD, Barrett RW, Denaro M (1996) A cellfree, nonisotopic, high-throughput assay for inhibitors of type-I interleukin-1 receptor. Anal Biochem 237:70–75

    Google Scholar 

  • Schreuder HA, Rondeau JM, Tardif C, Soffientini A, Sarubbi E, Akeson A, Bowlin TL, Yanofsky S, Barrett RW (1995) Refined crystal structure of the interleukin-1 receptor antagonist. Presence of a disulfide link and a cis-proline. Eur J Biochem 227:838–847

    CAS  PubMed  Google Scholar 

  • Whitehorn E, Tate E, Yanofsky SD, Kochersperger L, Davis A, Mortensen RB, Yonkivich S, Bell K, Dover WJ, Barrett RW (1995) A generic method for expression and use of “tagged” soluble versions of cell surface receptors. Biotechnology 13:1215–1219

    CAS  PubMed  Google Scholar 

  • Yanosfky SD, Zurawski G (1990) Identification of key residues in the amino-terminal third of human interleukin-1α. J Biol Chem 265:13000–13006

    Google Scholar 

  • Yanosfky SD, Baldwin DN, Butler JH, Holden FR, Jacobs JW, Balasubramanian P, Chinn JP, Cwirla SE, Peters-Bhatt E, Whitehorn EA, Tate EH, Akeson A, Bowlin TL, Dower WJ, Barrett RW (1996) High affinity type I interleukin 1 receptor antagonists discovered by screening recombinant peptide libraries. Proc Natl Acad Sci U S A 93:7381–7386

    Google Scholar 

  • Yem AW, Richard KA, Staite ND, Deibel MR (1988) Resolution and biological properties of three N-terminal analogues of recombinant human interleukin-1 beta. Lymphokine Res 7:85–92

    CAS  PubMed  Google Scholar 

Inhibition of Interleukin-1β Converting Enzyme (ICE)

  • Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan JY (1996) Human ICE/CED3 nomenclature. Cell 87:171

    CAS  PubMed  Google Scholar 

  • Dinarello CA (1996) Biological basis for interleukin-1 in disease. Blood 87:2095–2147

    CAS  PubMed  Google Scholar 

  • Lee A, Whyte MKB, Haslett C (1993) Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. J Leukoc Biol 54:283–288

    CAS  PubMed  Google Scholar 

  • Livingstone DJ (1997) In vitro and in vivo studies of ICE inhibitors. J Cell Biochem 19–26

    Google Scholar 

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    CAS  PubMed  Google Scholar 

  • Norman J, Yang J, Fink G, Carter G, Ku G, Denham W, Livingston D (1997) Severity and mortality of experimental pancreatitis are dependent on interleukin-1 converting enzyme (ICE). J Interferon Cytokine Res 17:113–118

    CAS  PubMed  Google Scholar 

  • Tatsuda T, Cheng J, Mountz JD (1996) Intracellular IL-1β is an inhibitor of Fas-mediated apoptosis. J Immunol 157:3949–3957

    Google Scholar 

  • William R, Watson G, Rotstein OD, Parodo J, Bitar R, Marshall JC (1998) The IL-1β-converting enzyme (caspase-1) inhibits apoptosis on inflammatory neutrophils through activation of IL-1β. J Immunol 161:957–962

    CAS  PubMed  Google Scholar 

  • Yuan JS, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin 1β-converting enzyme. Cell 75:641

    CAS  PubMed  Google Scholar 

Nuclear Factor-κB

  • Aggarwal BB, Takada Y, Shishodia S, Gutierrrez AM, Oommen OV, Ichikawa H, Baba Y, Kumar A (2004) Nuclear transcription factor NF-kappa B. Role in biology and medicine. Indian J Exp Biol 42:341–353

    CAS  PubMed  Google Scholar 

  • Aupperle KR, Bennett BL, Boyle DL, Tak PP, Manning AM, Firestein GS (1999) NF-κB regulation by IκB kinase in primary fibroblast-like synoviocytes. J Immunol 163:427–433

    CAS  PubMed  Google Scholar 

  • Christman JW, Blackwell TS, Juurlink BH (2000a) Redox regulation of nuclear factor kappa B: therapeutic potential for attenuating inflammatory responses. Brain Pathol 10:153–162

    CAS  PubMed  Google Scholar 

  • Christman JW, Sadikot RT, Blackwell TS (2000b) The role of nuclear factor κB in pulmonary diseases. Chest 117:1482–1487

    CAS  PubMed  Google Scholar 

  • D’Acquisto F, May MJ, Gosh S (2002) Inhibition of nuclear factor kappa B (NF-κB): an emerging ther in antiinflammatory therapies. Mol Interv 2:22–35

    PubMed  Google Scholar 

  • Gosh S, Karin M (2002) Missing pieces in the NF-κB puzzle. Cell 109:S81–S96

    Google Scholar 

  • Heynink K, Wullaert A, Beyaert R (2003) Nuclear factor-kappa B plays a central role in tumor necrosis factor-mediated liver disease. Biochem Pharmacol 66:1409–1415

    Google Scholar 

  • Kaltschmidt B, Widera D, Kaltschmidt C (2005) Signaling via NF-kappa B in the nervous system. Biochim Biophys Acta 1745:287–299

    CAS  PubMed  Google Scholar 

  • Katin M, Yamamoto Y, Wang QM (2004) The IKK NF-κB system: a treasure trove for drug development. Nat Rev Drug Discov 3:17–26

    Google Scholar 

  • Mukaida N, Morita M, Ishikawa Y, Rice N, Okamoto SI, Kasahara T, Matsushima K (1994) Novel mechanism of glucocorticoid-mediated gene repression. J Biol Chem 269:13289–13295

    CAS  PubMed  Google Scholar 

  • Nichols TC, Fischer TH, Deliagyris EN, Baldwin AS Jr (2001) Role of nuclear factor kappa B (NF-κB) in inflammation, periodontitis, and atherogenesis. Ann Periodontol 6:20–29

    CAS  PubMed  Google Scholar 

  • Nishi T, Shimizu N, Hiramoto M, Sato I, Yamaguchi Y, Hasegawa M, Aizawa S, Tanak H, Kataoka K, Watanabe H, Handa H (2002) Spatial redox regulation of a critical cysteine residue of NF-κB in vivo. J Biol Chem 277:44548–44556

    CAS  PubMed  Google Scholar 

  • O’Gradaigh D, Ireland D, Bord S, Compston JE (2003) Joint erosion in rheumatoid arthritis: interactions between tumor necrosis factor α, interleukin, and receptor activator of nuclear factor κB ligand (RANKL) regulate osteoclasts. Ann Rheum Dis 63:354–359

    Google Scholar 

  • Palanki MSS (2002) Inhibitors of AP-1 and NF-κB mediated transcriptional activation: therapeutic potential in autoimmune diseases and structural diversity. Curr Med Chem 9:219–227

    CAS  PubMed  Google Scholar 

  • Pande Y, Ramos MJ (2003) Nuclear factor kappa B: a potential target for anti-HIV chemotherapy. Curr Med Chem 10:1603–1615

    CAS  PubMed  Google Scholar 

  • Pande Y, Ramos MJ (2005) NF-κB in human disease: current inhibitors and prospects for de novo structure based design of inhibitors. Curr Med Chem 12:357–373

    CAS  PubMed  Google Scholar 

  • Tian Y, Rabson AB, Gallo MA (2002) Ah receptor and NF-κB interactions: mechanisms and physiological implications. Chem Biol Interact 141:97–115

    CAS  PubMed  Google Scholar 

Inhibition of Nuclear Factor-κB

  • Acarin L, González B, Castellano B (2000) Oral administration of the anti-inflammatory substance triflusal results in the downregulation of constitutive transcription factor NF-κB in the postnatal rat brain. Neurosci Lett 288:41–44

    CAS  PubMed  Google Scholar 

  • Burke JR, Pattoli MA, Gregor KR, Brassil PJ, MacMaster JF, McIntyre KW, Yang X, Iotzova VS, Clarke W, Strnad J, Qiu Y, Zusi FC (2003) BMS-345541 is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κB–dependent transcription in mice. J Biol Chem 278:1450–1456

    CAS  PubMed  Google Scholar 

  • Carey M, Smale ST (2000) Electrophoretic mobility shift assays, Chapter 13, Protocol 13.5, pp 493–496. In: Carey M, Smale ST (eds) Transcriptional regulation in eukaryotes: concepts, strategies, and techniques. Nat Methods, vol 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 557–558

    Google Scholar 

  • Castrillo A, de las Heras B, Hortelano S, Rodríguez B, Villar A, Boscá L (2001) Inhibition of the nuclear factor κB (NF-κ B) pathway by tetracyclic kaurene diterpenes in macrophages. J Biol Chem 276:15854–15860

    CAS  PubMed  Google Scholar 

  • Castro AC, Dang LC, Soucy F, Grenier L, Mazdiyasni H, Hottelet M, Parent L, Pien C, Palombella V, Adams J (2003) Novel IKK inhibitors: β-carbolines. Bioorg Med Chem Lett 13:2419–2422

    CAS  PubMed  Google Scholar 

  • Chaturvedi MM, Mukhopadhyay A, Aggarwal BB (2000) Assay for redox-sensitive transcription factor. Methods Enzymol 319:585–602

    CAS  PubMed  Google Scholar 

  • Clarke P, Meintzer SM, Moffitt LA, Tyler KL (2003) Two distinct phases of virus-induced nuclear factor κB regulation enhance tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in virus-infected cells. J Biol Chem 278:18092–18100

    CAS  PubMed  Google Scholar 

  • Crothers DM, Gartenberg MR, Shrader TE (1991) DNA bending in protein-DNA complexes. Methods Enzymol 208:118–146

    CAS  PubMed  Google Scholar 

  • Dichtl W, Dulak J, Frick M, Alber HF, Schwarzacher SP, Ares MPS, Nilsson J, Pachinger O, Weidinger F (2003) HMGCoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23:58–63

    CAS  PubMed  Google Scholar 

  • Eberhardt W, Schulze M, Engels C, Klasmeier E, Pfeilschifter J (2002) Glucocorticoid-mediated suppression of cytokine-induced matrix metalloprotease-9 expression in rat mesangial cells. Involvement of nuclear factor κB and Ets transcription factors. Mol Endocrinol 16:1752–1766

    CAS  PubMed  Google Scholar 

  • Eberhardt W, Kilz T, Akool ES, Müller R, Pfeilschifter J (2005) Dissociated glucocorticoids equipotently inhibit cytokine- and cAMP-induced matrix degrading proteases in rat mesangial cells. Biochem Pharmacol 70:433–445

    CAS  PubMed  Google Scholar 

  • Fried MG (1989) Measurement of protein-DNA interaction parameters by electrophoretic mobility shift assay. Electrophoresis 10:366–376

    CAS  PubMed  Google Scholar 

  • Geng Z, Rong Y, Lau BHS (1997) S-allyl cysteine inhibits activation of nuclear factor kappa B in human T cells. Free Radic Biol Med 23:345–350

    CAS  PubMed  Google Scholar 

  • Gupta S, Hastak K, Afaq F, Ahmad N, Mukhtar H (2004) Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappaB and induction of apoptosis. Oncogene 23:2507–2522

    CAS  PubMed  Google Scholar 

  • Hiramoto M, Shimizu N, Sugimoto K, Tang J, Kawakami Y, Ito M, Aizawa S, Tanaka H, Makino I, Handa H (1998) Nuclear targeted suppression of NF-κB by the novel quinone derivative E3330. J Immunol 160:810–819

    CAS  PubMed  Google Scholar 

  • Ichiyama T, Sakai T, Catania A, Barsh GS, Furukawa S, Lipton JM (1999) Inhibition of peripheral NF-κB activation by central action of α-melanocyte-stimulating hormone. J Neuroimmunol 99:211–217

    CAS  PubMed  Google Scholar 

  • Jancso G, Cseperes B, Gasz B, Benkö L, Ferencz A, Borsiczki B, Lantos J, Dureja A, Kiss K, Szeberényi J, Röth E (2005) Effect of acetylsalicylic acid on nuclear factor-κB activation and on late preconditioning against infarction of the myocardium. J Cardiovasc Pharmacol 46:295–301

    CAS  PubMed  Google Scholar 

  • Kang JL, Lee HW, Pack IS, Chong Y, Castranova V, Koh Y (2001) Genistein prevents nuclear factor kappa B activation and acute lung injury induced by lipopolysaccharide. Am J Respir Crit Care Med 164:2206–2212

    CAS  PubMed  Google Scholar 

  • Kang JL, Park W, Pack IS, Lee HS, Kim MJ, Lim CM, Koh Y (2002) Inhaled nitric oxide attenuated acute lung injury via inhibition of nuclear factor-κB and inflammation. J Appl Physiol 92:75–801

