Skip to main content
  • 269 Accesses

Abstract

Epilepsy is a disease of high prevalence, being well known since thousands of years as “morbus sacer.” In spite of intensive investigations, the pathophysiology of epilepsy is still poorly understood. Studies with various animal models have provided ample evidence for heterogeneity in the mechanisms of epileptogenesis. New evidence derives from investigations of kindling, which involves the delivery of brief, initially subliminal, electrical, or chemical stimuli to various areas of the brain. After 10–15 days of once-daily stimulation, the duration and intensity of afterdischarges reach a stable maximum, and a characteristic seizure is produced. Subsequent stimulation then regularly elicits seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

General Considerations

  • Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain-focus on NMDA receptors. Trends Neurosci 10:263–265

    Google Scholar 

  • Fabene PF, Sbarbati A (2004) In vivo MRI in different models of experimental epilepsy. Curr Drug Targets 5:629–636

    CAS  PubMed  Google Scholar 

  • Fisher RS (1989) Animal models of the epilepsies. Brain Res Rev 14:245–278

    CAS  PubMed  Google Scholar 

  • Gale K (1992) GABA and epilepsy: basic concepts from preclinical research. Epilepsia 33(Suppl 5):S3–S12

    CAS  PubMed  Google Scholar 

  • Hout J, Raduoco-Thomas S, RaduocoThomas C (1973) Qualitative and quantitative evaluation of experimentally induced seizures. In: Anticonvulsant drugs, vol 1. Pergamon Press, Oxford/New York, pp 123–185

    Google Scholar 

  • Koella WP (1985) Animal experimental methods in the study of antiepileptic drugs. In: Frey HH, Janz D (eds) Antiepileptic drugs. Handbook of experimental pharmacology, vol 74. Springer, Berlin/Heidelberg, pp 283–339

    Google Scholar 

  • Löscher W (1997) Animal models of intractable epilepsy. Prog Neurobiol 53:239–258

    PubMed  Google Scholar 

  • Löscher W (1998) New visions in the pharmacology of anticonvulsion. Eur J Pharmacol 342:1–13

    Google Scholar 

  • Löscher W (2002a) Animal models of drug-resistant epilepsy. Novartis Found Symp 243:149–159

    Google Scholar 

  • Löscher W (2002b) Animal models of epilepsy for the development of antiepileptic and disease-modifying drugs. A comparison of the pharmacology of kindling and poststatus epilepticus models of temporal epilepsy. Epilepsy Res 50:105–123

    Google Scholar 

  • Löscher W, Schmidt D (1988) Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 2:145–181

    PubMed  Google Scholar 

  • MacDonald RL, McLean MJ (1986) Anticonvulsant drugs: mechanisms of action. Adv Neurol 44:713–736

    CAS  PubMed  Google Scholar 

  • Meldrum BS (1986) Pharmacological approaches to the treatment of epilepsy. In: Meldrum BS, Porter RJ (eds) New anticonvulsant drugs. John Libbey, London/Paris, pp 17–30

    Google Scholar 

  • Meldrum BS (1989) GABAergic mechanisms in the pathogenesis and treatment of epilepsy. Br J Pharmacol 27:3S–11S

    CAS  Google Scholar 

  • Porter RJ, Rogawski MA (1992) New antiepileptic drugs: from serendipity to rational discovery. Epilepsia 33(Suppl 1):S1–S6

    CAS  PubMed  Google Scholar 

  • Rogawski MA, Porter RJ (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 42:223–286

    Google Scholar 

  • Rump S, Kowalczyk M (1987) Effects of antiepileptic drugs in electrophysiological tests. Pol J Pharmacol Pharm 39:557–566

    CAS  PubMed  Google Scholar 

  • Smyth MD, Barbaro NM, Baraban SC (2002) Effects of antiepileptic drugs on induced epileptiform activity in a rat model of dysplasia. Epilepsy Res 50:251–264

    Google Scholar 

  • Swinyard EA (1973) Assay of antiepileptic drug activity in experimental animals: standard tests. In: Anticonvulsant drugs, vol 1. Pergamon Press, Oxford/New York, pp 47–65

    Google Scholar 

  • Toman JEP, Everett GM (1964) Anticonvulsants. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 287–300

    Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265–272

    Google Scholar 

  • Woodbury DM (1972) Applications to drug evaluations. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven, New York, pp 557–583

    Google Scholar 

GABAB Receptor Binding

  • Fonnum F (1987) Biochemistry, anatomy, and pharmacology of GABA neurons. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 173–182

    Google Scholar 

  • Lloyd KG, Morselli PL (1987) Psychopharmacology of GABAergic drugs. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York pp 183–195

    Google Scholar 

3H-GABA Uptake in Rat Cerebral Cortex Synaptosomes

  • Brehm L et al (1979) GABA uptake inhibitors and structurally related “pro-drugs”. In: Krogsgaard-Larsen P et al (eds) GABA-neurotransmitters. Academic, New York, pp 247–261

    Google Scholar 

  • Fjalland B (1978) Inhibition by neuroleptics of uptake of3H GABA into rat brain synaptosomes. Acta Pharmacol Toxicol 42:73–76

    CAS  Google Scholar 

  • Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron microscopic study of cell fragments derived by homogenization and centrifugation. J Anat (Lond) 96:79–88

    CAS  Google Scholar 

  • Iversen LL, Bloom FE (1972) Studies of the uptake of3HGABA and3H-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res 41:131–143

    CAS  PubMed  Google Scholar 

  • Korgsgaard-Larsen P (1985) GABA agonist and uptake inhibitors. Research Biochemicals Incorporated – Neurotransmissions 1

    Google Scholar 

  • Meldrum B et al (1982) GABA-uptake inhibitors as anticonvulsant agents. In: Okada Y, Roberts E (eds) Problems in GABA research from brain to bacteria. Excerpta Medica, Princeton, pp 182–191

    Google Scholar 

  • Roberts E (1974) γ-Aminobutyric acid and nervous system function – a perspective. Biochem Pharmacol 23:2637–2649

    CAS  PubMed  Google Scholar 

  • Roskoski R (1978) Net uptake of l-glutamate and GABA by high affinity synaptosomal transport systems. J Neurochem 31:493–498

    Google Scholar 

  • Ryan L, Roskoski R (1977) Net uptake of γ-Aminobutyric acid by a high affinity synaptosomal transport system. J Pharm Exp Ther 200:285–291

    CAS  Google Scholar 

  • Snodgrass SR (1990) GABA and GABA neurons: Controversies, problems, and prospects. In: Receptor site analysis. NEN, pp 23–33

    Google Scholar 

  • Tapia R (1975) Blocking of GABA uptake. In: Iversen I, Iversen S, Snyder S (eds) Handbook of psychopharmacology, vol 4. Plenum Press, New York, pp 33–34

    Google Scholar 

GABA Uptake and Release in Rat Hippocampal Slices

  • Akaike N, Moorhouse AJ (2003) Techniques: applications of the nerve-bouton preparation in neuropharmacolgy. Trends Pharmacol Sci 24:44–47

    CAS  PubMed  Google Scholar 

  • Akaike N, Muarkami N, Katsurabayashi S, Jin YH, Imazawa T (2002) Focal stimulation of single GABAergic presynaptic boutons on the rat hippocampus neuron. Neurosci Res 42:187–195

    CAS  PubMed  Google Scholar 

  • Drewe JA, Childs GV, Kunze DL (1988) Synaptic transmission between dissociated adult mammalian neurons and attached synaptic boutons. Science 241:1810–1813

    CAS  PubMed  Google Scholar 

  • Falch E, Larsson OM, Schousboe A, Krogsgard-Larsen P (1990) GABA-A agonists and GABA uptake inhibitors. Drug Dev Res 21:169–188

    CAS  Google Scholar 

  • Haage D, Karlsson U, Johansson S (1998) Heterogeneous presynaptic Ca2+ channel types triggering GABA release onto medial preoptic neurons from rat. J Physiol (Lond) 507:77–91

    CAS  Google Scholar 

  • Huger FP, Smith CP, Chiang Y, Glamkowski EJ, Ellis DB (1987) Pharmacological evaluation of HP 370, a potential atypical anti-psychotic agent. 2. in vitro profile. Drug Dev Res 11:169–175

    CAS  Google Scholar 

  • Jang IS, Rhee JS, Watanabe T, Akaike N, Akaike N (2001) Histaminergic modulation of GABAergic transmission in rat ventromedial hypothalamic neurons. J Physiol (Lond) 534:791–803

    CAS  Google Scholar 

  • Kishimoto K, Koyama S, Akaike N (2001) Synergistic μ-opioid and 5-HT1A presynaptic inhibition of GABA release in rat periaqueductal gray neurons. Neuropharmacology 41:529–538

    CAS  PubMed  Google Scholar 

  • Koyama S, Kubo C, Rhee JS, Akaike N (1999) Presynaptic serotonergic inhibition of GABAergic synaptic transmission in mechanically dissociated rat basolateral amygdala neurons. J Physiol (Lond) 518:525–538

    CAS  Google Scholar 

  • Lajtha A, Sershen H (1975) Inhibition of amino acid uptake by the absence of Na+ in slices of brain. J Neurochem 24:667–672

    CAS  PubMed  Google Scholar 

  • Lüddens H, Korpi ER (1995) Biological function of GABAA/ benzodiazepine receptor heterogeneity. J Psychiat Res 29:77–94

    PubMed  Google Scholar 

  • Möhler H (1992) GABAergic synaptic transmission. Arzneim Forsch/Drug Res 42:211–214

    Google Scholar 

  • Nilsson M, Hansson E, Rönnbäck L (1990) Transport of valproate and its effects on GABA uptake in astroglial primary culture. Neurochem Res 15:763–767