    Google Scholar 

  • Kim YH, Lee SH, Lee JY, Choi SW, Park JW, Kwon TK (2004) Triptolide inhibits murine-inducible nitric synthase expression by down-regulating lipopolysaccharide-induced activity of nuclear factor κB and c-Jun NH2-terminal kinase. Eur J Pharmacol 494:1–9

    CAS  PubMed  Google Scholar 

  • Kunsch C, Luchoomun J, Chen XI, Dodd GL, Karu KS, Meng CQ, Marino EM, Olliff LK, Piper D, Qiu FH, Sikorski JA, Somers PK, Suen KL, Thomas S, Whalen AM, Wasserman MA, Sundell CL (2005) AGIX-4207 [2-[4-[[1-[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]thio]-1-methylethyl]thio]-2,6-bis(1,1-dimethylethyl)phenoxy]acetic acid], a novel antioxidant and anti-inflammatory compound: cellular and biochemical characterization of antioxidant activity and inhibition of redox-sensitive inflammatory gene expression. J Pharmacol Exp Ther 313:492–501

    CAS  PubMed  Google Scholar 

  • Lee JH, Koo TH, Hwang BY, Lee JJ (2002) Kaurane diterpene, kamebakaurin, inhibits NF-κB by directly targeting the DNA-binding activity of p50 and blocks the expression of antiapoptotic NF-κB target genes. J Biol Chem 277:18411–18420

    CAS  PubMed  Google Scholar 

  • Macotela Y, Mendoza C, Corbacho AM, Cosío G, Eiserich JP, Zentella A, de la Escalera GM, Clapp C (2002) 16K Prolactin induces NF-κB activation in pulmonary fibroblasts. J Endocrinol 175:R13–R18

    CAS  PubMed  Google Scholar 

  • Matsubara M, Tamura T, Ohmori K, Hasegawa K (2005) Histamine H1 receptor antagonist blocks histamine-induced proinflammatory cytokine production through inhibition of Ca2+-dependent protein kinase C, Raf/MEK/ERK and IKK/IκB/NF-κB signal cascades. Biochem Pharmacol 69:433–449

    CAS  PubMed  Google Scholar 

  • Mendoza-Milla C, Rodríguez CM, Alarcón EC, Bernal AE, Toledo-Cuevas EM, Martínez EM, Dehesa AZ (2005) NF-κB activation but not PIK/Akt is required for dexamethasone dependent protection against TNF-α cytotoxicity in L929 cells. FEBS Lett 579:3947–3952

    CAS  PubMed  Google Scholar 

  • Mortellaro A, Sangia S, Gnocchi P, Ferrari M, Fornasiero C, D’Alessio R, Isetta A, Colotta F, Golay J (1999) New immunosuppressive drug PNU156804 blocks IL-2-dependent proliferation and NF-κB and AP-1 activation. J Immunol 162:7102–7109

    CAS  PubMed  Google Scholar 

  • Mühlbauer M, Allard B, Bosserhoff AK, Kiessling S, Herfarth H, Rogler G, Schölmerich J, Jobin C, Hellerbrand C (2004) Differential effects of deoxycholic acid and taurodeoxycholic acid on NF-κB signal transduction and IL-8 gene expression in colonic epithelial cells. Am J Physiol 286:G1000–G1008

    Google Scholar 

  • Murata T, Shimada M, Sakakibara S, Yoshino T, Kadono H, Masuda T, Shimazaki M, Shintani T, Fuchikami K, Sakai K, Inbe H, Takeshita K, Niki T, Umeda M, Bacon KB, Ziegelbauer KB, Lowinger TB (2003) Discovery of novel and selective IKK-β serine-threonin protein kinase inhibitors. Part I. Bioorg Med Chem Lett 13:913–918

    CAS  PubMed  Google Scholar 

  • Natarajan K, Singh S, Burke TR, Grunberger D (1996) Caffeic acid phenyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-κB. Proc Natl Acad Sci U S A 93:9090–9095

    PubMed Central  CAS  PubMed  Google Scholar 

  • Palanki MSS, Gayo-Fung LM, Shevlin GI, Erdman P, Sato M, Goldman M, Ransone LJ, Spooner C (2002) Structure-activity relationship studies of ethyl 2-[(3-methyl-2,5-dioxo(3-pyrrolinyl)amino]-4-(trifluoromethyl)pyrimidine-5-carboxylate: an inhibitor or AP-1 and NF-κB mediated gene expression. Bioorg Med Chem Lett 12:2573–2577

    CAS  PubMed  Google Scholar 

  • Roshak AK, Callahan JF, Blake SM (2002) Small-molecule inhibitors of NF-κB for the treatment of inflammatory joint disease. Curr Opin Pharmacol 2:316–321

    CAS  PubMed  Google Scholar 

  • Schrenk R, Meier B, Männel DN, Dröge W, Baeuerle PA (1992) Dithiocarbamates as potent inhibitors of nuclear factor κB activation in intact cells. J Exp Med 175:1181–1194

    Google Scholar 

  • Spencer W, Kwon H, Crépieux P, Leclerc N, Lin R, Hiscott J (1999) Taxol selectively blocks microtubule dependent NF-κB activation by phorbol ester via inhibition of Iκ Bα phosphorylation and degradation. Oncogene 18:495–505

    CAS  PubMed  Google Scholar 

  • Staal FJT, Roederer M, Hertenberg LA, Hertenberg LA (1990) Intracellular thiols regulate activation of nuclear factor κB and transcription of human immunodeficiency virus. Proc Natl Acad Sci U S A 87:9943–9947

    PubMed Central  CAS  PubMed  Google Scholar 

  • Syrovets T, Büchele B, Krauss C, Laumonnier Y, Simmet T (2005) Acetyl-boswellic acids inhibit lipopolysaccharide-mediated TNF-α induction by direct interaction with IκB kinases. J Immunol 174:498–506

    CAS  PubMed  Google Scholar 

  • Tse AKW, Wan CK, Shen XL, Yang M, Fong WF (2005) Honokiol inhibits TNF-α-stimulated NF-κB activation and NF-κ B-regulated gene expression through suppression of IKK activation. Biochem Pharmacol 70:1443–1457

    CAS  PubMed  Google Scholar 

  • Yadav PN, Liu Z, Rafi MM (2003) A diarylheptanoid from lesser galangal (Alpinia officinarum) inhibits proinflammatory mediators via inhibition of mitogen-activated protein kinase, P44/42, and transcription factor nuclear factor- κB. J Pharmacol Exp Ther 305:925–931

    CAS  PubMed  Google Scholar 

  • Yan F, Polk DB (1999) Aminosalicylic acid inhibits IκB kinase α phosphorylation of Iκ Bα in mouse intestinal epithelial cells. J Biol Chem 274:36631–36636

    CAS  PubMed  Google Scholar 

TNF-α Antagonism

  • Adcock IM, Chung KF, Karamori G, Ito K (2006) Kinase inhibitors and airway inflammation. Eur J Pharmacol 533:118–132

    CAS  PubMed  Google Scholar 

  • Aggarwal BB, Shishodia S, Takada Y, Jackson-Bernitsas D, Ahn KS, Sethi G, Ichikawa H (2006) TNF blockade: an inflammatory issue. Ernst Schering Res Found Workshop 56:161–186

    PubMed  Google Scholar 

  • Agnholt J, Dahlerup JF, Kaltoft K (2003) The effect of etanercept and infliximab on the production of tumor necrosis factor α, interferon-γ and GM-CSF in in vivo activated intestinal T lymphocyte cultures. Cytokine 23:76–85

    CAS  PubMed  Google Scholar 

  • Anonymous (2002) Omalizumab: anti-IgE antibody E25, E25, humanized anti-IgE MAb, IGE 025, monoclonal antibody E25, Olizumab, Xolair, rhuMAb-E25. BioDrugs 16:380–386

    Google Scholar 

  • Belliveau PP (2005) Omalizumab: a monoclonal anti-IgE antibody. Medscape Gen Med 7:27

    Google Scholar 

  • Beutler B, Greenwald D, Hulmes JD, Chang M, Pan YC, Mathison J, Ulevitch R, Cerami A (1985) Identity of tumor necrosis factor and the macrophage-secreted factor catechin. Nature 316:552–554

    CAS  PubMed  Google Scholar 

  • Braun J, Brandt J, Listing J, Rudwaleit M, Sieper J (2003) Biologic therapies in the spondyloarthritis: new opportunities, new challenges. Curr Opin Rheumatol 15:394–407

    CAS  PubMed  Google Scholar 

  • Chen JJ, Dewdney N, Lin X, Martin RL, Walker KAM, Huang J, Chu F, Eugui E, Mirkovich A, Kim Y, Sarma K, Arzeno H, van Wart HE (2003) Design and synthesis of orally active inhibitors of TNF synthesis as anti-rheumatoid arthritis drugs. Bioorg Med Chem Lett 13:3951–3954

    CAS  PubMed  Google Scholar 

  • Cole P, Rabasseda X (2004) The soluble tumor necrosis factor receptor Etanercept: a new strategy in the treatment of autoimmune rheumatic disease. Drugs Today 40:281–324

    CAS  PubMed  Google Scholar 

  • Cvetkovic RS, Keating G (2002) Anakinra. BioDrugs 16:303–311

    CAS  PubMed  Google Scholar 

  • D’Amato G (2006) Role of anti-IgE monoclonal antibody (omalizumab) in the treatment of bronchial asthma and allergic respiratory diseases. Eur J Pharmacol 533:302–307

    PubMed  Google Scholar 

  • Davis LA (2004) Omalizumab: a novel therapy for allergic asthma. Ann Pharmacother 38:1236–1242

    CAS  PubMed  Google Scholar 

  • Di Sabatino A, Ciccocioppo R, Cinque B, Millimaggi D, Morera R, Ricevuti L, Cifone MG, Corazza GR (2004) Defective mucosal T cell death is sustainably reverted by infliximab in a caspase dependent pathway in Crohn’s disease. Gut 53:70–77

    PubMed Central  PubMed  Google Scholar 

  • Dietz AB, Souan L, Knutson GJ, Bulur PA, Litzow MR, Vuk-Pavloviæ S (2004) Imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo. Blood 104:1094–1099

    CAS  PubMed  Google Scholar 

  • Doggrell SA (2002) TACE inhibition: a new approach in treating inflammation. Expert Opin Investig Drugs 11:1003–1006

    CAS  PubMed  Google Scholar 

  • Easthope S, Jarvis B (2001) Omalizumab. Drugs 61:253–260

    CAS  PubMed  Google Scholar 

  • Feldmann M, Brennan FM, Foxwell BMJ, Maini RN (2001) The role of TNF-α and IL-1 in rheumatoid arthritis. Curr Dir Autoimmun 3:188–199

    CAS  PubMed  Google Scholar 

  • Fleischmann R, Stern R, Iqbal I (2004) Anakinra. An inhibitor of IL-1 for the treatment of rheumatoid arthritis. Expert Opin Biol Ther 4:1333–1344

    CAS  PubMed  Google Scholar 

  • Furst DE, Keystone EC, Breedveld FC, Kalden JR, Smolen JS, Antoni CE, Burmester GR, Crofford LJ, Kavanaugh A (2001) Updated consensus statement on tumor necrosis factor blocking agents for the treatment of rheumatoid arthritis and other rheumatic disorders. Ann Rheum Dis 60:2–5

    Google Scholar 

  • Goffe B (2004) Etanercept (Enbrel) – an update. Skin Therapy Lett 9:1–4

    CAS  PubMed  Google Scholar 

  • Gordon KB, Bonish BK, Patel T, Leonardi CL, Nickoloff BJ (2005) The tumor necrosis factor-α inhibitor adalimumab rapidly reverses the decrease in epidermal Langerhans cell density in psoriatic plaques. Br J Dermatol 153:945–953

    CAS  PubMed  Google Scholar 

  • Gupta S, Gollapudi S (2005) Molecular mechanisms of TNF-α-induced apoptosis in aging human T cell subsets. Int J Biochem Cell Biol 37:1034–1042

    CAS  PubMed  Google Scholar 

  • Jarvis B, Faulds D (1999) Etanercept. A review on its use in rheumatoid arthritis. Drugs 57:945–966

    CAS  PubMed  Google Scholar 

  • Johansson SGO, Haahtela T, O’Byrne PM (2002) Omalizumab and the immune system: an overview of preclinical and clinical data. Ann Allergy Asthma Immunol 89:132–138

    CAS  PubMed  Google Scholar 

  • Kaelin WG Jr (2004) Gleevec: prototype or outlier? Sci STKE 225:12

    Google Scholar 

  • Kilic T, Alberta JA, Zdunek PR, Acar M, Iannarelli P, O’Reilly T, Buchdunger E, Black PM, Stiles CD (2000) Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 60:5143–5150

    CAS  PubMed  Google Scholar 

  • Lassila M, Jandeleit-Dahm K, Seah KK, Smith CM, Calkin AC, Allen ZJ, Cooper ME (2005) Imatinib attenuates diabetic nephropathy in apolipoprotein E-knockout mice. J Am Soc Nephrol 16:363–373

    CAS  PubMed  Google Scholar 

  • Le GT, Abbenante G (2005) Inhibitors of TACE and caspase-1 as anti-inflammatory drugs. Curr Med Chem 12:2963–2977

    CAS  PubMed  Google Scholar 

  • Louie SG, Park B, Yoon H (2003) Biological response modifiers in the management of rheumatoid arthritis. Am J Health Syst Pharm 60:346–355

    CAS  PubMed  Google Scholar 

  • Moe GW, Marin-Garcia J, Konig A, Goldenthal M, Lu X, Feng Q (2004) In vivo TNF-α inhibition ameliorates cardiac mitochondrial dysfunction, oxidative stress, and apoptosis in experimental heart failure. Am J Physiol 287:H1813–H1820

    CAS  Google Scholar 

  • Nanes MS (2003) Tumor necrosis factor-α: molecular and cellular mechanisms in skeletal pathology. Gene 432:1–15

    Google Scholar 

  • Panaccione R, Ferraz JG, Beck P (2005) Advances in medical therapy of inflammatory bowel disease. Curr Opin Pharmacol 5:566–572

    CAS  PubMed  Google Scholar 

  • Peng T, Lu X, Lei M, Moe GW, Feng Q (2003) Inhibition of p38 MAPK decreases myocardial TNF-alpha expression and improves myocardial function and survival in endotoxemia. Cardiovasc Res 59:893–900

    CAS  PubMed  Google Scholar 

  • Pfeifer C, Wagner G, Laufer S (2006) New approaches to the treatment of inflammatory disorders small molecule inhibitors of p38 MAP kinase. Curr Top Med Chem 6:113–149

    Google Scholar 

  • Pfizenmaier K, Wajant H, Grell M (1996) Tumor necrosis factors in 1996. Cytokine Growth Factor Rev 7:271–277

    CAS  PubMed  Google Scholar 

  • Pugsley MK (2001) Etanercept: immunex. Curr Opin Investig Drugs 2:1725–1731

    CAS  PubMed  Google Scholar 

  • Rath PC, Aggarwal BB (1999) TNF-induced signaling in apoptosis. J Clin Immunol 19:350–364

    CAS  PubMed  Google Scholar 

  • Reber L, da Silva CA, Frossard N (2006) Stem cell factor and its receptor c-Kit as targets for inflammatory diseases. Eur J Pharmacol 533:327–340

    CAS  PubMed  Google Scholar 

  • Richards ML, Lio SC, Sinha A, Tieu KK, Sircar JC (2004) Novel 2-(substituted phenyl)benzimidazole derivatives with potent activity against IgE, cytokines, and CD23 for the treatment of allergy and asthma. J Med Chem 47:6451–6454

    CAS  PubMed  Google Scholar 

  • Scallon B, Cai A, Solowski N, Rosenberg A, Song XY, Shealy D, Wagner C (2002) Binding and functional comparisons of two types of tumor necrosis factor antagonists. J Pharmacol Exp Ther 301:418–426

    CAS  PubMed  Google Scholar 

  • Scheinfeld N (2006) Adalimumab (HUMIRA): a review. J Drugs Dermatol 2:375–377

    Google Scholar 

  • Sharma R, Anker SD (2002) Cytokines, apoptosis and cachexia: the potential for TNF antagonism. Int J Cardiol 85:161–171

    PubMed  Google Scholar 

  • Shen C, Maerten P, Geboes K, van Assche G, Rutgeers P, Ceuppens JL (2005) Infliximab induces apoptosis of human monocytes and T lymphocytes in a human-mouse chimeric model. Clin Immunol 115:250–259

    CAS  PubMed  Google Scholar 

  • Shen C, Van Assche G, Rutgeerts P, Cauppens JL (2006) Caspase activation and apoptosis induction by Adalimumab: demonstration in vitro and in vivo in a chimeric mouse model. Inflamm Bowel Dis 12:22–28

    PubMed  Google Scholar 

  • Taylor PC (2001) Anti-tumor necrosis factor therapies. Curr Opin Rheumatol 13:164–169

    CAS  PubMed  Google Scholar 

  • Taylor PC, Williams RO, Feldmann M (2004) Tumor necrosis factor α as a therapeutic target for immune-mediated inflammatory diseases. Curr Opin Biotechnol 15:557–563

    CAS  PubMed  Google Scholar 

  • Traxler P, Bold G, Buchdunger E, Caravatti G, Furet P, Manley P, O’Reilly T, Wood J, Zimmermann J (2001) Tyrosine kinase inhibitors: from rational design to clinical trials. Med Res Rev 21:499–512

    CAS  PubMed  Google Scholar 

  • Vallejo JG, Nemoto S, Ishiyama M, Yu B, Knuefermann P, Diwan A, Baker JS, Defreitas G, Tweardy DJ, Mann DL (2005) Functional significance of inflammatory mediators in a murine model of resuscitated hemorrhagic shock. Am J Physiol 288:H1272–H1277

    CAS  Google Scholar 

  • Van Deventer SJH (1997) Tumor necrosis factor and Crohn’s disease. Gut 40:443–448

    PubMed Central  PubMed  Google Scholar 

  • Wagner G, Laufer S (2006) Small molecular anti-cytokine agents. Med Res Rev 26:1–62

    CAS  PubMed  Google Scholar 

  • Wagner U, Pierer M, Wahle M, Moritz F, Kaltenhäuser S, Häntschel H (2004) Ex vivo homeostatic proliferation of CD4+ T cells in rheumatoid arthritis is dysregulated and driven by membrane-anchored TNFα. J Immunol 173:2825–2833

    CAS  PubMed  Google Scholar 

  • Waugh J, Perry CM (2005) Anakinra: a review of its use in the management of rheumatoid arthritis. BioDrugs 19:189–202

    CAS  PubMed  Google Scholar 

  • Wolf AM, Wolf D, Rumpold H, Ludwiczek S, Enrich B, Gastl G, Weiss G, Tilg H (2005) The kinase inhibitor imatinib mesylate inhibits TNF-α production in vitro and prevents TNF-dependent acute hepatic inflammation. Proc Natl Acad Sci U S A 102:13622–13627

    PubMed Central  CAS  PubMed  Google Scholar 

Inhibition of TNF-α Release

  • Flick DA, Gifford GE (1984) Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. J Immunol Methods 68:167–175

    CAS  PubMed  Google Scholar 

  • Golebiowski A, Towner J, Laufersweiler MJ, Brugel TA, Clark MP, Clark CM, Djung JF, Laughlin SK, Sabat MP, Bookland RG, VanRens JC, De B, Hsieh LC, Janusz MJ, Walter RL, Webster ME, Mekel MJ (2005) The development of monocyclic pyrazolone based cytokine synthesis inhibitors. Bioorg Med Chem Lett 15:2285–3389

    CAS  PubMed  Google Scholar 

  • Ignar D, Andrews JL, Jansen M, Eilert MM, Pink HM, Lin P, Sherrill RG, Szewczyk JR, Conway JG (2003) Regulation of TNF-α secretion by a specific melanocortin-1 receptor peptide agonist. Peptides 24:709–716

    CAS  PubMed  Google Scholar 

  • Kumar S, McDonnell PC, Gum RJ, Hand AT, Lee JC, Young PR (1997) Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridyl imidazoles. Biochem Biophys Res Commun 235:533–538

    CAS  PubMed  Google Scholar 

  • McLay IM, Halley F, Souness JE, McKenna J, Benning V, Birrell M, Burton B, Belvisi M, Collis A, Constan A, Foster M, Hele D, Jayyosi Z, Kelley M, Maslen C, Miller G, Ouldelhkim MC, Page K, Phipps S, Pollock K, Porter B, Ratcliffe AJ, Redford EJ, Webber S, Slater B, Thybaud V, Wilsher N (2001) The discovery of RPR 200765A, a p38 MAP kinase inhibitor displaying a good oral anti-arthritic efficacy. Bioorg Med Chem 9:537–554

    CAS  PubMed  Google Scholar 

  • Maloff BL, Delmendo RE (1991) Development of high-throughput radioligand binding assays for interleukin 1-α (IL-1-α) and tumor necrosis factor (TNF-α) in isolated membrane preparations. Agents Actions 34:32–34

    Google Scholar 

Effect of TNF-α Binding

  • Akassoglou K, Douni E, Bauer J, Lassmann H, Kollias G, Probert L (2003) Exclusive tumor necrosis factor (TNF) signaling by the p75TNF receptor triggers inflammatory ischemia in the CNS of transgenic mice. Proc Natl Acad Sci U S A 100:709–714

    PubMed Central  CAS  PubMed  Google Scholar 

  • Butler DM, Scallon B, Meager A, Kissonerghis M, Corcoran A, Chernajovsky Y, Feldmann M, Ghrayeb J, Brennan FM (1994) TNF receptor fusion proteins are effective inhibitors of TNF-mediated cytotoxicity on human KYM-1D4 rhabdomyosarcoma cells. Cytokine 6:616–623

    CAS  PubMed  Google Scholar 

  • Evans TJ, Moyes D, Carpenter A, Martin R, Loetscher H, Lesslauer W, Cohen J (1994) Protective effect of 55- but not 75-kD soluble tumor necrosis factor receptor-immunoglobulin G fusion proteins in an animal model of gram-negative sepsis. J Exp Med 180:2173–2179

    CAS  PubMed  Google Scholar 

  • Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, Kollias G (1991) Transgenic mice expressing human tumour necrosis factor: a predictive model of arthritis. EMBO J 10:4025–4031

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kirchner S, Holler E, Haffner S, Andreesen R, Eissner G (2004) Effect of different tumor necrosis factor (TNF) reactive agents on reverse signaling of membrane integrated TNF in monocytes. Cytokine 28:67–74

    CAS  PubMed  Google Scholar 

  • Knight DM, Trinh H, Le J, Siegel S, Shealy D, McDonough M, Scallon B, Moore MA, Vilcek J, Daddona P (1993) Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol Immunol 30:1443–1453

    CAS  PubMed  Google Scholar 

  • Kollias D, Douni E, Kassiotis G, Kontoyannis D (1999) The function of tumour necrosis factor and receptors in models of multi-organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Ann Rheum Dis 58(Suppl 1):I32–I39

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelle F, Kollias G (1999) Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10:387–398

    CAS  PubMed  Google Scholar 

  • Li P, Schwarz EM (2003) The TNF-α transgenic mouse model in inflammatory arthritis. Springer Semin Immunopathol 25:19–33

    PubMed  Google Scholar 

  • Maloff BL, Delmendo RE (1991) Development of high-throughput radioligand binding assays for interleukin 1-α (IL-1-α) and tumor necrosis factor (TNF-α) in isolated membrane preparations. Agents Actions 34:132–134

    CAS  PubMed  Google Scholar 

  • Mijatovic T, Houzet L, Defence P, Droogmans L, Huez G, Kruys V (2000) Tumor necrosis factor-α mRNA remains unstable and hypoadenylated upon stimulation of macrophages by lipopolysaccharides. Eur J Biochem 267:6004–6011

    CAS  PubMed  Google Scholar 

  • Mohler KM, Torrance DS, Smith CA, Goodwin RG, Stremler KE, Fung VP, Madani H, Widmer MB (1993) Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol 151:1548–1561

    CAS  PubMed  Google Scholar 

  • Scallon B, Cai A, Solowski N, Rosenberg A, Song XY, Shealy D, Wagner C (2002) Binding and functional comparisons of two types of tumor necrosis factor antagonists. J Pharmacol Exp Ther 301:418–426

    CAS  PubMed  Google Scholar 

  • Schall TJ, Lewis M, Koller KJ, Lee A, Rice GC, Wong GH, Gatanaga T, Granger GA, Lentz R, Raab H (1990) Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61:361–370

    CAS  PubMed  Google Scholar 

  • Shen C, Assche GV, Colpaert S, Maerten P, Geboes K, Rutgeerts P, Ceuppens JL (2005) Adalimumab induces apoptosis of human monocytes: a comparative study with infliximab and etanercept. Aliment Pharmacol Ther 21:251–258

    CAS  PubMed  Google Scholar 

  • Smith CA, Davis T, Anderson D, Solam L, Beckmann MP, Jerzy R, Dower SK, Cosman D, Goodwin RG (1990) A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248:1019–1023