    CAS  PubMed  Google Scholar 

  • Nilsson M, Hansson E, Rönnbäck L (1992) Interactions between valproate, glutamate, aspartate, and GABA with respect to uptake in astroglial primary cultures. Neurochem Res 17:327–332

    CAS  PubMed  Google Scholar 

  • Rhee JS, Ishibashi H, Akaike N (1999) Calcium channels in the GABAergic presynaptic nerve terminals projecting to Meynert neurons of the rat. J Neurochem 72:800–806

    CAS  PubMed  Google Scholar 

  • Roskoski R (1978) Net uptake of l-glutamate and GABA by high affinity synaptosomal transport systems. J Neurochem 31:493–498

    Google Scholar 

  • Suzdak PD, Jansen JA (1995) A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 36:612–626

    CAS  PubMed  Google Scholar 

  • Taylor CP (1990) GABA receptors and GABAergic synapses as targets for drug development. Drug Dev Res 21:151–160

    CAS  Google Scholar 

  • Taylor CP, Vartanian MG, Schwarz RD, Rock DM, Callahan MJ, Davis MD (1990) Pharmacology of CI-966: a potent GABA uptake inhibitor, in vitro and in experimental animals. Drug Dev Res 21:195–215

    CAS  Google Scholar 

  • Vorobjev VS (1991) Vibrodissociation of sliced mammalian nervous tissue. J Neurosci Methods 38:145–150

    CAS  PubMed  Google Scholar 

  • Walton NY, Gunnawan S, Treiman DM (1994) Treatment of experimental status epilepticus with the GABA uptake inhibitor, tiagabine. Epilepsy Res 19:237–244

    Google Scholar 

Glutamate Receptors: [3H]CPP Binding

  • Becker J, Li Z, Noe CR (1998) Molecular and pharmacological characterization of recombinant rat/mice N-methyl-d-aspartate receptor subtypes in the yeast Saccharomyces cerevisiae. Eur J Biochem 256:427–435

    CAS  PubMed  Google Scholar 

  • Bettler B, Mulle C (1995) Review: neurotransmitter receptors. II. AMPA and kainate receptors. Neuropharmacol 34:123–139

    CAS  Google Scholar 

  • Bräuner-Osboren H, Egebjerg J, Nielsen NØ, Madsen U, Krogsgaard-Larsen P (2000) Ligands for glutamate receptors: design and therapeutic properties. J Med Chem 43:2609–2645

    Google Scholar 

  • Carlsson M, Carlsson A (1990) Interactions between glutaminergic and monoaminergic systems within the basal ganglia – implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13:272–276

    CAS  PubMed  Google Scholar 

  • Carter C, Rivy JP, Scatton B (1989) Ifenprodil and SL 82.0715 are antagonists at the polyamine site of the N-methyl-d-aspartate (NMDA) receptor. Eur J Pharmacol 164:611–612

    CAS  PubMed  Google Scholar 

  • Chimirri A, Gitto R, Zappala M (1999) AMPA receptor antagonists. Expert Opin Ther Pat 9:557–570

    CAS  Google Scholar 

  • Chittajallu R, Braithwaite SP, Clarke VRJ, Henley JM (1999) Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol Sci 20:26–35

    CAS  PubMed  Google Scholar 

  • Clarke VRJ, Ballyk BA, Hoo KH, Mandelzys A, Pellizari A, Bath CP, Thomas J, Sharpe EF, Davies CH, Ornstein PL, Schoepp DD, Kamboj RK, Collingridge GL, Lodges D, Bleakman D (1997) A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature 389:599–603

    CAS  PubMed  Google Scholar 

  • Collingridge GL, Lester RAJ (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 40:143–210

    Google Scholar 

  • Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain-focus on NMDA receptors. Trends Neurosci 10:263–265

    Google Scholar 

  • Cunningham MD, Ferkany JW, Enna SH (1994) Excitatory amino acid receptors: a gallery of new targets for pharmacological intervention. Life Sci 54:135–148

    CAS  PubMed  Google Scholar 

  • Danysz W, Parsons CG (1998) Glycine and N-methyl-d-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664

    CAS  PubMed  Google Scholar 

  • Davies J, Evans RH, Herrling PL, Jones AW, Olverman HJ, Pook P, Watkins JC (1986) CPP, a new potent and selective NMDA antagonist. Depression of central neuron responses, affinity for [3H]D-AP5 binding sites on brain membranes and anticonvulsant activity. Brain Res 382:169–173

    CAS  PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    CAS  PubMed  Google Scholar 

  • Dunn RW, Corbett R, Martin LL, Payack JF, Laws-Ricker L, Wilmot CA, Rush DK, Cornfeldt ML, Fielding S (1990) Preclinical anxiolytic profiles of 7189 and 8319, novel non-competitive NMDA antagonists. Current and future trends in anticonvulsant, anxiety, and stroke therapy. Wiley-Liss, pp 495–512

    Google Scholar 

  • Ferkany J, Coyle JT (1986) Heterogeneity of sodium-dependent excitatory amino acid uptake mechanisms in rat brain. J Neurosci Res 16:491–503

    CAS  PubMed  Google Scholar 

  • Fleck AW, Bahring R, Patneau DK, Mayer ML (1996) AMPA receptor heterogeneity in rat hippocampal neurons revealed by differential sensitivity to cyclothiazide. J Neurophysiol 75:2322–2333

    CAS  PubMed  Google Scholar 

  • Fletcher EJ, Lodge D (1995) New developments in the molecular pharmacology of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate and kainate receptors. Pharmacol Ther 70:65–89

    Google Scholar 

  • Foster AC, Fagg GE (1984) Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res Rev 7:103–164

    CAS  Google Scholar 

  • Foster AC, Fagg GE (1987) Comparison of l-[3H]glutamate, d-[3H]aspartate, DL-[3H]AP5 and [3H]NMDA as ligands for NMDA receptors in crude postsynaptic densities from rat brain. Eur J Pharmacol 133:291–300

    CAS  PubMed  Google Scholar 

  • Gallo V, Ghiani CA (2000) Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol Sci 21:252–258

    CAS  PubMed  Google Scholar 

  • Harris EW, Ganong AH, Monaghan DT, Watkins JC, Cotman CW (1986) Action of 3-((±)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP): a new and highly potent antagonist of N-methyl-d-aspartate receptors in the hippocampus. Brain Res 382:174–177

    CAS  PubMed  Google Scholar 

  • Hatt H (1999) Modification of glutamate receptor channels: molecular mechanisms and functional consequences. Naturwissenschaften 86:177–186

    CAS  PubMed  Google Scholar 

  • Herrling PL (1994) Clinical implications of NMDA receptors. In: Collingridge GL, Watkins JC (eds) The NMDA receptor, 2nd edn. Oxford University Press, Oxford, pp 376–394

    Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Google Scholar 

  • Honoré T, Lauridsen J, Krogsgaard-Larsen P (1982) The binding of [3H]AMPA, a structural analogue of glutamic acid to rat brain membranes. J Neurochem 38:173–178

    PubMed  Google Scholar 

  • Honoré T, Davies SN, Drejer J, Fletchner EJ, Jacobsen P, Lodge D, Nielsen FE (1988) Quinoxalidinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241:701–703

    PubMed  Google Scholar 

  • Hu RQ, Koh S, Togerson T, Cole AJ (1998) Neuronal stress and injury in C57/BL mice after systemic kainate administration. Brain Res 810:229–240

    Google Scholar 

  • Huettner JE (2003) Kainate receptors and synaptic transmission. Prog Neurobiol 70:387–407

    CAS  PubMed  Google Scholar 

  • Iversen LL, Kemp JA (1994) Non-competitive NMDA antagonists as drugs. In: Collingridge GL, Watkins JC (eds) The NMDA receptor, 2nd edn. Oxford University Press, Oxford, pp 469–486

    Google Scholar 

  • Jones SM, Snell LD, Johnson KM (1989) Characterization of the binding of radioligands to the N-methyl-d-aspartate, phenylcyclidine and glycine receptors in buffy coat membranes. J Pharmacol Methods 21:161–168

    CAS  PubMed  Google Scholar 

  • Kemp JA, McKernan RM (2002) NMDA receptor pathways as drug targets. Nat Neurosci Suppl 5:1039–1042

    CAS  Google Scholar 

  • Kemp JA, Foster AC, Wong EHF (1987) Non-competitive antagonists of excitatory amino acid receptors. Trends Neurosci 10:294–298

    Google Scholar 

  • Kodama M, Yamada M, Sato K, Kitamura Y, Koyama F, Sato T, Morimoto K, Kuroda S (1999) Effects of YM90K, a selective AMP receptor antagonist, on amygdala-kindling and long-term hippocampal potentiation in rats. Eur J Pharmacol 374:11–19

    CAS  PubMed  Google Scholar 

  • Kohara A, Okada M, Tsutsumi R, Ohno K, Takahashi M, Shimizu-Sasamata M, Shishikura JI, Inami H, Sakamoto S, Yamaguchi T (1998) In vitro characterization of YM872, a selective, potent and highly water-soluble α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate receptor antagonist. J Pharm Pharmacol 50:795–801

    CAS  PubMed  Google Scholar 

  • Lees GJ (2000) Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drug 59:33–78

    CAS  Google Scholar 

  • Lehmann J, Schneider J, McPherson S, Murphy DE, Bernard P, Tsai C, Bennett DA, Pastor G, Steel DJ, Boehm C, Cheney DL, Liebman JM, Williams M, Wood PL (1987) CPP, a selective N-methyl-d-aspartate (NMDA)-type receptor antagonist: characterization in vitro and in vivo. J Pharmacol Exp Ther 240:737–746