    CAS  PubMed  Google Scholar 

  • Vuoltteenaho K, Moilanen T, Hämäläinen M, Moilanen T (2002) Effects of TNF-α antagonists on nitric oxide production in human cartilage. Osteoarthr Cartil 10:327–332

    Google Scholar 

  • Zhang Y, Xu J, Levin J, Hegen M, Li G, Robertshaw H, Brennan F, Cummons T, Clarke D, Vansell N, Nickerson-Nutter C, Barone D, Mohler K, Black R, Skotnicki J, Gibbons J, Feldmann M, Frost P, Larsen G, Lin LL (2002) Identification and characterization of 4-[[4-(2-butynyloxy]phenyl]sulfonyl)-N-boxamide (TMI-1), a novel dual tumor necrosis factor converting enzyme/matrix metalloprotease inhibitor for the treatment of rheumatoid arthritis. J Pharmacol Exp Ther 309:348–355

    Google Scholar 

Binding to Interferon Receptors

  • Alexenko AP, Leaman DW, Li J, Roberts RM (1997) The anti-proliferative and antiviral activities of IFN-τ variants in human cells. J Interf Cytokine Res 17:769–779

    CAS  Google Scholar 

  • Alexenko AP, Ealy AD, Roberts RM (1999) The cross-species antiviral activities of different IFN-τ subtypes on bovine, murine, and human cells: contradictory evidence for therapeutic potential. J Interferon Cytokine Res 19:1335–1341

    CAS  PubMed  Google Scholar 

  • Blatt LM, Davis JM, Klein SB, Taylor MW (1996) The biological activity and molecular characterization of a novel synthetic interferon-alpha species, consensus interferon. J Interferon Cytokine Res 16:488–499

    Google Scholar 

  • Bosio E, Beilharz MW, Watson MW, Lawson CM (1999) Efficacy of low-dose oral use of type I interferon in cytomegalovirus infections in vivo. J Interferon Cytokine Res 19:869–876

    CAS  PubMed  Google Scholar 

  • Littman SJ, Faltynek CR, Baglioni C (1985) Binding of human recombinant 125I-interferon to receptors on human cells. J Biol Chem 260:1191–1195

    CAS  PubMed  Google Scholar 

  • Martal JL, Chene NM, Huynh LP, L’Haridon RM, Reinaud PB, Guillomot MW, Charlier MA, Charpigny SY (1998) IFN-τ: a novel subtype I IFN1. Structural characteristics, non-ubiquitous expression, structure-function relationships, a pregnancy hormonal embryonic signal and cross-species therapeutic potentialities. Biochimie 80:755–777

    CAS  PubMed  Google Scholar 

  • Munson PJ, Rodbard D (1980) LIGAND, a versatile computerized approach for characterization of ligand binding systems. Anal Biochem 107:220–239

    CAS  PubMed  Google Scholar 

  • Pontzer CH, Ott TL, Bazer FW, Johnson HM (1994) Structure/function studies with interferon τ: evidence for multiple active sites. J Interferon Res 14:133–141

    CAS  PubMed  Google Scholar 

  • Poynter ME, Daynes RA (1999) Age-associated alterations in splenic iNOS regulation: influence of constitutively expressed INF-γ and correction following supplementation with PPARα activators of vitamin E. Cell Immunol 195:127–136

    CAS  PubMed  Google Scholar 

  • Sen GC, Lengyel P (1992) The interferon system. A bird’s eye view of its biochemistry. J Biol Chem 267:5017–5020

    CAS  PubMed  Google Scholar 

  • Swann SL, Bazer FW, Villarete LH, Chung A, Pontzer CH (1999) Functional characterization of monoclonal antibodies to interferon-τ. Hybridoma 18:399–405

    CAS  PubMed  Google Scholar 

  • Thiam K, Loing E, Delanoye A, Diesis E, Gras-Masse H, Auriault C, Verwaerde C (1998) Unrestricted agonist activity on murine and human cells of a lipopeptide derived from INF-γ. Biochem Biophys Res Commun 253:639–647

    CAS  PubMed  Google Scholar 

  • Tovey MG, Maury C (1999) Oromucosal interferon therapy: marked antiviral and antitumor activity. J Interferon Cytokine Res 19:145–155

    CAS  PubMed  Google Scholar 

  • Viscomi GC, Antonelli G, Bruno C, Scapol L, Malavasi F, Funaro A, Simeoni E, Pestka S, de Pisa F, Dianzani F (1999) Antigenic characterization of recombinant, lymphoblastoid, and leukocyte INF-α by monoclonal antibodies. J Interferon Cytokine Res 19:319–326

    CAS  PubMed  Google Scholar 

  • Zhang F, Nakamura T, Aune TM (1999) TCR and IL-12 receptor signals cooperate to activate an individual response element in the INF-γ promoter on Th cells. J Immunol 163:728–735

    CAS  PubMed  Google Scholar 

Chemokine Antagonism

  • Chen L, Pei G, Zhang W (2004) An overall picture of chemokine receptors: basic research and drug development. Curr Pharm Des 10:1045–1055

    CAS  PubMed  Google Scholar 

  • Chen S, Bacon KB, Li L, Garcia GE, Xia Y, Lo D, Thompson DA, Siani MA, Yamamoto T, Jk H, Feng L (1998) In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar–Kyoto (WKY) rats by vMIP-II. J Exp Med 188:193–198

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cunha TM, Verri WA Jr, Silva JS, Poole S, Cunha FQ, Ferreira SH (2005) A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci U S A 102:1755–1760

    PubMed Central  CAS  PubMed  Google Scholar 

  • D’Ambrosio D, Panina-Bordignon P, Sinigaglia F (2003) Chemokine receptors in inflammation: an overview. J Immunol Methods 273:3–13

    PubMed  Google Scholar 

  • Daugherty BL, Siciliano SJ, DeMartino JA, Malkowitz L, Sirotina A, Springer MS (1996) Cloning, expression, and characterization of the human eosinophil eotaxin receptor. J Exp Med 183:2349–2354

    CAS  PubMed  Google Scholar 

  • De Lucca GV, Kim UT, Vargo BJ, Duncia JV, Santella JB, Gardener DS, Zheng C, Liauw A, Wang Z, Emmett G, Wacker DA, Welch PK, Covington M, Stowell NC, Wadman EA, Das AM, Davies P, Yeleswaram S, Graden DM, Solomon KA, Newton RC, Trainor GL, Decicco CP, Ko SS (2005) Discovery of CC chemokine receptor-3 (CCR3) antagonists with picomolar potency. J Med Chem 48:2194–2211

    PubMed  Google Scholar 

  • Eltayeb S, Sunnemark D, Berg AL, Nordvall G, Malmberg Å, Lassmann H, Wallström E, Olsson T, Ericsson-Dahlstrand A (2003) Effector stage CC chemokine receptor-1 selective antagonism reduces multiple sclerosis-like rat disease. J Neuroimmunol 142:75–85

    CAS  PubMed  Google Scholar 

  • Fernandez EJ, Lolis E (2002) Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol 42:469–499

    CAS  PubMed  Google Scholar 

  • Fryer AD, Stein LH, Nie Z, Curtis DE, Evans CM, Hodgson ST, Jose PJ, Belmonte KE, Titch E, Jacoby DB (2006) Neuronal eotaxin and the effects of CCR3 antagonist on airway hyperreactivity and M2 receptor dysfunction. J Clin Invest 116:228–236

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gladue RP, Cole SH, Roach ML, Tylaska LA, Nelson RT, Shepard RM, McNelsh JD, Ogborne KT, Neote KS (2006) The human specific CCR1 antagonist CP-481,715 inhibits cell infiltration and inflammatory responses in human DDR1 transgenic mice. J Immunol 176:3141–3148

    CAS  PubMed  Google Scholar 

  • Grainger DJ, Reckless J (2005) Broad-spectrum chemokine inhibitors (BSCIs) and their anti-inflammatory effects in vivo. Biochem Pharmacol 65:1027–1034

    Google Scholar 

  • Haringman JJ, Tak PP (2004) Chemokine blockade: a new area in the treatment of rheumatoid arthritis? Arthritis Res Ther 6:93–97

    PubMed Central  CAS  PubMed  Google Scholar 

  • Houshmand P, Zlotnik A (2003) Therapeutic applications in the chemokine superfamily. Curr Opin Chem Biol 7:457–460

    CAS  PubMed  Google Scholar 

  • Laudanna C, Constanin G (2003) New models of intravital microscopy for analysis of chemokine receptor-mediated leukocyte vascular recognition. J Immunol Methods 273:115–124

    CAS  PubMed  Google Scholar 

  • Liang M, Mallari C, Rosser M, Ng HP, May K, Monahan S, Bauman JG, Islam I, Ghannam A, Buckman B, Shaw K, Wei GP, Xu W, Zhao Z, Ho E, Shen J, Oanh H, Subramanyam B, Vergona R, Taub D, Dunning L, Harvey S, Snider RM, Hesselgesser J, Morrissey MM, Perez HD (2000a) Identification and characterization of a potent, selective, and orally active antagonist of the CC chemokine receptor-1. J Biol Chem 275:19000–19008

    CAS  PubMed  Google Scholar 

  • Liang M, Rosser M, Ng HP, May K, Bauman JG, Islam I, Ghannam A, Kretschmer PJ, Pu H, Dunning L, Snider RM, Morrissey MM, Hesselgesser J, Perez HD, Horuk R (2000b) Species selectivity of a small molecule antagonist for the CCR1 chemokine receptor. Eur J Pharmacol 389:41–49

    CAS  PubMed  Google Scholar 

  • Naya A, Sagara Y, Ohwaki K, Saeki T, Ichikawa D, Iwasawa Y, Noguchi K, Ohtake N (2001) Design, synthesis and discovery of a novel CCR1 antagonist. J Med Chem 44:1429–1435

    CAS  PubMed  Google Scholar 

  • Ono SJ, Nakamura T, Miyazaki D, Ohbayashi M, Dawson M, Toda M (2003) Chemokines: roles in leukocyte development, trafficking, and effector function. J Allergy Clin Immunol 111:1185–1199

    CAS  PubMed  Google Scholar 

  • Proudfoot AEI, Power CA, Rommel C, Wells TNC (2003) Strategies for chemokine antagonists as therapeutics. Semin Immunol 15:57–65

    CAS  PubMed  Google Scholar 

  • Rosi S, Pert CB, Ruff MR, McGann-Gramling K, Wenk GL (2005) Chemokine recptor 5 antagonist D-ala-peptide T-amide reduces microglia and astrocyte activation within the hippocampus in a neuroinflammatory rat model of Alzheimer’s disease. Neuroscience 134:671–676

    CAS  PubMed  Google Scholar 

  • Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 18:217–242

    CAS  PubMed  Google Scholar 

  • Ruth JH, Volin MV, Haines GK, Woodruff DC, Katsche KJ Jr, Woods JM, Park CC, Morel JCM, Koch AE (2001) Fractalkine, a novel chemokine in rheumatoid arthritis and in rat adjuvant-induced arthritis. Arthritis Rheum 44:1568–1581

    CAS  PubMed  Google Scholar 

  • Saita Y, Kondao M, Miyazaki T, Yamji N, Shimizu Y (2005) Transgenic mouse expressing human CCR5 as a model for in vivo assessments of human selective CCR5 antagonists. Eur J Pharmacol 518:227–233

    CAS  PubMed  Google Scholar 

  • Sallusto F, Mackay CR, Lanzvecchia A (2000) The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 18:593–620

    CAS  PubMed  Google Scholar 

  • Umehara H, Bloom ET, Okazaki T, Nagano Y, Yoshie O, Imai T (2004) Fractalkine in vascular biology. From basic research to clinical disease. Arterioscler Thromb Vasc Biol 24:34–40

    CAS  PubMed  Google Scholar 

  • Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    CAS  PubMed  Google Scholar 

Influence of Peroxisome Proliferator-Activated Receptors (PPARs) on Inflammation

  • Bishop-Bailey D, Warner TD (2003) PPARγ ligands induce prostaglandin production in vascular smooth muscle cells: indomethacin acts as a peroxisome proliferator-activated receptor-γ antagonist. FASEB J 17:1925–1927

    CAS  PubMed  Google Scholar 

  • Blanquart C, Barbier O, Fruchart JC, Staels B, Glineur C (2003) Peroxisome proliferators-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol 85:267–273

    CAS  PubMed  Google Scholar 

  • Cabrero A, Laguna JC, Vázquez M (2002) Peroxisome proliferator-activated receptors and the control of inflammation. Curr Drug Targets Inflamm Allergy 1:243–248

    CAS  PubMed  Google Scholar 

  • Cheng S, Afif H, Martel-Pelletier J, Pelletier LX, Farrajota K, Lavigne M, Fahmi H (2004) Activation of peroxisome proliferator-activated receptor γ inhibits interleukin-1β induced membrane-associated prostaglandin E2 synthase-1 expression in human synovial fibroblasts by interfering with Egr-1. J Biol Chem 279:22057–22065

    CAS  PubMed  Google Scholar 

  • Clark RB (2002) The role of PPARs in inflammation and immunity. J Leukoc Biol 71:388–400

    CAS  PubMed  Google Scholar 

  • Delerive P, Fruchart JC, Staels B (2001) Peroxisome proliferators-activated receptors in inflammation control. J Endocrinol 169:453–459

    CAS  PubMed  Google Scholar 

  • Devchand PR, Keller H, Peters JM, Vasquez M, Gonzales FJ, Wahli W (1996) The PPARα-leukotriene B4 pathway in inflammatory control. Nature 384:39–43

    CAS  PubMed  Google Scholar 

  • Diep QN, Benkirane K, Amiri F, Cohn JS, Endemann D, Schiffrin EL (2004) PPARγ activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin II-infused rats. J Mol Cell Biol 36:295–304

    CAS  Google Scholar 

  • Fahmi H, di Battista JA, Pelletier JP, Mineau F, Ranger P, Martell-Peletier J (2001) Peroxisome proliferator-activated receptor γ activators inhibit interleukin-1β induced nitric oxide and metalloproteinase 13 production in human chondrocytes. Arthritis Rheum 44:595–607

    CAS  PubMed  Google Scholar 

  • Jiang C, Ting AT, Seed B (1998) PPAR-γ antagonists inhibit production of monocytes inflammatory cytokines. Nature 391:82–86

    CAS  PubMed  Google Scholar 

  • Kojo H, Fukagawa M, Tajima K, Suzuki A, Fujimura T, Aramori I, Hayashi KI, Nishimura S (2003) Evaluation of human peroxisome-activated receptor (PPAR) subtype selectivity of a variety of anti-inflammatory drugs based on an novel assay for PPARδ (β). J Pharmacol Sci 93:347–355

    CAS  PubMed  Google Scholar 

  • Moller DE, Berger JP (2004) Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int J Obes 27:517–521

    Google Scholar 

  • Nencioni A, Wesselborg S, Brossart P (2003) Role of peroxisome proliferator-activated receptor γ and its ligands in the control of immune responses. Crit Rev Immunol 23:1–13

    CAS  PubMed  Google Scholar 

  • Tai ES, Ali AB, Zhang Q, Loh LM, Tan CE, Retnam L, Oakley RME, Lim SK (2003) Hepatic expression of PPARγ, a molecular target of fibrates, is regulated during inflammation in a gender-specific manner. FEBS Lett 546:237–240

    CAS  PubMed  Google Scholar 

  • Woerly G, Honda K, Loyens M, Papin JP, Auwerx J, Staels B, Capron M, Dombrowicz D (2003) Peroxisome proliferator-activated receptors α and γ downregulate allergic inflammation and eosinophil activation. J Exp Med 198:411–421

    PubMed Central  CAS  PubMed  Google Scholar 

Binding to Histamine H4 Receptor

  • Bakker RA, Weiner DM, ter Laak T, Beuming T, Zuiderveld OP, Edelbroek M, Hacksell U, Timmerman H, Brann MR, Leurs R (2004) 8R-lisuride is a potent stereospecific histamine H1-receptor partial agonist. Mol Pharmacol 65:538–549

    CAS  PubMed  Google Scholar 

  • De Esch IJ, Thurmond RL, Jongejan A, Leurs R (2005) The histamine H4 receptor as a new therapeutic target for inflammation. Trends Pharmacol Sci 26:462–469

    PubMed  Google Scholar 

  • Fung-Leung WP, Thurmond RL, Ling P, Karlsson L (2004) Histamine H4 receptor antagonists: the new antihistamines? Curr Opin Investig Drugs 5:1174–1183

    CAS  PubMed  Google Scholar 

  • Gbahou F, Vincent L, Humbert-Claude M, Tardivel-Lacombe J, Chabret C, Arrang JM (2006) Compared pharmacology of human histamine H3 and H4 receptors: structure-activity relationships of histamine derivatives. Br J Pharmacol 147:744–754

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R, Haas HL (1997) International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev 49:253–278

    CAS  PubMed  Google Scholar 

  • Hough LB (2001) Genomics meets histamine receptors: new subtype, new receptor. Mol Pharmacol 59:415–419

    CAS  PubMed  Google Scholar 

  • Lim HD, van Rijn RM, Ling P, Bakker RA, Thurmond RL, Leurs R (2005) Evaluation of histamine H1-, H2-, and H3-receptor ligands at the human H4 receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor agonist. J Pharmacol Exp Ther 314:1310–1321

    CAS  PubMed  Google Scholar 

  • Lim HD, Smits RA, Leurs R, de Esch IJP (2006) The emerging role of the histamine H4 receptor in anti-inflammatory therapy. Curr Top Med Chem 6:1365–1373

    CAS  PubMed  Google Scholar 

  • Liu C, Ma X-J, Jiang X, Wilson SJ, Hofstra CL, Blevitt J, Pyati J, Li X, Chai W, Carruthers N, Lovenberg TW (2001a) Cloning and pharmacological characterization of a fourth histamine receptor (H4) expressed in bone marrow. Mol Pharmacol 59:420–426

    CAS  PubMed  Google Scholar 

  • Liu C, Wilson SJ, Kuei C, Lovenberg TW (2001b) Comparison of human, mouse, rat, and guinea pig histamine H4 receptors reveals substantial pharmacological species variation. J Pharmacol Exp Ther 299:121–130

    CAS  PubMed  Google Scholar 

  • Lovenberg TW, Roland BL, Wilson SJ, Jiang X, Pyati J, Huvar A, Jackson MR, Erlander MG (1999) Cloning and functional expression of the human histamine H3 receptor. Mol Pharmacol 55:1101–1107

    CAS  PubMed  Google Scholar 

  • Oda T, Morikawa N, Saito Y, Masuho Y, Matsumoto SI (2000) Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J Biol Chem 275:36781–36786

    CAS  PubMed  Google Scholar 

  • Thurmond RL, Desai PJ, Dunford PJ, Fung-Leung WP, Hofstra CL, Jiang W, Nguyen S, Riley JP, Sun S, Williams KN, Edwards JP, Karlsson L (2004) A potent and selective histamine H4 antagonist with anti-inflammatory properties. J Pharmacol Exp Ther 309:404–413

    CAS  PubMed  Google Scholar 

  • Zhang M, Venable JD, Thurmond RI (2006) The histamine H4 receptor in autoimmune disease. Expert Opin Investig Drugs 15:1443–1452

    CAS  PubMed  Google Scholar 

Methods for Testing Acute and Subacute Inflammation

  • Gloxhuber C (1976) A new inflammation model. Arzneim Forsch/Drug Res 26:43–45

    CAS  Google Scholar 

  • Kligman LH (1994) Rapid assay of the anti-inflammatory activity of topical corticosteroids by inhibition of a UVA-induced neutrophil infiltration in hairless mouse skin. II. Assessment of name brand versus generic potency. Acta Derm Venereol (Stockh) 74:18–19

    CAS  Google Scholar 

  • Selve N (1991) EM 405: a new substance with an uncommon profile of anti-inflammatory activity. Agents Actions 32:59–61

    CAS  PubMed  Google Scholar 

  • Warren JB, Loi RK, Coughlan ML (1993) Involvement of nitric oxide synthase in delayed response to ultraviolet light irradiation of rat skin in vitro. Br J Pharmacol 109:802–806

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wilhelmi G (1949) Ueber die pharmakologischen Eigenschaften von Irgapyrin, einem neuen Präparat aus der Pyrazolreihe. Schweiz Med Wochenschr 79:577–582

    CAS  PubMed  Google Scholar 

  • Wilhelmi G, Domenjoz H (1951) Vergleichende Untersuchungen über die Wirkung von Pyrazolen und Antihistaminen bei verschiedenen Arten der experimentellen Entzündung. Arch Int Pharmacodyn Ther 85:129–143

    CAS  PubMed  Google Scholar 

  • Winder CV, Wax J, Burr V, Been M, Rosiere CE (1958) A study of pharmacological influences on ultraviolet erythema in guinea pigs. Arch Int Pharmacodyn Ther 116:261–292

    CAS  PubMed  Google Scholar 

  • Woodbury RA, Kligman LH, Woodbury MJ, Kligman AM (1994) Rapid assay of the anti-inflammatory activity of topical corticosteroids by inhibition of a UVA-induced neutrophil infiltration in hairless mouse skin. I. The assay and its sensitivity. Acta Derm Venereol (Stockh) 74:15–17

    CAS  Google Scholar 

  • Woodward DF, Owen DAA (1979) Quantitative measurement of the vascular changes produced by UV radiation and carrageenin using the guinea-pig ear as the site of inflammation. J Pharmacol Methods 2:5–42

    Google Scholar 

  • Yawalkar S, Wiesenberg-Boettcher I, Gibson JR, Siskin SB, Pignat W (1991) Dermatopharmacologic investigations of halobetasol propionate in comparison with clobetasol 17-propionate. J Am Acad Dermatol 25:1137–1144

    CAS  PubMed  Google Scholar 

Vascular Permeability

  • Ahluwalia A, Maggi C, Santiccioli P, Lecci A, Giulani S (1994) Characterisation of the capsaicin-sensitive component of cyclophosphamide-induced inflammation in the rat urinary bladder. Br J Pharmacol 111:1017–1022

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alfieri A, Gardner C (1997) The NK-1 antagonist GR203040 inhibits cyclophosphamide-induced damage in the rat and ferret bladder. Gen Pharmacol 29:245–250

    CAS  PubMed  Google Scholar 

  • Bennett AJ, West GB (1978) Measurement of the changes in vascular permeability in rat skin. J Pharmacol Methods 1:105–108

    CAS  Google Scholar 

  • Blackham A, Woods FAM (1986) Immune complex mediated inflammation in the mouse peritoneal cavity. J Pharmacol Methods 15:77–85

    CAS  PubMed  Google Scholar 

  • Bon K, Lantéri-Minet M, de Pommery J, Michiels JF, Menétrey D (1996) Cyclophosphamide cystitis as a model of visceral pain in rats. A survey of hindbrain structures involved in visceroception and nociception using the expression of c-Fos and Krox-24 proteins. Exp Brain Res 108:404–416

    CAS  PubMed  Google Scholar 

  • Boucher M, Meen M, Codron JP, Coudoré F, Kémény JL, Eschalier A (1997) Cyclophosphamide cystitis in rats: a new behavioral model of visceral pain. Fundam Clin Pharmacol 11:160

    Google Scholar 

  • Cambridge H, Ajuebor MN, Brain SD (1996) Investigation of 6-hydroxydopamine-induced plasma extravasation in rat skin. Eur J Pharmacol 301:151–157

    CAS  PubMed  Google Scholar 

  • Collins PD, Connolly DT, Williams TJ (1993) Characterization of the increase in vascular permeability induced by vascular permeability factor in vivo. Br J Pharmacol 109:195–199

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feldberg W, Miles A (1953) Regional variations of increased permeability of skin capillaries induced by a histamine liberator and their relation to the histamine content in skin. J Physiol 120:205–213

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frimmer M, Müller FW (1962) Brauchbarkeit und Grenzen der Farbstoffmethoden zur Bestimmung vermehrter Durchlässigkeit der Haut-Capillaren. Med Exp 6:327–330

    CAS  PubMed  Google Scholar 

  • Fujii E, Irie K, Ogawa A, Ohba K, Muraki T (1996) Role of nitric oxide and prostaglandins in lipopolysaccharide-induced increase in vascular permeability in mouse skin. Eur J Pharmacol 297:257–263

    CAS  PubMed  Google Scholar 

  • Hirota K, Zsigmond EK, Matsuki A, Rabito SF (1995) Topical ketamine inhibits albumin extravasation in chemical peritonitis in rats. Acta Anaesthesiol Scand 39:174–178

    CAS  PubMed  Google Scholar 

  • Lembeck F, Holzer P (1979) Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn Schmiedeberg’s Arch Pharmacol 310:175–183

    CAS  Google Scholar 

  • McClure N, Robertson DM, Heyward P, Healy DL (1994) Image analysis quantification of the Miles assay. J Pharmacol Toxicol Methods 32:49–52

    CAS  PubMed  Google Scholar 

  • Miles AA, Miles EM (1952) Vascular reactions to histamine, histamine-liberator and leukotaxine in the skin of guinea pigs. J Physiol 118:228–257

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nagahisa A, Kanai Y, Suga O, Taniguchi K, Tsuchiya M, Lowe JA III, Hess HJ (1992) Antiinflammatory and analgesic activity of a non-peptide substance P receptor antagonist. Eur J Pharmacol 217:191–195