    CAS  PubMed  Google Scholar 

  • Lehmann J, Hutchison AJ, McPherson SE, Mondadori C, Schmutz M, Sinton CM, Tsai C, Murphy DE, Steel DJ, Williams M, Cheney DL, Wood PL (1988) CGS 19755, a selective and competitive N-methyl-d-aspartate type excitatory amino acid receptor antagonist. J Pharmacol Exp Ther 246:65–75

    CAS  PubMed  Google Scholar 

  • Loftis JM, Janowsky A (2003) The N-methyl-d-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacol Ther 97:55–85

    CAS  PubMed  Google Scholar 

  • London ED, Coyle JT (1979) Specific binding of [3H]kainic acid to receptor sites in rat brain. Mol Pharmacol 15:492–505

    CAS  PubMed  Google Scholar 

  • Löscher W (1998) Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy. Prog Neurobiol 54:721–741

    Google Scholar 

  • Lynch G (2004) AMPA receptor modulators as cognitive enhancers. Curr Opin Pharmacol 4:4–11

    Google Scholar 

  • Mayer ML, Armstrong N (2004) Structure and function of glutamate receptor ion channels. Annu Rev Physiol 66:161–181

    CAS  PubMed  Google Scholar 

  • Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28:197–276

    CAS  PubMed  Google Scholar 

  • Mayer ML, Benveniste M, Patneau DK (1994) NMDA receptor agonists and competitive antagonists. In: Collingridge GL, Watkins JC (eds) The NMDA receptor, 2nd edn. Oxford University Press, Oxford, pp 132–146

    Google Scholar 

  • Meldrum BS (1998) The glutamate synapse as a therapeutic target: perspectives for the future. Prog Brain Res 116:441–458

    CAS  PubMed  Google Scholar 

  • Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130(4S Suppl):1007S–1015S

    CAS  PubMed  Google Scholar 

  • Meldrum BS, Chapman AG (1994) Competitive NMDA antagonists as drugs. In: Collingridge GL, Watkins JC (eds) The NMDA receptor, 2nd edn. Oxford University Press, Oxford, pp 457–468

    Google Scholar 

  • Monaghan DT, Buller AL (1994) Anatomical, pharmacological, and molecular diversity of native NMDA receptor subtypes. In: Collingridge GL, Watkins JC (eds) The NMDA receptor, 2nd edn. Oxford University Press, Oxford, pp 158–176

    Google Scholar 

  • Monaghan DT, Cotman CW (1982) The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res 252:91–100

    CAS  PubMed  Google Scholar 

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29:365–402

    CAS  PubMed  Google Scholar 

  • Mukhin A, Kovaleva ES, London ED (1997) Two affinity states of N-methyl-d-aspartate recognition sites: modulation by cations. J Pharmacol Exp Ther 282:945–954

    CAS  PubMed  Google Scholar 

  • Murphy DE, Schneider J, Boehm C, Lehmann J, Williams M (1987a) Binding of [3H]3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid to rat brain membranes: a selective, high-affinity ligand for N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 240:778–784

    CAS  PubMed  Google Scholar 

  • Murphy DE, Snowhill EW, Williams M (1987b) Characterization of quisqualate recognition sites in rat brain tissue using DL-[3H]α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and a filtration assay. Neurochem Res 12:775–782

    CAS  PubMed  Google Scholar 

  • Murphy DE, Hutchinson AJ, Hurt SD, Williams M, Sills MA (1988) Characterization of the binding of [3H]-CGS 19755, a novel N-methyl-d-aspartate antagonist with nanomolar affinity in rat brain. Br J Pharmacol 95:932–938

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mutel V, Trube G, Klingelschmidt A, Messer J, Bleuel Z, Humbel U, Clifford MM, Ellis GJ, Richards JG (1998) Binding characteristics of a potent AMPA receptor antagonist [3H]Ro 48–8587 in rat brain. J Neurochem 71:418–426

    CAS  PubMed  Google Scholar 

  • Nakanishi S (1992) Molecular diversity of glutamate receptors and implication for brain function. Science 258:593–603

    Google Scholar 

  • Nielsen EO, Varming T, Mathiesen C, Jensen LH, Moller A, Gouliaev AH, Watjen F, Drejer J (1999) SPD 502: a water-soluble and in vivo long-lasting AMPA antagonist with neuroprotective activity. J Pharmacol Exp Ther 289:1492–1501

    CAS  PubMed  Google Scholar 

  • Olney JW (1990) Excitotoxic amino acids and neuropsychiatric disorders. Annu Rev Pharmacol Toxicol 30:47–71

    CAS  PubMed  Google Scholar 

  • Olsen RW, Szamraj O, Houser CR (1987) [3H]AMPA binding to glutamate receptor subpopulations in rat brain. Brain Res 402:243–254

    CAS  PubMed  Google Scholar 

  • Olverman JH, Monaghan DT, Cotman CW, Watkins JC (1986) [3H]CPP, a new competitive ligand for NMDA receptors. Eur J Pharmacol 131:161–162

    CAS  PubMed  Google Scholar 

  • Parsons CG, Danysz W, Quack G (1998) Glutamate in CNS disorders as a target for drug development. Drug News Perspect 11:523–569

    CAS  PubMed  Google Scholar 

  • Piotrovsky LB, Garyaev AP, Poznyakova LN (1991) Dipeptide analogues of N-acetylaspartylglutamate inhibit convulsive effects of excitatory amino acids in mice. Neurosci Lett 125:227–230

    CAS  PubMed  Google Scholar 

  • Rogawski MA, Porter RJ (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with considerations of promising developmental stage compounds. Pharmacol Rev 42:223–286

    Google Scholar 

  • Tauboll E, Gjerstad L (1998) Effects of antiepileptic drugs on the activation of glutamate receptors. Prog Brain Res 116:385–393

    CAS  PubMed  Google Scholar 

  • Thomsen C (1997) The L-AP4 receptor. Gen Pharmacol 29:151–158

    CAS  PubMed  Google Scholar 

  • Toms NJ, Reid ME, Phillips W, Kemp MC, Roberts PJ (1997) A novel kainate receptor ligand [3H]-(2S,4R)-4-methylglutamate. Pharmacological characterization in rabbit brain membranes. Neuropharmacology 36:1483–1488

    CAS  PubMed  Google Scholar 

  • Wahl P, Frandsen A, Madsen U, Schousboe A, Krogsgaard-Larsen P (1998) Pharmacology and toxicology of ATOA, an AMPA receptor antagonist and a partial agonist at GluR5 receptors. Neuropharmacology 37:1205–1210

    CAS  PubMed  Google Scholar 

  • Watkins JC (1994) The NMDA receptor concept: origins and development. In: Collingridge GL, Watkins JC (eds) The NMDA receptor, 2nd edn. Oxford University Press, Oxford, pp 1–30

    Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265–272

    Google Scholar 

  • Willis CL, Wacker DA, Bartlett RD, Bleakman D, Lodge D, Chamberlin AR, Bridges RJ (1997) Irreversible inhibition of high affinity [3H]kainate binding by a photoactivatable analogue: (2′S,3′S,4′R)-2′-carboxy-4′-(2-diazo-1-oxo-3,3,3-trifluoropropyl)-3′-pyrrolidinyl acetate. J Neurochem 68:1503–1510

    CAS  PubMed  Google Scholar 

  • Worms P, Willigens MT, Lloyd KG (1981) The behavioral effects of systemically administered kainic acid: a pharmacological analysis. Life Sci 29:2215–2225

    CAS  PubMed  Google Scholar 

  • Young AB, Fagg GE (1990) Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci 11:126–133

    CAS  PubMed  Google Scholar 

  • Zeman S, Lodge D (1992) Pharmacological characterization of non-NMDA subtypes of glutamate receptor in the neonatal rat hemidissected spinal cord in vitro. Br J Pharmacol 106:367–372

    Google Scholar 

  • Zhou L-L, Gu ZQ, Costa AM, Yamada KA, Mansson PE, Giordano T, Skolnick P, Jones KA (1997) (2S,4R)-4-methylglutamic acid (SYM 2081): a selective, high affinity ligand for kainate receptors. J Pharmacol Exp Ther 280:422–427

    CAS  PubMed  Google Scholar 

NMDA Receptor Complex: [3H]TCP Binding

  • Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267:13361–13368

    CAS  PubMed  Google Scholar 

  • Bashir ZI, Bortolotto ZA, Davies CH, Berretta M, Irving AJ, Seal AJ, Henley AM, Jane DE, Watkins JC, Collingridge GL (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363:347–350

    CAS  PubMed  Google Scholar 

  • Bednar B, Cunningham ME, Kiss L, Cheng G, McCauley JA, Liverton NJ, Koblan KS (2004) Kinetic characterization of novel NR2B antagonists using fluorescence detection of calcium flux. J Neurosci Methods 137:247–255

    CAS  PubMed  Google Scholar 

  • Chenard BL, Menniti FS (1999) Antagonists selective for NMDA receptors containing the NR2B subunit. Curr Pharm Res 5:381–404

    CAS  Google Scholar 

  • Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain-focus on NMDA receptors. Trends Neurosci 10:263–265

    Google Scholar 

  • Dannhardt G, von Gruchalla M, Elben U (1994) Tools for NMDA-receptor elucidation: synthesis of spacer-coupled MK-801 derivatives. Pharm Pharmacol Lett 4:12–15

    CAS  Google Scholar 

  • Dunn RW, Corbett R, Martin LL, Payack JF, Laws-Ricker L, Wilmot CA, Rush DK, Cornfeldt ML, Fielding S (1990) Preclinical anxiolytic profiles of 7189 and 8319, novel non-competitive NMDA antagonists. Current and future trends in anticonvulsant, anxiety, and stroke therapy. Wiley-Liss, pp 495–512