    CAS  PubMed  Google Scholar 

  • Pouleau A, Garbag M, Ligneau X, Mantion C, Lavie P, Advenier C, Lecomte JM, Krause M, Stark H, Schunack W, Schwartz JC (1997) Bioavailability, antinociceptive and antiinflammatory properties of BP 2–94, a histamine H3 receptor agonist prodrug. J Pharmacol Exp Ther 281:1085–1094

    Google Scholar 

  • Saria A, Lundberg JM, Skofitsch G, Lembeck F (1983) Vascular protein leakage in various tissues induced by substance P, capsaicin, bradykinin, serotonin, histamine and by antigen challenge. Naunyn-Schmiedeberg’s Arch Pharmacol 324:212–218

    CAS  Google Scholar 

  • Sensch KH, Zeiller P, Raake W (1979) Zur antiexsudativen und antioedematösen Wirkung von Sympathikomimetika. Arzneim Forsch/Drug Res 29:116–121

    CAS  Google Scholar 

  • Shionoya H, Ohtake S (1975) A new simple method for extraction of extravasated dye in the skin. Jpn J Pharmacol 103(Suppl 25):103

    Google Scholar 

  • Teixeira MM, Williams TJ, Hellewell PG (1993) Role of prostaglandins and nitric oxide in acute inflammatory reactions in guinea-pig skin. Br J Pharmacol 110:1515–1521

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe K, Nakagawa H, Tsurufuji S (1984) A new sensitive fluorometric method for measurement of vascular permeability. J Pharmacol Methods 11:167–176

    CAS  PubMed  Google Scholar 

  • Whittle BA (1964) The use of changes in capillary permeability in mice to distinguish between narcotic and non narcotic analgesics. Br J Pharmacol 22:246–253

    CAS  Google Scholar 

  • Zentel HJ, Töpert M (1994) Preclinical evaluation of a new topical corticosteroid methylprednisolone aceponate. J Eur Acad Dermatol Venereol 3(Suppl 1):S32–S38

    Google Scholar 

Inhibition of Leukocyte Adhesion to Rat Mesenteric Venules In Vivo

  • Burch RM, Connor JR, Bator JM, Weitzberg M, Laemont K, Noronha-Blob L, Sullivan JP, Steranka LR (1992) NPC 15669 inhibits the reverse passive Arthus reaction in rats by blocking neutrophil recruitment. J Pharmacol Exp Ther 263:933–937

    CAS  PubMed  Google Scholar 

  • Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873

    CAS  PubMed  Google Scholar 

  • MacGregor RR, Spagnuolo PJ, Lentnek AL (1974) Inhibition of granulocyte adherence by ethanol, prednisone, and aspirin, measured with an assay system. N Engl J Med 291:642–646

    CAS  PubMed  Google Scholar 

  • Stecher VJ, Chinea GL (1978) The neutrophil adherence assay as a method for detecting unique anti-inflammatory agents. Agents Actions 8(258):262

    Google Scholar 

  • Zielinski T, Müller HJ, Schleyerbach R, Bartlett RR (1994) Differential effects of leflunomide on leukocytes: inhibition of rat in vivo adhesion and human in vitro oxidative burst without affecting surface marker modulation. Agents Actions 41(Spec Conf Issue):C276–C278

    Google Scholar 

Oxazolone-Induced Ear Edema in Mice

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638

    CAS  Google Scholar 

  • Bailey SC, Asghar F, Przekop PA, Kurtz ES (1995) A novel contact hypersensitivity model for rank-ordering formulated corticosteroids. Inflamm Res 44(Suppl 2):S162–S163

    CAS  PubMed  Google Scholar 

  • Evans PD, Hossack M, Thomson DS (1971) Inhibition of contact sensitivity in the mouse by topical application of corticosteroids. Br J Pharmacol 43:403

    PubMed Central  CAS  PubMed  Google Scholar 

  • Griswold DE, DiLorenzo JA, Calabresi P (1974) Quantification and pharmacological dissection of oxazolone-induced contact sensitivity in the mouse. Cell Immunol 11:198–204

    CAS  PubMed  Google Scholar 

  • Meingassner JG, Grassberger M, Fahrngruber H, Moore HD, Schuurman H, Stütz A (1997) A novel anti-inflammatory drug, SDZ ASM 981, for the topical and oral treatment of skin diseases. In vivo pharmacology. Br J Dermatol 137:568–576

    CAS  PubMed  Google Scholar 

  • Williams RN, Paterson CA, Eakins KE, Bhattacherjee P (1983) Quantification of ocular inflammation: evaluation of polymorphonuclear leukocyte infiltration by measuring myeloperoxidase activity. Curr Eye Res 2:465–470

    CAS  Google Scholar 

  • Young JM, Young LM (1989) Cutaneous models of inflammation for the evaluation of topical and systemic pharmacological agents. In: Chang JY, Lewis AJ (eds) Pharmacological methods in the control of inflammation. Alan R. Liss, New York, pp 215–231

    Google Scholar 

Croton-Oil Ear Edema in Rats and Mice

  • Akiyama H, Kanzaki H, Abe Y, Tada H, Arata J (1994) Staphylococcus aureus infection on experimental croton oil-inflamed skin in mice. J Dermatol Sci 8:1–10

    CAS  PubMed  Google Scholar 

  • Anderson CD, Groth O (1984) The influence on the dermal cellular infiltrate of topical steroid applications and vehicles in guinea pig skin: normal skin, allergic and toxic reactions. Contact Dermatitis 10:193–200

    CAS  PubMed  Google Scholar 

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638

    CAS  Google Scholar 

  • Chang J, Blazek E, Skowronek M, Marinari L, Carlson RP (1987) The antiinflammatory action of guanabenz is mediated through 5-lipoxygenase and cyclooxygenase inhibition. Eur J Pharmacol 142:197–205

    CAS  PubMed  Google Scholar 

  • Colorado A, Slama JT, Stavinoha WB (1991) A new method for measuring auricular inflammation in the mouse. J Pharmacol Methods 26:73–77

    CAS  PubMed  Google Scholar 

  • Crummey A, Harper GP, Boyle EA, Mangan FR (1987) Inhibition of arachidonic acid-induced ear oedema as a model for assessing topical anti-inflammatory compounds. Agents Actions 20:69–72

    CAS  PubMed  Google Scholar 

  • De Young LM, Spires DA, Kheifets J, Terrell TG (1987) Biology and pharmacology of recombinant interleukin-1β-induced rat ear inflammation. Agents Actions 21:325–327

    PubMed  Google Scholar 

  • De Young LM, Kheifets JB, Ballaron SJ, Young JM (1989) Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents Actions 26:335–341

    PubMed  Google Scholar 

  • Griswold DE, Chabot-Fletcher M, Webb EF, Martin L, Hillegass L (1995) Antiinflammatory activity of topical auranofin in arachidonic acid- and phorbol ester-induced inflammation in mice. Drug Dev Res 34:369–375

    CAS  Google Scholar 

  • Hensby CN, Eustache J, Shroot B, Bouclier M, Chatelus A, Luginbuhl B (1987) Antiinflammatory aspects of systemic and topically applied retinoids. Agents Actions 21:238–240

    CAS  PubMed  Google Scholar 

  • Iwasaki K, Mishima E, Miura M, Sakai N, Shimao S (1995) Effect of RU 486 on the atrophogenic and antiinflammatory effects of glucocorticoids in skin. J Dermatol Sci 10:151–158

    CAS  PubMed  Google Scholar 

  • Maloff BL, Shaw JE, DiMeo TM (1989) IL-1 dependent model of inflammation mediated by neutrophils. J Pharmacol Methods 22:133–140

    CAS  PubMed  Google Scholar 

  • Murakawa M, Yamaoka K, Tanaba Y, Fukuda Y (2006) Involvement of tumor necrosis factor (TNF)-α in phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin edema in mice. Biochem Pharmacol 71:1331–1336

    CAS  PubMed  Google Scholar 

  • Opas EE, Bonney RJ, Humes JL (1985) Prostaglandin and leukotriene synthesis in mouse ears inflamed by arachidonic acid. J Invest Dermatol 84:253–256

    CAS  PubMed  Google Scholar 

  • Tarayre JP, Aliaga M, Barbara M, Villanova G, Caillol V, Lauressergues H (1984) Pharmacological study of cantharidin-induced ear inflammation in mice. J Pharmacol Methods 11:271–277

    CAS  PubMed  Google Scholar 

  • Tomchek LA, Hartman DA, Lewin AC, Calhoun W, Chau TT, Carlson RP (1991) Role of corticosterone in modulation of eicosanoid biosynthesis and antiinflammatory activity by 5-lipoxygenase (5-LO) and cyclooxygenase (CO) inhibitors. Agents Actions 34:20–24

    CAS  PubMed  Google Scholar 

  • Tonelli G, Thibault L, Ringler I (1965) A bioassay for the concomitant assessment of the antiphlogistic and thymolytic activities of topically applied steroids. Endocrinology 77:625–630

    CAS  PubMed  Google Scholar 

  • Tubaro A, Dri P, Delbello G, Zilli C, Della Loggia R (1985) The Croton oil ear test revisited. Agents Actions 17:347–349

    CAS  Google Scholar 

  • Ueno H, Maruyama A, Miyake M, Nakao E, Nakao K, Umezu K, Nitta I (1991) Synthesis and evaluation of antiinflammatory activities of a series of corticosteroid 17α-esters containing a functional group. J Med Chem 34:2468–2473

    CAS  PubMed  Google Scholar 

  • Weirich EG, Longauer JK, Kirkwood AH (1977) New experimental model for the primary evaluation of topical contra-inflammatory agents. Arch Dermatol Res 259:141–149

    CAS  PubMed  Google Scholar 

  • Wilhelmi G, Domenjoz H (1951) Vergleichende Untersuchungen über die Wirkung von Pyrazolen und Antihistaminen bei verschiedenen Arten der experimentellen Entzündung. Arch Int Pharmacodyn Ther 85:129–143

    CAS  PubMed  Google Scholar 

  • Young JM, Wagner M, Spires DA (1983) Tachyphylaxis in 12-O-tetradecanoylphorbol acetate- and arachidonic acid-induced ear edema. J Invest Dermatol 80:48–52

    CAS  PubMed  Google Scholar 

  • Young JJ, Spires DA, Bedord CJ, Wagner B, Ballaron SJ, DeYoung LM (1984) The mouse ear inflammatory response to topical arachidonic acid. J Invest Dermatol 82:367–371

    CAS  PubMed  Google Scholar 

  • Zentel HJ, Töpert M (1994) Preclinical evaluation of a new topical corticosteroid methylprednisolone aceponate. J Eur Acad Dermatol Venereol 3(Suppl 1):S32–S38

    Google Scholar 

Paw Edema

  • Alpermann HG, Magerkurth KO (1972) Messanordnung zur Bestimmung der Wirkung von Antiphlogistika. Arzneim Forsch/Drug Res 22:1078–1088

    Google Scholar 

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638

    CAS  Google Scholar 

  • Arrigoni-Martelli E, Schatti P, Selva D (1971) The influence of anti-inflammatory and immunosuppressant drugs on nystatin induced oedema. Pharmacology 5:215–224

    CAS  PubMed  Google Scholar 

  • Braga da Motta JI, Cinha FQ, Vargaftig BB, Ferreira SH (1994) Drug modulation of antigen-induced paw oedema in guinea-pigs: effects of lipopolysaccharide, tumor necrosis factor and leucocyte depletion. Br J Pharmacol 112:111–116

    CAS  Google Scholar 

  • Branceni D, Azadian-Boulanger A, Jequier R (1964) L’inflammation expérimentale par un analogue de l’héparine. Un test d’activité antiinflammatoire. Arch Int Pharmacodyn Ther 152:15–24

    CAS  PubMed  Google Scholar 

  • Brooks RR, Carpenter JF, Jones SM, Ziegler TC, Pong SF (1991) Canine carrageenin-induced acute paw inflammation model and its response to nonsteroidal antiinflammatory drugs. J Pharmacol Methods 25:275–283

    CAS  PubMed  Google Scholar 

  • Burch RM, DeHaas C (1990) A bradykinin antagonist inhibits carrageenan edema in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 342:189–193

    CAS  Google Scholar 

  • Cirino G, Peers SH, Wallace JL, Flower RJ (1989) A study of phospholipase A2-induced oedema in rat paw. Eur J Pharmacol 166:505–510

    CAS  PubMed  Google Scholar 

  • Damas J, Remacle-Volon G (1992) Influence of a long-acting bradykinin antagonist, Hoe 140, on some acute inflammatory reactions in the rat. Eur J Pharmacol 211:81–86

    CAS  PubMed  Google Scholar 

  • Dewes R (1955) Auswertung antiphlogistischer Substanzen mit Hilfe des Hyaluronidase-Ödems. Arch Int Pharmacodyn Ther 104:19–28

    CAS  PubMed  Google Scholar 

  • Gemmel DK, Cottney J, Lewis AJ (1979) Comparative effects of drugs on four paw oedema models. Agents Actions 9:107–116

    Google Scholar 

  • Griesbacher T, Sutliff RL, Lembeck F (1994) Anti-inflammatory and analgesic activity of the bradykinin antagonist, icatibant (Hoe 140), against an extract from Porphyromonas gingivalis. Br J Pharmacol 112:1004–1006

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta OP, Sharma N, Chand D (1994) Application of papaya-latex-induced rat paw inflammation: model for evaluation of slowly acting antiarthritic drugs. J Pharmacol Toxicol Methods 31:95–98

    CAS  PubMed  Google Scholar 

  • Higgs EA, Moncada S, Vane JR (1978) Inflammatory effects of prostacyclin (PGI2) and 6-oxo-PGF1α in the rat paw. Prostaglandins 16:153–161

    CAS  PubMed  Google Scholar 

  • Hofrichter G, Liehn HD, Hampel H (1969) Eine plethysmometrische Messanordnung zur Bestimmung des Rattenpfotenvolumens. Arzneim Forsch/Drug Res 19:2016–2017

    CAS  Google Scholar 

  • Kalbhen DA, Smalla HD (1977) Pharmakologische Studien zur antiphlogistischen Wirkung von Pentosanpolysulfat in Kombination mit Metamizol. Arzneim Forsch/Drug Res 27:1050–1057

    CAS  Google Scholar 

  • Kunz S, Niederberger E, Ehnert C, Coste O, Pfenninger A, Kruip J, Wendrich TM, Schmidtko A, Tegeder I, Geisslinger G (2004) The calpain inhibitor MDL 28170 prevents inflammation-induced neurofilament light chain breakdown in the spinal cord and reduces hyperalgesia. Pain 110:409–418

    CAS  PubMed  Google Scholar 

  • Legat FJ, Griesbacher T, Lembeck F (1994) Mediation by bradykinin of rat paw oedema induced by collagenase from Clostridium histolyticum. Br J Pharmacol 112:433–460

    Google Scholar 

  • Lewis AJ, Cottney J, Nelson DJ (1976) Mechanisms of phytohaemagglutinin-P, concanavalin-A and kaolin-induced oedemas in the rat. Eur J Pharmacol 40:1–8

    CAS  PubMed  Google Scholar 

  • Leyck S, Parnham MJ (1990) Acute antiinflammatory and gastric effects of the seleno-organic compound ebselen. Agents Actions 30:426–431

    CAS  PubMed  Google Scholar 

  • Lorenz D (1961) Die Wirkung von Phenylbutazon auf das Pfotenoedem der Ratte nach oraler Applikation. Naunyn-Schmiedeberg’s Arch Exp Pathol Pharmakol 241:516–517

    Google Scholar 

  • Marek J (1980) Bentonite-induced paw edema as a tool for simultaneous testing of prophylactic and therapeutic effects of anti-inflammatory and other drugs. Pharmazie 36:46–49

    Google Scholar 

  • Moore E, Trottier RW (1974) Comparison of various types of carrageenin in promoting pedal edema in the rat. Res Commun Chem Pathol Pharmacol 7:625–628

    CAS  PubMed  Google Scholar 

  • Nikolov R, Nikolova M, Peneva M (1978) Study of dipyrone (Analgin) antagonism toward certain pharmacological effects of prostaglandins E2 and F2a. In: Ovtcharov R, Pola W (eds) Proceedings Dipyrone. Moscow symposium. Schattauer, Stuttgart/New York, pp 81–89

    Google Scholar 

  • Oyanagui Y, Sato S (1991) Inhibition by nilvadipine of ischemic and carrageenan paw edema as well as of superoxide radical production from neutrophils and xanthine oxidase. Arzneim Forsch/Drug Res 41:469–474

    CAS  Google Scholar 

  • Peterfalvi M, Branceni D, Azadian-Boulanger G, Chiflot L, Jequier R (1966) Etude pharmacologique d’un nouveau composé analgésique antiiflammatoire, la Glaphénine. Med Pharmacol Exp 15:254–266

    CAS  Google Scholar 

  • Portanova JP, Zhang Y, Anderson GD, Hauser SD, Masferrer JL, Seibert K, Gregory SA, Isakson PC (1996) Selective neutralization of prostaglandin E2 blocks inflammation, hyperalgesia, and interleukin 6 production in vivo. J Exp Med 184:883–891

    CAS  PubMed  Google Scholar 

  • Randall LO, Baruth H (1976) Analgesic and anti-inflammatory activity of 6-chloro-alpha-methyl-carbazole-2-acetic acid (C-5720). Arch Int Pharmacodyn Ther 220:94–114

    CAS  PubMed  Google Scholar 

  • Schiatti P, Selva D, Arrigoni-Martelli E (1970) L’edema localizzato da nystatin come modello di inflammazione sperimetale. Boll Chim Farm 109:33–38

    CAS  PubMed  Google Scholar 

  • Schönhöfer P (1967) Eine kritische Bemerkung zur Vergleichbarkeit der Wirkung entzündungshemmender Pharmaka auf die Glucosamin-6-phosphat-Synthese in vitro und am Rattenpfotenödem in vivo. Med Pharmacol Exp 16:66–74

    Google Scholar 

  • Shirota H, Kobayashi S, Shiojiri H, Igarashi T (1984) Determination of inflamed paw surface temperature in rats. J Pharmacol Methods 12:35–43

    CAS  PubMed  Google Scholar 

  • Siegel DM, Giri SN, Scheinholtz RM, Schwartz LW (1980) Characteristics and effect of antiinflammatory drugs on adriamycin-induced inflammation in the mouse paw. Inflammation 4:233–248

    CAS  PubMed  Google Scholar 

  • Souza Pinto JC, Remacle-Volon G, Sampaio CAM, Damas J (1995) Collagenase-induced oedema in the rat paw and the kinin system. Eur J Pharmacol 274:101–107

    CAS  PubMed  Google Scholar 

  • Tsumuri K, Kyuki K, Niwa M, Kokuba S, Fujimura H (1986) Pharmacological investigations of the new antiinflammatory agent 2-(10,11-dihydro-10-oxodibenzo(b, f)thiepin-2-yl) propionic acid. Arzneim Forsch/Drug Res 36:1796–1800

    Google Scholar 

  • Wagner-Jauregg T, Jahn U, Buech O (1962) Die antiphlogistische Prüfung bekannter Antirheumatika am Rattenpfoten-Kaolinödem. Arzneim Forsch/Drug Res 12:1160–1162

    CAS  Google Scholar 

  • Webb EF, Griswold DE (1984) Microprocessor-assisted plethysmograph for the measurement of mouse paw volume. J Pharmacol Methods 12:149–153

    CAS  PubMed  Google Scholar 

  • Willis AL, Cornelsen M (1973) Repeated injection of prostaglandin E2 in rat paws induces chronic swelling and a marked decrease in pain threshold. Prostaglandins 3:353–357

    CAS  PubMed  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced oedema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111:544–547

    CAS  PubMed  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1963) Antiinflammatory and antipyretic activities of indomethacin, (1-(p-chlorobenzoyl)-5-methoxy-2-methyl-indole-3-acetic acid. J Pharmacol Exp Ther 141:369–376

    CAS  PubMed  Google Scholar 

  • Wirth KJ, Alpermann HG, Satoh R, Inazu M (1992) The bradykinin antagonist HOE 140 inhibits carrageenan- and thermically induced paw edema in rats. Recent progress on kinins, Birkhäuser, Basel, pp 428–431

    Google Scholar 

Pleurisy Test

  • Ackerman N, Tomolonis A, Miram L, Kheifets J, Martinez S, Carter A (1980) Three day pleural inflammation: a new model to detect drug effects on macrophage accumulation. J Pharmacol Exp Ther 215:588–595

    CAS  PubMed  Google Scholar 

  • De Brito FB (1989) Pleurisy and pouch models of acute inflammation. In: Chang JY, Lewis AJ (eds) Pharmacological methods in the control of inflammation. Alan R. Liss, New York, pp 173–194

    Google Scholar 

  • Dunn CJ, Doyle DV, Willoughby DA (1993) Investigation of the acute and chronic anti-inflammatory properties of diphosphonates using a broad spectrum of immune and non-immune inflammatory reactions. Drug Dev Res 28:47–55

    CAS  Google Scholar 

  • Fröde TS, Souza GEP, Calixto JB (2001) The modulatory role played by TNF-α and IL-1β in the inflammation responses induced by carrageenan in the mouse model of pleurisy. Cytokine 13:162–168

    PubMed  Google Scholar 

  • Fröde TS, Souza GEP, Calixto JB (2002) The effects of IL-6 and IL-10 and their specific antibodies in the acute inflammatory response induced by carrageenan in the mouse model of pleurisy. Cytokine 17:149–156

    PubMed  Google Scholar 

  • Harada Y, Hatanaka K, Kawamura M, Saito M, Ogino M, Majima M, Ohno T, Ogino K, Yamamoto K, Taketani Y, Yamamoto S, Katori M (1996) Role of prostaglandin synthase-2 in prostaglandin E2 formation in rat carrageenin-induced pleurisy. Prostaglandins 51:19–33

    CAS  PubMed  Google Scholar 

  • Meyers KP, Czachowski CL, Coffey JW (1993) Effect of treatment with interleukin-1 receptor antagonist on the development of carrageenan-induced pleurisy in the rat. Inflammation 17:121–134

    CAS  PubMed  Google Scholar 

  • Mielens ZE, Connolly K, Stecher VJ (1985) Effects of disease modifying antirheumatic drugs and nonsteroidal antiinflammatory drugs upon cellular and fibronectin responses in a pleurisy model. J Rheumatol 12:1083–1087

    CAS  PubMed  Google Scholar 

  • Mikami T, Miyasaka K (1983) Effects of several anti-inflammatory drugs on the various parameters involved in the inflammation response in rat carrageenin-induced pleurisy. Eur J Pharmacol 95:1–12

    CAS  PubMed  Google Scholar 

  • Sancilio L (1969) Evans blue-carrageenan pleural effusion as a model for the assay of nonsteroidal antirheumatic drugs. J Pharmacol Exp Ther 168:199–204

    CAS  PubMed  Google Scholar 

  • Sancilio LF, Fishman A (1973) Application of sequential analysis to Evans blue-carrageenan-induced pleural effusion for screening of compounds for anti-inflammatory activity. Toxicol Appl Pharmacol 26:575–584

    CAS  PubMed  Google Scholar 

  • Tomlinson A, Appleton I, Moore AR, Gilroy DW, Willis D, Mitchell JA, Willoughby DA (1994) Cyclo-oxygenase and nitric oxide synthase isoforms in rat carrageenin-induced pleurisy. Br J Pharmacol 113:693–698

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsurumi K, Mibu H, Okada K, Hasegawa J, Fujimura H (1986) Pharmacological investigations of the new antiinflammatory agent 2-(10,11-dihydro-10-oxodibenzo[b,f]thiepin-2-yl) propionic acid. Arzneim Forsch/Drug Res 36:1806–1809

    CAS  Google Scholar 

  • Ushida Y, Oh-Ishi S, Tanaka K, Harada Y, Ueno A, Katori M (1982) Activation of plasma kallikrein-kinin system and its significant role in the pleural fluid accumulation of rat carrageenin-induced pleurisy. In: Fritz H (ed) Recent progress on kinins, vol 9, Agents and actions supply. Birkhäuser, Basel, pp 379–383

    Google Scholar 

Granuloma Pouch Technique

  • Atkinson RM, Jenkins L, Tomich EG, Woollett EA (1962) The effects of some anti-inflammatory substances on carrageenin-induced granulomata. J Endocrinol 25:87–93

    CAS  PubMed  Google Scholar 

  • Bobalik GR, Bastian JW (1967) Effects of various antiphlogistic agents on adjuvant-induced exudate formation in rats. Arch Int Pharmacodyn Ther 166:466–472

    CAS  PubMed  Google Scholar 

  • Boris A, Stevenson RH (1965) The effects of some non-steroidal anti-inflammatory agents on carrageenin-induced exudate formation. Arch Int Pharmacodyn Ther 153:205–210

    CAS  Google Scholar 

  • Bowers RR, Birch ML, Thomas DW (1985) A biochemical study of the carrageenan-induced granuloma in the rat lung. Connect Tissue Res 13:191–206

    CAS  PubMed  Google Scholar 

  • De Brito FB (1989) Pleurisy and pouch models of acute inflammation. In: Chang JY, Lewis AJ (eds) Pharmacological methods in the control of inflammation. Alan R. Liss, New York, pp 173–194