    Google Scholar 

  • Ebert B, Madsen U, Lund TM, Lenz SM, Krogsgaard-Larsen P (1994) Molecular pharmacology of the AMPA agonist, (S)-2-amino-3-(3-hydroxy-5-phenyl-4-isoxazolyl)propionic acid [(S)-APPA] and the AMPA antagonist, (R)-APPA. Neurochem Int 24:507–515

    CAS  PubMed  Google Scholar 

  • Fischer G, Mutel V, Trube G, Malherbe P, Kew JNC, Mohacsi E, Heitz MP, Kemp JA (1997) Ro 25–6981, a highly potent and selective blocker of N-methyl-d-aspartate receptors containing the NRB2 subunit. J Pharmacol Exp Ther 283:1285–1292

    CAS  PubMed  Google Scholar 

  • Goldman ME, Jacobson AE, Rice KC, Paul SM (1985) Differentiation of [3H]phencyclidine and (+)-[3H]SKΒ-10,047 binding sites in rat cerebral cortex. FEBS Lett 190:333–336

    CAS  PubMed  Google Scholar 

  • Grimwood S, ILe Bourdellès B, Atack JR, Barton C, Cockettt W, Cook SM, Gilbert E, Hutson PH, McKernan RM, Myers J, Ragan CI, Wingrove PB, Whiting PJ (1996) Generation and characterization of stable cell lines expressing recombinant human N-methyl-d-aspartate receptor subtypes. J Neurochem 66:2239–2247

    CAS  PubMed  Google Scholar 

  • Hansen JJ, Krogsgaard-Larsen P (1990) Structural, conformational, and stereochemical requirements of central excitatory amino acid receptors. Med Res Rev 10:55–94

    CAS  PubMed  Google Scholar 

  • Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M, Nakanishi S (1993) Molecular characterization of the family of N-methyl-d-aspartate receptor subunits. J Biol Chem 268:2836–2843

    CAS  PubMed  Google Scholar 

  • Iversen LL (1994) MK-801 (Dizocilpine maleate) – NMDA receptor antagonist. Neurotransmission 10(1):1–4

    Google Scholar 

  • Javitt DC, Zukin SR (1989) Biexponential kinetics of [3H]MK-801 binding: evidence for access to closed and open N-methyl-d-aspartate receptor channels. Mol Pharmacol 35:387–393

    CAS  PubMed  Google Scholar 

  • Johnson KM, Jones SM (1990) Neuropharmacol of phencyclidine: basic mechanisms and therapeutic potential. Annu Rev Pharmacol Toxicol 30:707–750

    CAS  PubMed  Google Scholar 

  • Keinänen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249:556–560

    PubMed  Google Scholar 

  • Kemp JA, Foster AC, Wong EHF (1987) Non-competitive antagonists of excitatory amino acid receptors. Trends Neurosci 10:294–298

    Google Scholar 

  • Kew JNC, Trube G, Kemp JA (1998) State-dependent NMDA receptor antagonism by Ro 8–4304, a novel NR2B selective, non-competitive, voltage-independent antagonist. Br J Pharmacol 123:463–472

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushyia E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M (1992) Molecular diversity of the NMDA receptor channel. Nature 358:36–41

    CAS  PubMed  Google Scholar 

  • Loo P, Braunwalder A, Lehmann J, Williams M (1986) Radioligand binding to central phencyclidine recognition sites is dependent on excitatory amino acid receptor agonists. Eur J Pharmacol 123:467–468

    CAS  PubMed  Google Scholar 

  • Loo PS, Braunwalder AF, Lehmann J, Williams M, Sills MA (1987) Interaction of l-glutamate and magnesium with phencyclidine recognition sites in rats brain: evidence for multiple affinity states of the phencyclidine/N-methyl-d-aspartate receptor complex. Mol Pharmacol 32:820–830

    CAS  PubMed  Google Scholar 

  • Maragos WF, Chu DCM, Greenamyre T, Penney JB, Young AB (1986) High correlation between the localization of [3H]TCP binding and NMDA receptors. Eur J Pharmacol 123:173–174

    CAS  PubMed  Google Scholar 

  • Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349:760–765

    CAS  PubMed  Google Scholar 

  • Meguro H, Mori H, Araki K, Kushiya E, Katsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357:70–74

    CAS  PubMed  Google Scholar 

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221

    CAS  PubMed  Google Scholar 

  • Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354:31–37

    CAS  PubMed  Google Scholar 

  • Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi N (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for l-2-amino-4-phosphonobutyrate. J Biol Chem 268:11868–11873

    CAS  PubMed  Google Scholar 

  • Nowak G, Remond A, McNamara M, Paul IA (1995) Swim stress increases the potency of glycine at the N-methyl-d-aspartate receptor complex. J Neurochem 64:925–927

    CAS  PubMed  Google Scholar 

  • Reyes M, Reyes A, Opitz T, Kapin MA, Stanton PK (1998) Eliprodil, a non-competitive, NR2B-selective NMDA antagonist, protects pyramidal neurons in hippocampal slides from hypoxic/ischemic damage. Brain Res 782:212–218

    CAS  PubMed  Google Scholar 

  • Reynolds IJ, Miller RJ (1988) Multiple sites for the regulation of the N-methyl-d-aspartate receptor. Mol Pharmacol 33:581–584

    CAS  PubMed  Google Scholar 

  • Rogawski MA, Porter RJ (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with considerations of promising developmental stage compounds. Pharmacol Rev 42:223–286

    Google Scholar 

  • Sacaan AI, Johnson KM (1989) Spermine enhances binding to the glycine site associated with the N-methyl-d-aspartate receptor complex. Mol Pharmacol 36:836–839

    Google Scholar 

  • Schoepp D, Bockaert J, Sladeczek F (1990) Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol Sci 11:508–515

    CAS  PubMed  Google Scholar 

  • Sills MA, Fagg G, Pozza M, Angst C, Brundish DE, Hurt SD, Wilusz EJ, Williams M (1991) [3H]CGP 39653: a new N-methyl-d-aspartate antagonist radioligand with low nanomolar affinity in rat brain. Eur J Pharmacol 192:19–24

    CAS  PubMed  Google Scholar 

  • Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-d-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852

    CAS  PubMed  Google Scholar 

  • Snell LD, Morter RS, Johnson KM (1987) Glycine potentiates N-methyl-d-aspartate-induced [3H]TCP binding to rat cortical membranes. Neurosci Lett 83:313–320

    Google Scholar 

  • Snell LD, Morter RS, Johnson KD (1988) Structural requirements for activation of the glycine receptor that modulates the N-methyl-d-aspartate operated ion channel. Eur J Pharmacol 156:105–110

    Google Scholar 

  • Sugihara H, Moriyoshi K, Ishii T, Masu M, Nakanishi S (1992) Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem Biophys Res Commun 185:826–832

    CAS  PubMed  Google Scholar 

  • Tanabe Y, Nomura A, Masu M, Shigemoto R, Mizuno N, Nakanishi S (1993) Signal transduction, pharmacological properties, and expression patterns of two metabotropic glutamate receptors, mGluR3 and mGluR4. J Neurosci 13:1372–1378

    Google Scholar 

  • Thedinga KH, Benedict MS, Fagg GE (1989) The N-methyl-d-aspartate (NMDA) receptor complex: a stoichiometric analysis of radioligand binding domains. Neurosci Lett 104:217–222

    CAS  PubMed  Google Scholar 

  • Thomson AM (1989) Glycine modulation of the NMDA receptor/channel complex. Trends Neurosci 12:349–353

    Google Scholar 

  • Vignon J, Chicheportiche R, Chicheportiche M, Kamenka JM, Geneste P, Lazdunski M (1983) [3H]TPC: a new tool with high affinity to the PCP receptor in rat brain. Brain Res 280:194–197

    CAS  PubMed  Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265–272

    Google Scholar 

  • Watkins JC, Krogsgaard-Larsen P, Honoré T (1990) Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 11:25–33

    CAS  PubMed  Google Scholar 

  • Williams K, Romano C, Molinoff PB (1989) Effects of polyamines on the binding of [3H]MK-801 to the N-methyl-d-aspartate receptor: pharmacological evidence for the existence of a polyamine recognition site. Mol Pharmacol 36:575–581

    CAS  PubMed  Google Scholar 

  • Wong EHF, Kemp JA (1991) Sites for antagonism on the N-methyl-d-aspartate receptor channel complex. Annu Rev Pharmacol Toxicol 31:401–425

    CAS  PubMed  Google Scholar 

  • Wong EHF, Knight AR, Woodruff GN (1988) [3H]MK-801 labels a site on the N-methyl-d-aspartate receptor channel complex in rat brain membranes. J Neurochem 50:274–281

    CAS  PubMed  Google Scholar 

  • Yoneda Y, Ogita K (1991) Neurochemical aspects of the N-methyl-d-aspartate receptor complex. Neurosci Res 10:1–33

    CAS  PubMed  Google Scholar 

Metabotropic Glutamate Receptors

  • Acher FC, Tellier FJ, Azerad R, Brabet IN, Fagni L, Pin JPR (1997) Synthesis and pharmacological characterization of aminocyclopentanetricarboxylic acids: new tools to discriminate between metabotropic glutamate receptor subtypes. J Med Chem 40:3119–3129

    CAS  PubMed  Google Scholar 

  • Alexander S, Peters J, Mathie A, MacKenzie G, Smith A (2001) TiPS nomenclature supplement

    Google Scholar 

  • Annoura H, Fukunaga A, Uesugi M, Tatsuoka T, Horikawa Y (1996) A novel class of antagonists for metabotropic glutamate receptors, 7-(hydroxyimino)-cyclopropa[b]chromenla-carboxylates. Bioorg Med Chem Lett 6:763–766

    CAS  Google Scholar 

  • Attwell PJE, Singh-Kent N, Jane D, Croucher MJ, Bradford HF (1998) Anticonvulsant and glutamate release-inhibiting properties of the highly potent metabotropic glutamate receptor agonist (2S,2′ R,3′R)-2-(2′ 3′ dicarboxycyclopropyl)-glycine (DCG-IV). Brain Res 805:138–143

    CAS  PubMed  Google Scholar 

  • Bedingfield JS, Jane DE, Kemp MC, Toms NJ, Roberts PJ (1996) Novel potent selective phenylglycine antagonists of metabotropic glutamate receptors. Eur J Pharmacol 309:71–78

    CAS  PubMed  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 206:587–595

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brauner-Osborne H, Nielsen B, Krogsgaard-Larsen P (1998) Molecular pharmacology of homologues of ibotenic acid at cloned metabotropic glutamic acid receptors. Eur J Pharmacol 350:311–316

    CAS  PubMed  Google Scholar 

  • Bruno V, Battaglia G, Copani A, Casabona G, Storto M, di Giorgi-Gerevini V, Ngomba R, Nicoletti F (1998) Metabotropic glutamate receptors and neurodegeneration. Prog Brain Res 116:209–221

    CAS  PubMed  Google Scholar 

  • Cartmell J, Adam G, Chaboz S, Henningsen R, Kemp JA, Klingelschmidt A, Metzler V, Monsma F, Schaffhauser H, Wichmann J, Mutel V (1998) Characterization of [3H](2S,2′R,3′R)-2-(2′, 3′-dicarboxycyclopropyl)glycine ([3H]DCG IV) binding to metabotropic mGlu2 receptor transfected cell membranes. Br J Pharmacol 123:497–504

    PubMed Central  CAS  PubMed  Google Scholar 

  • Christoffersen GRJ, Christensen LH, Hammer P, Vang M (1999) The class I metabotropic glutamate receptor antagonist, AIDA, improves short-term and impairs long-term memory in a spatial task for rats. Neuropharmacology 38:817–823

    CAS  PubMed  Google Scholar 

  • Conn PJ (2003) Physiological roles and therapeutic potential of metabotropic glutamate receptors. Ann N Y Acad Sci 1003:12–21

    CAS  PubMed  Google Scholar 

  • Conn PJ, Pin JP (1997) Pharmacology and function of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    CAS  PubMed  Google Scholar 

  • DeBlasi A, Conn PJ, Pin JP, Nicolette F (2001) Molecular determinants of metabotropic glutamate signaling. Trends Pharmacol Sci 22:114–120

    CAS  Google Scholar 

  • Doherty AJ, Palmer MJ, Henley JM, Collingridge GL, Jane DE (1997) (R, S)-2-chloro-5-hydroxyphenylglycine (CHPG) activates mGlu5, but not mGlu1, receptors expressed in CHO cells and potentiates NMDA responses in the hippocampus. Neuropharmacology 36:265–267

    CAS  PubMed  Google Scholar 

  • Eriksen L, Thomsen C (1995) [3H]-l-2-amino-4-phosphonobutyrate labels a metabotropic glutamate receptor, mGluR4a. Br J Pharmacol 116:3279–3287

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gasparini F, Bruno V, Battaglia G, Lukic S, Leonhardt T, Inderbitzin W, Laurie D, Sommer B, Varney MA, Hess SD, Johnson EC, Kuhn R, Urwyler S, Sauer D, Portet C, Schmutz M, Nicoletti F, Flor PJ (1999) (R, S)-4-Phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vivo. J Pharmacol Exp Ther 289:1678–1687

    CAS  PubMed  Google Scholar 

  • Gssparini F, Kuhn R, Pin JP (2002) Allosteric modulators of group I metabotropic glutamate receptors: novel subtype-selective ligands and therapeutic perspectives. Curr Opin Pharmacol 2:43–49

    Google Scholar 

  • Helton DR, Tizzano JP, Monn JA, Schoepp DD, Kallman MJ (1998) Anxiolytic and side-effect profile of LY354740: a potent and highly selective, orally active agonist for group II metabotropic glutamate receptors. J Pharmacol Exp Ther 284:651–660

    CAS  PubMed  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Google Scholar 

  • Ishida M, Akagi H, Shimamoto K, Ohfune Y, Shinozaki H (1990) A potent metabotropic glutamate receptor agonist: electrophysiological actions of a conformationally restricted glutamate analogue in the rat spinal cord and Xenopus oocytes. Brain Res 537:311–314

    Google Scholar 

  • Ishida M, Saitoh T, Nakamura Y, Kataoka K, Shinozaki H (1994) A novel metabotropic glutamate receptor agonist: (2S,1′ S,2′ R,3′R)-2-(carboxy-3-methoxymethylcyclopropyl)glycine (cis-MCG-I). Eur J Pharmacol Mol Pharmacol Sect 268:267–270

    CAS  Google Scholar 

  • Jane D, Doherty A (2000) Muddling through the mGlu maze? Tocris Rev 13

    Google Scholar 

  • Jane DE, Jones PLSJ, Pook PCK, Tse HW, Watkins JC (1994) Actions of two new antagonists showing selectivity for different subtypes of metabotropic glutamate receptor in the neonatal spinal cord. Br J Pharmacol 112:809–816

    Google Scholar 

  • Kingston AE, Ornstein PL, Wright RA, Johnson BG, Mayne NG, Burnett JP, Belagaje R, Wu S, Schoepp DD (1998) LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacology 37:1–12

    CAS  PubMed  Google Scholar 

  • Knöpfel T, Kuhn R, Allgeier H (1995) Metabotropic glutamate receptors: novel targets for drug development. J Med Chem 38:1417–1425

    PubMed  Google Scholar 

  • Knöpfel T, Madge T, Nicoletti F (1996) Metabotropic glutamate receptors. Expert Opin Ther Pat 6:1061–1067

    Google Scholar 

  • Konieczny J, Ossowska K, Wolfarth S, Pilc A (1998) LY354740, a group II metabotropic glutamate receptor agonist with potential antiparkinsonian properties in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 358:500–502

    CAS  Google Scholar 

  • Monn JA, Valli MJ, Massey SM, Hansen MM, Kress TJ, Wepsiec JP, Harkness AR, Grutsch JL Jr, Wright PA, Johnson PG, Andis SL, Kingston A, Tomlinson R, Lewis R, Griffey KR, Tizzano JP, Schoepp DD (1999) Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0]-hexane-2,6-dicarboxylic acid (LY354740): identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors. J Med Chem 42:1027–1040

    CAS  PubMed  Google Scholar 

  • Nakanishi S, Masu M (1994) Molecular diversity and function of glutamate receptors. Annu Rev Biophys Biomol Struct 23:319–348

    CAS  PubMed  Google Scholar 

  • Nicoletti F, Bruno V, Copani A, Casabona G, Knöpfel T (1996) Metabotropic glutamate receptors: a new target for the treatment of neurodegenerative disorders? Trends Neurosci 19:267–271

    CAS  PubMed  Google Scholar 

  • Okamoto N, Hori S, Akazawa C, Hayashi Y, Shigemoto R, Mizuno N, Nakanishi S (1994) Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J Biol Chem 269:1231–1236

    CAS  PubMed  Google Scholar 

  • Ornstein PL, Arnold MB, Bleisch TJ, Wright RA, Wheeler WJ, Schoepp DD (1998) [3H]LY341495, a highly potent, selective and novel radioligand for labeling group II metabotropic glutamate receptors. Bioorg Med Chem Lett 8:1919–1922

    CAS  PubMed  Google Scholar 

  • Pin JP, Acher F (2002) The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr Drug Targets CNS Neurol Disord 1:297–317

    CAS  PubMed  Google Scholar 

  • Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26

    CAS  PubMed  Google Scholar 

  • Porter RHP, Briggs RSJ, Roberts PJ (1992) l-Aspartate-β-hydroxamate exhibits mixed agonist/antagonist activity at the glutamate metabotropic receptor in rat neonatal cerebrocortical slices. Neurosci Lett 144:87–89

    CAS  PubMed  Google Scholar 

  • Riedel G, Reymann KG (1996) Metabotropic glutamate receptors in hippocampal long-term potentiation and learning and memory. Acta Physiol Scand 157:1–19

    CAS  PubMed  Google Scholar 

  • Schaffhauser H, Richards JG, Cartmell J, Chaboz S, Kemp JA, Klingelschmidt A, Messer J, Stadler H, Woltering T, Mutel V (1998) In vitro binding characteristics of a new selective group II metabotropic glutamate receptor radioligand, [3H]LY354740, in rat brain. Mol Pharmacol 53:228–233

    CAS  PubMed  Google Scholar 

  • Schoepp DD, Conn PJ (1993) Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 14:13–20

    CAS  PubMed  Google Scholar 

  • Schoepp DD, Jane DE, Monn JA (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 38:1431–1476

    CAS  PubMed  Google Scholar 

  • Skerry TM, Genever PG (2001) Glutamate signalling in non-neuronal tissues. Trends Pharmacol Sci 22:174–181

    CAS  PubMed  Google Scholar 

  • Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S (1992) A family of metabotropic glutamate receptors. Neuron 8:169–179

    CAS  PubMed  Google Scholar 

  • Tanabe Y, Nomura A, Masu M, Shigemoto R, Mizuno N, Nakanishi S (1993) Signal transduction, pharmacological properties, and expression pattern of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J Neurosci 13:1372–1378

    Google Scholar 

  • Thomsen C, Dalby NO (1998) Roles of metabotropic glutamate receptor subtypes in modulation of pentylenetetrazole-induced seizure activity in mice. Neuropharmacology 37:1465–1473

    CAS  PubMed  Google Scholar 

  • Thomsen C, Mulvihill ER, Haldeman B, Pickering DS, Hampson DR, Suzdak PD (1993) A pharmacological characterization of the mGluR1α subtype of the metabotropic glutamate receptor expressed in a cloned baby hamster kidney cell line. Brain Res 619:22