    Google Scholar 

  • Erdö F, Török K, Szekely JI (1994) Measurement of interleukin-1 in zymosan air-pouch exudate in mice. Agents Actions 41:93–95

    PubMed  Google Scholar 

  • Karran EH, Harper GP (1995) Collagen degradation within subcutaneous air pouches in vivo: the effects proteinase inhibitors. J Pharmacol Toxicol Methods 34:97–102

    CAS  PubMed  Google Scholar 

  • Martin SW, Stevens AJ, Brennan BS, Davies D, Rowdland M, Houston JB (1994) The six-day-old rat air pouch model of inflammation: characterization of the inflammatory response to carrageenan. J Pharmacol Toxicol Methods 32:139–147

    CAS  PubMed  Google Scholar 

  • Miller AJ, Hopkins SJ, Luheshi GN (1997) Sites of action of IL-1 in the development of fever and cytokine response to tissue inflammation in the rat. Br J Pharmacol 120:1274–1279

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moreno JJ (1993) Time course of phospholipase A2, eicosanoid release and cellular accumulation in rat immunological air pouch inflammation. Int J Immunopharmacol 15:597–603

    CAS  PubMed  Google Scholar 

  • Robert A, Nezamis JE (1957) The granuloma pouch as a routine assay for antiphlogistic compounds. Acta Endocrinol (Kbh) 25:105–112

    CAS  Google Scholar 

  • Selye H (1953) On the mechanism through which hydrocortisone affects the resistance of tissues to injury. An experimental study with the granuloma pouch technique. J Am Med Assoc 152:1207–1213

    CAS  PubMed  Google Scholar 

  • Sugio K, Tsurufuji S (1981) Mechanisms of anti-inflammatory action of glucocorticoids: re-evaluation of vascular constriction hypothesis. Br J Pharmacol 73:605–608

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ueno H, Maruyama A, Miyake M, Nakao E, Nakao K, Umezu K, Nitta I (1991) Synthesis and evaluation of antiinflammatory activities of a series of corticosteroid 17α-esters containing a functional group. J Med Chem 34:2468–2473

    CAS  PubMed  Google Scholar 

  • Vogel HG (1963) Intensität und Dauer der antiinflammatorischen und glykoneogenetischen Wirkung von Prednisolon und Prednisolonazetat nach oraler und subcutaner Applikation an der Ratte. Acta Endocrinol (Kbh) 42:85–96

    CAS  Google Scholar 

  • Vogel HG (1965) Intensität und Dauer der Wirkung von 6-Methylprednisolon und seinen Estern an der Ratte. Acta Endocrinol (Kbh) 50:621–642

    CAS  Google Scholar 

Urate-Induced Synovitis

  • Botrel MA, Haak T, Legrand C, Concordet D, Chevalier R, Toutain PL (1994) Quantitative evaluation of an experimental inflammation induced with Freund’s complete adjuvant in dogs. J Pharmacol Toxicol Methods 32:63–71

    CAS  PubMed  Google Scholar 

  • Carleson J, Alstergren P, Appelgren A, Appelgren B, Kopp S, Theodorsson E, Lundeberg T (1996) A model for experimental induction of acute temporomandibular joint inflammation in rats: Effects of substance P (SP) in neuropeptide-like immunoreactivity. Life Sci 59:1193–1201

    CAS  PubMed  Google Scholar 

  • Carlson RP, Datko LJ, Welch TM, Purvis WF, Shaw GW, Thompson JL, Brunner TR (1986) An automated microcomputer-based system for determining canine paw pressure quantitatively in the dog synovitis model. J Pharmacol Methods 15:95–104

    CAS  PubMed  Google Scholar 

  • Chau TT (1989) Analgesic testing in animal models. In: Chang JY, Lewis AJ (eds) Pharmacological methods in the control of inflammation. Alan R. Liss, New York, pp 195–212

    Google Scholar 

  • Daniel A, Jouvin JL (1984) Experimentally induced inflammation of the guinea pig palatal mucosa by injection of a microcrystalline suspension of monosodium urate. J Pharmacol Methods 12:155–166

    CAS  PubMed  Google Scholar 

  • Dubinsky B, Gebre-Mariam S, Capetola RJ, Rosenthale ME (1987) The antialgesic drugs: human therapeutic correlates of their potency in laboratory animal models of hyperalgesia. Agents Actions 20:50–60

    CAS  PubMed  Google Scholar 

  • Faires JS, McCarty DJ (1962) Acute arthritis in man and dog after intrasynovial injection of sodium urate crystals. Lancet 2:682–685

    Google Scholar 

  • Fujihira E, Mori T, Nakazawa M, Ozawa H (1971) A simple method for evaluating analgesic efficacy of non-steroidal anti-inflammatory drugs. Chem Pharm Bull 19:1506–1508

    CAS  Google Scholar 

  • McCarty DJ, Faires JS (1963) A comparison of the duration of local anti-inflammatory effects of several adrenocorticosteroid esters – a bioassay technique. Curr Ther Res 5:284–290

    PubMed  Google Scholar 

  • McCarty DJ, Phelps P, Pyenson J (1966) Crystal-induced inflammation in canine joints. I. An experimental model with quantification of the host response. J Exp Med 124:99–114

    PubMed Central  PubMed  Google Scholar 

  • Perkins MN, Campell EA (1992) Capsazepine reversal of the antinociceptive action of capsaicin in vivo. Br J Pharmacol 107:329–333

    PubMed Central  CAS  PubMed  Google Scholar 

  • Phelps P, McCarty DJ (1967) Animal techniques for evaluating anti-inflammatory drugs. In: Siegler PE, Moyer JH (eds) Animal and pharmacological techniques in drug evaluation, vol 2. Year Book Medical Publishers, Chicago, pp 742–747

    Google Scholar 

  • Rosenthale ME, Kassarich J, Schneider F (1966) Effect of anti-inflammatory agents on acute experimental synovitis in dogs. Proc Soc Exp Biol Med 122:693–696

    CAS  PubMed  Google Scholar 

  • Rosenthale ME, Dervinis A, Kassarich J, Singer S (1972) Prostaglandins and anti-inflammatory drugs in the dog knee joint. J Pharm Pharmacol 24:149–150

    CAS  PubMed  Google Scholar 

  • Schaible HG, Schmidt RF (1985) Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol 54:1109–1122

    CAS  PubMed  Google Scholar 

  • Schött E, Berge OG, Ängeby-Möller K, Hammerström G, Dalsgaard CJ, Brodin E (1994) Weight bearing as an objective measure of arthritic pain in the rat. J Pharmacol Toxicol Methods 31:79–83

    PubMed  Google Scholar 

  • Tanaka K, Shimotori T, Makino S, Aikawa Y, Inaba T, Yoshida C, Takano S (1992) Pharmacological studies of the new anti-inflammatory agent 3-formylamino-7-methylsulfonylamino-6-phenoxy-4H-1-benzopyran-4-one. 1st Communication: anti-inflammatory, analgesic and other related properties. Arzneim Forsch/Drug Res 42:935–944

    CAS  Google Scholar 

Methods for Testing the Proliferative Phase (Granuloma Formation)

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638

    CAS  Google Scholar 

  • Bush IE, Alexander RW (1960) An improved method for the assay of antiinflammatory substances in rats. Acta Endocrinol (Kbh) 35:268–276

    CAS  Google Scholar 

  • Hicks R (1969) The evaluation of inflammation induced by material implanted subcutaneously in the rat. J Pharm Pharmacol 21:581–588

    CAS  PubMed  Google Scholar 

  • Meier R, Schuler W, Desaulles P (1950) Zur Frage des Mechanismus der Hemmung des Bindegewebswachstums durch Cortisone. Experientia 6:469–471

    CAS  PubMed  Google Scholar 

  • Penn GB, Ashford A (1963) The inflammatory response to implantation of cotton pellets in the rat. J Pharm Pharmacol 15:798–803

    CAS  PubMed  Google Scholar 

  • Roszkowski AP, Rooks WH, Tomolonis AJ, Miller LM (1971) Anti-inflammatory and analgesic properties of d-2-(6′-methoxy-2′-naphthyl)-propionic acid (naproxen). J Pharmacol Exp Ther 179:114–123

    CAS  PubMed  Google Scholar 

  • Rudas B (1960) Zur quantitativen Bestimmung von Granulationsgewebe in experimentell erzeugten Wunden. Arzneim Forsch 10:226–229

    CAS  Google Scholar 

  • Tanaka A, Kobayashi F, Miyake T (1960) A new anti-inflammatory activity test for corticosteroids. The formalin-filter paper pellet method. Endocrinol Jpn 7:357–364

    CAS  PubMed  Google Scholar 

  • Tsurumi K, Mibu H, Okada K, Hasegawa J, Fujimura H (1986) Pharmacological investigations of the new antiinflammatory agent 2-(10,11-dihydro-10-oxodibenzo[b,f]thiepin-2-yl) propionic acid. Arzneim Forsch/Drug Res 36:1806–1809

    CAS  Google Scholar 

Sponge Implantation Technique

  • Bonta IL, Adolfs MJP, Parnham MJ (1979) Cannulated sponge implants in rats for the study of time-dependent pharmacological influences on inflammatory granulomata. J Pharmacol Methods 2:1–11

    CAS  Google Scholar 

  • Boucek RJ, Noble NL (1955) Connective tissue. A technique for its isolation and study. AMA Arch Pathol 59:553–558

    CAS  PubMed  Google Scholar 

  • Bragt PC, Bonta IL, Adolfs MJP (1980) Cannulated Teflon chamber implant in the rat: a new model for continuous studies on granulomatous inflammation. J Pharmacol Methods 3:51–61

    CAS  PubMed  Google Scholar 

  • Damas J, Remacle-Volon G (1992) Influence of a long-acting bradykinin antagonist, Hoe 140, on some acute inflammatory reactions in the rat. Eur J Pharmacol 211:81–86

    CAS  PubMed  Google Scholar 

  • Ford-Hutchinson AW, Walker JR, Smith MJH (1978) Assessment of anti-inflammatory activity by sponge implantation techniques. J Pharmacol Methods 1:3–7

    CAS  Google Scholar 

  • Higgs GA (1989) Use of implanted sponges to study the acute inflammatory response. In: Chang JY, Lewis AJ (eds) Pharmacological methods in the control of inflammation. Alan R. Liss, New York, pp 151–171

    Google Scholar 

  • Holm-Pedersen P, Zederfeldt B (1971) Granulation tissue formation in subcutaneously implanted cellulose sponges in young and adult rats. Scand J Plast Reconstr Surg 5:13–16

    CAS  PubMed  Google Scholar 

  • Paulini K, Körner B, Beneke G, Endres R (1974) A quantitative study of the growth of connective tissue: investigation on implanted polyester-polyurethane sponges. Connect Tissue Res 2:257–264

    CAS  PubMed  Google Scholar 

  • Paulini K, Körner B, Mohr W, Sonntag W (1976) The effect of complete Freund – adjuvant on chronic proliferating inflammation in an experimental granuloma model. Z Rheumatol 35:123–131

    CAS  PubMed  Google Scholar 

  • Saxena PN (1960) Effects of drugs on early inflammation reaction. Arch Int Pharmacodyn Ther 126:228–237

    CAS  PubMed  Google Scholar 

Glass Rod Granuloma

  • Vogel HG (1970) Das Glasstabgranulom, eine Methode zur Untersuchung der Wirkung von Corticosteroiden auf Gewicht, Festigkeit und chemische Zusammensetzung des Granulationsgewebes an Ratten. Arzneim Forsch/Drug Res 20:1911–1918

    CAS  Google Scholar 

  • Vogel HG (1975) Collagen and mechanical strength in various organs of rats treated with d-penicillamine or amino-acetonitrile. Connect Tissue Res 3:237–244

    CAS  PubMed  Google Scholar 

  • Vogel HG (1977) Mechanical and chemical properties of connective tissue organs in rats as influenced by non-steroidal anti-rheumatic drugs. Connect Tissue Res 5:91–95

    CAS  PubMed  Google Scholar 

  • Vogel HG, De Souza NJ, D’Sa A (1990) Effect of terpenoids isolated from Centella asiatica on granuloma tissue. Acta Ther 16:285–298

    CAS  Google Scholar 

Side Effects of Anti-inflammatory Compounds

  • Vogel SM (2006) Safety pharmacology of antiinflammatory drugs, Chapter I.K. In: Vogel HG, Hock FJ, Maas J, Mayer D (eds) Drug discovery and evaluation – safety and pharmacokinetic assays. Springer, Berlin/Heidelberg/New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vino Daniel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Daniel, V. (2016). Anti-Inflammatory Activity. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_42

Download citation

Publish with us

Policies and ethics