    CAS  PubMed  Google Scholar 

  • Thomsen C, Boel E, Suzdak PD (1994) Action of phenylglycine analogs at subtypes of the metabotropic glutamate receptor family. Eur J Pharmacol 267:77–84

    CAS  PubMed  Google Scholar 

  • Thomsen C, Bruno V, Nicoletti F, Marinozzi M, Pelliciari R (1996) (2S,1′S,2′S,3′R)-2-(2′-carboxy-3′-phenylcyclopropyl)glycine, a potent and selective antagonist of type 2 metabotropic glutamate receptors. Mol Pharmacol 50:6–9

    CAS  PubMed  Google Scholar 

  • Varney MA, Suto CM (2000) Discovery of subtype-selective metabotropic glutamate receptor ligands using functional HTS assays. Drug Discov Today HTS Suppl 1:20–26

    CAS  Google Scholar 

  • Watkins J, Collingridge G (1994) Phenylglycine derivatives as antagonists of metabotropic glutamate receptors. Trends Pharmacol Sci 15:333–342

    CAS  PubMed  Google Scholar 

Excitatory Amino Acid Transporters

  • Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14:5559–5569

    CAS  PubMed  Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol 14:48–58

    CAS  Google Scholar 

  • Robinson MB, Sinor JD, Dowd LA, Kerwin JF Jr (1993) Subtypes of sodium-dependent high-affinity l-[3H]glutamate transport activity. Pharmacologic specificity and regulation by sodium and potassium. J Neurochem 60:167–179

    CAS  PubMed  Google Scholar 

  • Seal RP, Amara SG (1999) Excitatory amino acid transporters: a family in flux. Annu Rev Pharmacol Toxicol 39:431–456

    CAS  PubMed  Google Scholar 

  • Vandenberg RJ (1998) Molecular pharmacology and physiology of glutamate transporters in the central nervous system. Clin Exp Pharmacol Physiol 25:393–400

    CAS  PubMed  Google Scholar 

  • Vandenberg RJ, Arriza JL, Amara SG, Kavanaugh MP (1995) Constitutive ion fluxes and substrate binding domains of human glutamate transporters. J Biol Chem 270:17668–17671

    CAS  PubMed  Google Scholar 

  • Vandenberg RJ, Mitrovic AD, Chebib M, Balcar VJ, Johnston GAR (1997) Contrasting modes of action of methylglutamate derivatives on the excitatory amino acid transporters, EAAT1 and EAAT2. Mol Pharmacol 51:809–815

    CAS  PubMed  Google Scholar 

  • Woodhull AM (1973) Ion blockage of sodium channels in nerve. J Gen Physiol 61:667–708

    Google Scholar 

[35S]TBPS Binding in Rat Cortical Homogenates and Sections

  • Casida JE, Palmer CJ, Cole LM (1985) Bicycloorthocarboxylate convulsants. Potent GABAA receptor antagonists. Mol Pharmacol 28:246–253

    CAS  PubMed  Google Scholar 

  • Gee KW, Lawrence LJ, Yamamura HI (1986) Modulation of the chloride ionophore by benzodiazepine receptor ligands: influence of gamma-aminobutyric acid and ligand efficacy. Mol Pharmacol 30:218–225

    CAS  PubMed  Google Scholar 

  • Macksay G, Ticku MK (1985a) Dissociation of [35S]-t-butylbicyclophosphorothionate binding differentiates convulsant and depressant drugs that modulate GABAergic transmission. J Neurochem 44:480–486

    Google Scholar 

  • Macksay G, Ticku MK (1985b) GABA, depressants and chloride ions affect the rate of dissociation of [35S]-t-butyl-bicyclophosphorothionate binding. Life Sci 37:2173–2180

    Google Scholar 

  • Olsen RW, Yang J, King RG, Dilber A, Stauber GB, Ransom RW (1986) Barbiturate and benzodiazepine modulation of GABA receptor binding and function. Life Sci 39:1969–1976

    CAS  PubMed  Google Scholar 

  • Squires RF, Casida JE, Richardson M, Saederup E (1983) [35S]t-Butylbicyclophosphorothionate binds with high affinity to brain specific sites coupled to γ-aminobutyric acid-A and ion recognition sites. Mol Pharmacol 23:326–336

    CAS  PubMed  Google Scholar 

  • Supavilai P, Karabath M (1984) [35S]-t-Butylbicyclophosphorothionate binding sites are constituents of the γ-aminobutyric acid benzodiazepine receptor complex. J Neurosci 4:1193–1200

    CAS  PubMed  Google Scholar 

  • Trifiletti RR, Snowman AM, Snyder SH (1984) Anxiolytic cyclopyrrolone drugs allosterically modulate the binding of [35S]t-butylbicyclophosphorothionate to the benzodiazepine/γ-aminobutyric acid-A receptor/chloride anionophore complex. Mol Pharmacol 26:470–476

    CAS  PubMed  Google Scholar 

  • Trifiletti RR, Snowman AM, Snyder SH (1985) Barbiturate recognition site on the GABA/Benzodiazepine receptor complex is distinct from the picrotoxin/TBPS recognition site. Eur J Pharmacol 106:441–447

    Google Scholar 

[3H]glycine Binding in Rat Cerebral Cortex

  • Baron BM, Harrison BL, Miller FP, McDonald IA, Salituro FG, Schmidt CJ, Sorensen SM, White HS, Palfreyman MG (1990) Activity of 5,7-dichlorokynurenic acid, a potent antagonist at the N-methyl-d-aspartate receptor-associated glycine binding site. Mol Pharmacol 38:554–561

    CAS  PubMed  Google Scholar 

  • Baron BM, Siegel BW, Harrison BL, Gross RS, Hawes C, Towers P (1996) [3H]MDL 105,519, a high affinity radioligand for the N-methyl-d-aspartate receptor-associated glycine recognition site. J Pharmacol Exp Ther 279:62–68

    CAS  PubMed  Google Scholar 

  • Becker L, von Wegener J, Schenkel J, Zeilhofer HU, Swandulla D, Weiher H (2002) Disease specific human glycine receptor αl subunit causes hyperekplexia phenotype and impaired glycine and GABAA-receptor transmission in transgenic mice. J Neurosci 22:2505–2512

    CAS  PubMed  Google Scholar 

  • Bonhaus DW, Burge BC, McNamara JO (1978) Biochemical evidence that glycine allosterically regulates an NMDA receptor-coupled ion channel. Eur J Pharmacol 142:489–490

    Google Scholar 

  • Bonhaus DW, Yeh G-C, Skaryak L, McNamara JO (1989) Glycine regulation of the N-methyl-d-aspartate receptorgated ion channel in hippocampal membranes. Mol Pharmacol 36:273–279

    CAS  PubMed  Google Scholar 

  • Chazot PL, Reiss C, Chopra B, Stephenson FA (1998) [3H]MDL 105,519 binds with equal high affinity to both assembled and unassembled NR1 subunits of the NMDA receptor. Eur J Pharmacol 353:137–140

    CAS  PubMed  Google Scholar 

  • Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J (1987) Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci 10:273–280

    CAS  Google Scholar 

  • Danysz W, Wroblewski JT, Brooker G, Costa E (1989) Modulation of glutamate receptors by phencyclidine and glycine in the rat cerebellum: cGMP increase in vivo. Brain Res 479:270–276

    CAS  PubMed  Google Scholar 

  • Foster AC, Kemp JA, Leeson PD, Grimwood S, Donald AE, Marshall GR, Priestley T, Smith JD, Carling RW (1992) Kynurenic acid analogues with improved affinity and selectivity for the glycine site on the N-methyl-d-aspartate receptor from rat brain. Mol Pharmacol 41:914–922

    CAS  PubMed  Google Scholar 

  • Hargreaves RJ, Rigby M, Smith D, Hill RG (1993) Lack of effect of L-687,414 ((+)-cis-4-methyl-HA-966), an NMDA receptor antagonist acting at the glycine site, on cerebral glucose metabolism and cortical neuronal morphology. Br J Pharmacol 110:36–42

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hofner G, Wanner KT (1997) Characterization of the binding of [3H]MDL 105,519, a radiolabelled antagonist for the N-methyl-d-aspartate receptor-associated glycine site to pig cortical brain membranes. Neurosci Lett 226:79–82

    CAS  PubMed  Google Scholar 

  • Jansen KLR, Dragunow M, Faull RLM (1989) [3H]Glycine binding sites, NMDA and PCP receptors have similar distributions in the human hippocampus: an autoradiographic study. Brain Res 482:174–1178

    CAS  PubMed  Google Scholar 

  • Kessler M, Terramani T, Lynch B, Baudry M (1989) A glycine site associated with N-methyl-d-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52:1319–1328

    CAS  PubMed  Google Scholar 

  • Laube B, Maksay G, Schemm R, Betz H (2002) Modulation of glycine receptor function: a novel approach for therapeutic intervention at inhibitory synapses? Trends Pharmacol Sci 23:519–527

    CAS  PubMed  Google Scholar 

  • Lynch JW (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84:1051–1095

    Google Scholar 

  • Monahan JB, Corpus VM, Hood WF, Thomas JW, Compton RP (1989) Characterization of a [3H]glycine recognition site as a modulatory site of the N-Methyl-d-aspartate receptor complex. J Neurochem 53:370–375

    CAS  PubMed  Google Scholar 

  • Oliver MW, Kessler M, Larson J, Schottler F, Lynch G (1990) Glycine site associated with the NMDA receptor modulates long-term potentiation. Synapse 5:265–270

    CAS  PubMed  Google Scholar 

  • Ransom RW, Deschenes NL (1988) NMDA-induced hippocampal [3H]norepinephrine release is modulated by glycine. Eur J Pharmacol 156:149–155

    CAS  PubMed  Google Scholar 

  • Rao TS, Cler JA, Emmet MR, Mick SJ, Iyengar S, Wood PL (1990) Glycine, glycinamide, and d-serine act as positive modulators of signal transduction at the N-methyl-d-aspartate (NMDA) receptor in vivo: differential effects on mouse cerebellar cyclic guanosine monophosphate levels. Neuropharmacology 29:1075–1080

    CAS  PubMed  Google Scholar 

  • Rees MI, Lewis TM, Kwok JBJ, Mortier GR, Govaert P, Snell RG, Schofield PR, Owen MJ (2002) Hyperekplexia associated with compound heterozygote mutations in the β-subunit of the human inhibitory glycine receptor. (GLRB). Hum Mol Genet 11:853–860

    CAS  PubMed  Google Scholar 

  • Reynolds IJ, Murphy SN, Miller RJ (1987)3H-labeled MK-801 binding to the excitatory amino acid receptor complex from rat brain is enhanced by glycine. Proc Natl Acad Sci U S A 84:7744–7748

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sacaan AI, Johnson KM (1989) Spermine enhances binding to the glycine site associated with N-methyl-d-aspartate receptor complex. Mol Pharmacol 36:836–839

    Google Scholar 

  • Schmieden V, Betz H (1995) Pharmacology of the inhibitory glycine receptor: agonist and antagonist actions of amino acids and piperidine carboxylic compounds. Mol Pharmacol 48:919–927

    CAS  PubMed  Google Scholar 

  • Snell LD, Morter RS, Johnson KM (1987) Glycine potentiates N-methyl-d-aspartate induced [3H]TCP binding to rat cortical membranes. Neurosci Lett 83:313–317

    Google Scholar 

  • Snell LD, Morter RS, Johnson KM (1988) Structural requirements for activation of the glycine receptor that modulates the N-methyl-d-aspartate operated ion channel. Eur J Pharmacol 156:105–110

    Google Scholar 

  • Thomson AM (1989) Glycine modulation of the NMDA receptor/channel complex. Trends Neurosci 12:349–353

    Google Scholar 

  • White HS, Harmsworth WL, Sofia RD, Wof HH (1995) Felbamate modulates the strychnine-insensitive glycine receptor. Epilepsy Res 20:41–48

    CAS  PubMed  Google Scholar 

[3H]strychnine-Sensitive Glycine Receptor

  • Betz H, Kuhse J, Schmieden V, Laube B, Harvey R (1998) Structure, diversity and pathology of the inhibitory glycine receptor. Naunyn-Schmiedeberg’s Arch Pharmacol 358(Suppl 2):R 570

    Google Scholar 

  • Braestrup C, Nielsen M, Krogsgaard-Larsen P (1986) Glycine antagonists structurally related to 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol inhibit binding of [3H]strychnine to rat brain membranes. J Neurochem 47:691–696

    CAS  PubMed  Google Scholar 

  • Bristow DR, Bowery NG, Woodruff GN (1986) Light microscopic autoradiographic localisation of [3H]glycine and [3H]strychnine binding sites in rat brain. Eur J Pharmacol 126:303–307

    CAS  PubMed  Google Scholar 

  • Bruns RF, Welbaum BEA (1985) A sodium chloride shift method to distinguish glycine agonists from antagonists in [3H]strychnine binding. Fed Proc 44:1828

    Google Scholar 

  • Graham D, Pfeiffer F, Simler R, Betz H (1985) Purification and characterization of the glycine receptor of pig spinal cord. Biochemistry 24:990–994

    CAS  PubMed  Google Scholar 

  • Johnson G, Nickell DG, Ortwine D, Drummond JT, Bruns RF, Welbaum BE (1989) Evaluation and synthesis of aminohydroxyisoxazoles and pyrazoles as potential glycine agonists. J Med Chem 32:2116–2128

    PubMed  Google Scholar 

  • Johnson G, Drummond JT, Boxer PA, Bruns RF (1992) Proline analogues as agonists at the strychnine-sensitive glycine receptor. J Med Chem 35:233–241

    CAS  PubMed  Google Scholar 

  • Kishimoto H, Simon JR, Aprison MH (1981) Determination of the equilibrium constants and number of glycine binding sites in several areas of the rat central nervous system, using a sodium-independent system. J Neurochem 37:1015–1024

    CAS  PubMed  Google Scholar 

  • Lambert DM, Poupaert JH, Maloteaux JM, Dumont P (1994) Anticonvulsant activities of N-benzyloxycarbonylglycine after parenteral administration. NeuroReport 5:777–780

    CAS  PubMed  Google Scholar 

  • Marvizon JCG, Vázquez J, Calvo MG, Mayor F Jr, Gómez AR, Valdivieso F, Benavides J (1986) The glycine receptor: pharmacological studies and mathematical modeling of the allosteric interaction between the glycine- and strychnine-binding sites. Mol Pharmacol 30:590–597

    CAS  PubMed  Google Scholar 

  • Saitoh T, Ishida M, Maruyama M, Shinozaki H (1994) A novel antagonist, phenylbenzene-ω-phosphono-a-amino acid, for strychnine-sensitive glycine receptors in the rat spinal cord. Br J Pharmacol 113:165–170

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmieden V, Jezequel S, Beth H (1996) Novel antagonists of the inhibitory glycine receptor derived from quinolinic acid compounds. Mol Pharmacol 48:919–927

    Google Scholar 

  • Simmonds MA, Turner JP (1985) Antagonism of inhibitory amino acids by the steroid derivative RU5135. Br J Pharmacol 84:631–635

    PubMed Central  CAS  PubMed  Google Scholar 

  • Young AB, Snyder SH (1974) Strychnine binding in rat spinal cord membranes associated with the synaptic glycine receptor: co-operativity of glycine interactions. Mol Pharmacol 10:790–809

    CAS  Google Scholar 

Electrical Recordings from Hippocampal Slices in Vitro

  • Alger BE (1984) Hippocampus. Electrophysiological studies of epileptiform activity in vitro. In: Dingledine R (ed) Brain slices. Plenum Press, New York/London, pp 155–199

    Google Scholar 

  • Alger BE, Nicoll RA (1982) Pharmacological evidence of two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J Physiol 328:125–141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alger BE, Dhanjal SS, Dingledine R, Garthwaite J, Henderson G, King GL, Lipton P, North A, Schwartzkroin PA, Sears TA, Segal M, Whittingham TS, Williams J (1984) Brain slice methods. In: Dingledine R (ed) Brain slices. Plenum Press, New York/London, pp 381–437

    Google Scholar 

  • Bernard C, Wheal HV (1995) Plasticity of AMP and NMDA receptor mediated epileptiform activity in a chronic model of temporal lobe epilepsy. Epilepsy Res 21:95–107

    CAS  PubMed  Google Scholar 

  • Bingmann D, Speckmann EJ (1986) Actions of pentylenetetrazol (PTZ) on CA3 neurons in hippocampal slices of guinea pigs. Exp Brain Res 64:94–104

    CAS  PubMed  Google Scholar 

  • Blanton MG, Turco JJL, Kriegstein AR (1989) Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Methods 30:203–210

    CAS  PubMed  Google Scholar 

  • Coan EJ, Saywood W, Collingridge GL (1987) MK-801 blocks NMDA receptor-mediated synaptic transmission and long term potentiation in rat hippocampal slices. Neurosci Lett 80:111–114

    CAS  PubMed  Google Scholar 

  • Crain SM (1972) Tissue culture models of epileptiform activity. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven, New York, pp 291–316

    Google Scholar 

  • Dingledine R, Dodd J, Kelly JS (1980) The in vitro brain slice as a useful neurophysiological preparation for intracellular recording. J Neurosci Methods 2:323–362

    CAS  PubMed  Google Scholar 

  • Fisher RS (1987) The hippocampal slice. Am J EEG Technol 27:1–14

    Google Scholar 

  • Fisher RS, Alger BE (1984) Electrophysiological mechanisms of kainic acid-induced epileptiform activity in the rat hippocampal slice. J Neurosci 4:1312–1323

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Dunwiddie TV, Bergman B, Lindström K (1984) Levels of adenosine and adenine nucleotides in slices of rat hippocampus. Brain Res 295:127–136

    CAS  PubMed  Google Scholar 

  • Gahwiler BH (1988) Organotypic cultures of neuronal tissue. Trends Neurol Sci 11:484–490

    CAS  Google Scholar 

  • Harrison NL, Simmonds MA (1985) Quantitative studies on some antagonists of N-methyl-d-aspartate in slices of rat cerebral cortex. Br J Pharmacol 84:381–391

    PubMed Central  CAS  PubMed  Google Scholar 

  • Langmoe IA, Andersen P (1981) The hippocampal slice in vitro. A description of the technique and some examples of the opportunities it offers. In: Kerkut GA, Wheal HV (eds) Electrophysiology of isolated mammalian CNS preparations. Academic, London/New York, pp 51–105

    Google Scholar 

  • Liu FC, Takahashi H, Mc Kay RDG, Graybiel AM (1995) Dopaminergic regulation of transcription factor expression in organotypic cultures of developing striatum. J Neurosci 15:2367–2384

    CAS  PubMed  Google Scholar 

  • Misgeld U (1992) Hippocampal slices. In: Kettenmann H, Grantyn R (eds) Practical electrophysiological methods. Wiley, New York, pp 41–44

    Google Scholar 

  • Mosfeldt Laursen A (1984) The contribution of in vitro studies to the understanding of epilepsy. Acta Neurol Scand 69:367–375

    CAS  PubMed  Google Scholar 

  • Müller CM (1992) Extra- and intracellular voltage recording in the slice. In: Kettenmann H, Grantyn R (eds) Practical electrophysiological methods. Wiley, New York, pp 249–295

    Google Scholar 

  • Oh DJ, Dichter MA (1994) Effect of a γ-aminobutyric acid uptake inhibitor, NNC-711, on spontaneous postsynaptic currents in cultured rat hippocampal neurons: implications for antiepileptic drug development. Epilepsia 35:426–430

    CAS  PubMed  Google Scholar 

  • Okada Y, Ozawa S (1980) Inhibitory action of adenosine on synaptic transmission in the hippocampus of the guinea pig in vitro. Eur J Pharmacol 68:483–492

    CAS  PubMed  Google Scholar 

  • Oliver AP, Hoffer BJ, Wyatt RJ (1977) The hippocampal slice: a model system for studying the pharmacology of seizures and for screening of anticonvulsant drugs. Epilepsia 18:543–548

    CAS  PubMed  Google Scholar 

  • Pandanaboina MM, Sastry BR (1984) Rat neocortical slice preparation for electrophysiological and pharmacological studies. J Pharmacol Methods 11:177–186

    CAS  PubMed  Google Scholar 

  • Saltarelli MD, Lowenstein PR, Coyle JT (1987) Rapid in vitro modulation of [3H]hemicholinium-3 binding sites in rat striatal slices. Eur J Pharmacol 135:35–40

    CAS  PubMed  Google Scholar 

  • Schlicker E, Fink K, Zentner J, Göthert M (1996) Presynaptic inhibitory serotonin autoreceptors in the human hippocampus. Naunyn-Schmiedeberg’s Arch Pharmacol 354:393–396

    CAS  Google Scholar 

  • Schwartzkroin PA (1975) Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation. Brain Res 85:423–436

    CAS  PubMed  Google Scholar 

  • Siggins GR, Schubert P (1981) Adenosine depression of hippocampal neurons in vitro: an intracellular study of dose-dependent actions on synaptic and membrane potentials. Neurosci Lett 23:55–60

    CAS  PubMed  Google Scholar 

  • Skrede KK, Westgard RH (1971) The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. Brain Res 35:589–659

    CAS  PubMed  Google Scholar 

  • Stoppini L, Buchs PA, Muller D (1991) A simple method for oganotypic cultures of nervous tissue. J Neurosci Methods 37:173–182

    CAS  PubMed  Google Scholar 

  • Stuart GJ, Dodt HU, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch 423:511–518

    CAS  PubMed  Google Scholar 

  • Teyler TT (1980) Brain slice preparation: hippocampus. Brain Res Bull 5:391–403

    CAS  PubMed  Google Scholar 

Electrical Recordings from Isolated Nerve Cells

  • Banker GA, Cowan WM (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res 126:397–425

    Google Scholar 

  • Caulfield MP, Brown DA (1992) Cannabinoid receptor agonists inhibit Ca current in NG108–15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol 106:231–232

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Q-X, Stelzer A, Kay AR, Wong RKS (1990) GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea-pig hippocampal neurones. J Physiol 420:207–221

    PubMed Central  CAS  PubMed  Google Scholar 

  • Delmas P, Brown DA, Dayrell M, Abogadie FC, Caulfield MP, Buckley NJ (1998) On the role of endogenous G-protein β γ subunits in N-type Ca2+ current inhibition by neurotransmitters in rat sympathetic neurones. J Physiol 506:319–329

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gola M, Niel JP (1993) Electrical and integrative properties of rabbit sympathetic neurons re-evaluated by patch-clamping non-dissociated cells. J Physiol 460:327–349

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gola M, Niel JP, Bessone R, Fayolle R (1992) Single channel and whole cell recordings from non dissociated sympathetic neurones in rabbit coeliac ganglia. J Neurosci Methods 43:13–22

    CAS  PubMed  Google Scholar 

  • Gonzales F, Farbman AI, Gesteland RC (1985) Cell and explant culture of olfactory chemoreceptor cells. J Neurosci Methods 14:77–90

    CAS  PubMed  Google Scholar 

  • Jirikowski G, Reisert I, Pilgrim C (1981) Neuropeptides in dissociated cultures of hypothalamus and septum; quantification of immunoreactive neurons. Neuroscience 6:1953–1960

    Google Scholar 

  • Kay AR, Wong RKS (1986) Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems. J Neurosci Methods 16:227–238

    CAS  PubMed  Google Scholar 

  • McGivern JG, Patmore L, Sheridan RD (1995) Actions of the novel neuroprotective agent, lifarizine (RS-87476), on voltage- dependent sodium currents in the neuroblastoma cell line, NIE-115. Br J Pharmacol 114:1738–1744

    PubMed Central  CAS  PubMed  Google Scholar 

  • McLarnon JG (1991) The recording of action potential currents as an assessment for drug actions on excitable cells. J Pharmacol Methods 26:105–111

    CAS  PubMed  Google Scholar 

  • McLarnon JG, Curry K (1990) Single channel properties of the N-methyl-d-aspartate receptor channel using NMDA and NMDA agonists: on-cell recordings. Exp Brain Res 82:82–88

    CAS  PubMed  Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    CAS  PubMed  Google Scholar 

  • Sakmann B, Neher E (1983) Single channel recording. Plenum Press, New York

    Google Scholar 

  • Smith PA (1995) Methods for studying neurotransmitter transduction mechanisms. J Pharmacol Toxicol Methods 33:63–73

    CAS  PubMed  Google Scholar 

  • Stolc S (1994) Pyridoindole stobadine is a nonselective inhibitor of voltage-operated ion channels in rat sensory neurons. Gen Physiol Biophys 13:259–266

    CAS  PubMed  Google Scholar 

Isolated Neonatal Rat Spinal Cord

  • Akagi H, Konishi S, Otsuka M, Yanagisawa M (1985) The role of substance P as a neurotransmitter in the reflexes of slow time courses in the neonatal rat spinal cord. Br J Pharmacol 84:663–673

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bleakman D, Rusin KI, Chard PS, Glaum SR, Miller RJ (1992) Metabotropic glutamate receptors potentiate ionotropic glutamate responses in the rat dorsal horn. Mol Pharmacol 42:192–196

    CAS  PubMed  Google Scholar 

  • Boxall SJ, Thompson SWN, Dray A, Dickenson AH, Urban L (1996) Metabotropic glutamate receptor activation contribute to nociceptive reflex activity in the rat spinal cord in vitro. Neuroscience 74:13–20

    CAS  PubMed  Google Scholar 

  • Dong X-W, Morin D, Feldman JL (1996) Multiple actions of 1S, 3R-ACPD in modulating endogenous synaptic transmission to spinal respiratory motoneurons. J Neurosci 16:4971–4982

    CAS  PubMed  Google Scholar 

  • Evans RH, Francis AA, Jones AW, Smith DAS, Watkins JC (1982) The effects of a series of ω-phosphonic α-carboxylic amino acids on electrically evoked and excitant amino-acid-induced responses in isolated spinal cord preparations. Br J Pharmacol 75:65–75

    PubMed Central  CAS  PubMed  Google Scholar 

  • Faber ESL, Chambers JP, Brugger F, Evans RH (1997) Depression of A and C fibre-evoked segmental reflexes by morphine and clonidine in the in vitro spinal cord of the neonatal rat. Br J Pharmacol 120:1390–1396

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guo JZ, Yoshioka K, Otsuka M (1998) Effects of a tachykinin NK3 receptor antagonist, SR 142801, studied in isolated neonatal spinal cord. Neuropeptides 32:537–542

    CAS  PubMed  Google Scholar 

  • Ishida M, Shinozakai H (1991) Novel kainate derivatives: potent depolarizing actions on spinal motoneurons and dorsal root fibres in newborn rats. Br J Pharmacol 104:873–878

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ishida M, Akagi H, Shimamoto K, Ohfune Y, Shinozaki H (1990) A potent metabotropic glutamate receptor agonist: electrophysiological actions of a conformationally restricted glutamate analogue in the rat spinal cord and Xenopus oocytes. Brain Res 537:311–314

    Google Scholar 

  • Ishida M, Saitoh T, Shimamoto K, Ohfune Y, Shinozaki H (1993) A novel metabotropic glutamate receptor agonist: marked depression of monosynaptic excitation in the newborn rat isolated spinal cord. Br J Pharmacol 109:1169–1177

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jane DE, Jones PLSJ, Pook PCK, Tse HW, Watkins JC (1994) Actions of two new antagonists showing selectivity for different subtypes of metabotropic glutamate receptor in the neonatal rat spinal cord. Br J Pharmacol 112:809–816

    Google Scholar 

  • Kendig JJ, Savola MKT, Woodley SJ, Maze M (1991) α 2-adrenoceptors inhibit a nociceptive response in neonatal rat spinal cord. Eur J Pharmacol 192:293–300

    CAS  PubMed  Google Scholar 

  • King AE, Lopez-Garcia JA, Cumberbatch M (1992) Antagonism of synaptic potentials in ventral horn neurons by 6-cyano-7-nitroquninoxaline-2,3-dione: a study in the rat spinal cord in vitro. Br J Pharmacol 107:375–381

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lev-Tov A, Pinco M (1992) In vitro studies of prolonged synaptic depression in the neonatal rat spinal cord. J Physiol 447:149–169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nussbaumer JC, Yanagisawa M, Otsuka M (1989) Pharmacologic properties of a C fibre response evoked by saphenous nerve stimulation in an isolated spinal cord-nerve preparation of the newborn rat. Br J Pharmacol 98:373–382

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ohno Y, Warnick JE (1988) Effects of thyrotropin-releasing hormone on phencyclidine- and ketamine-induced spinal depression in neonatal rats. Neuropharmacology 27:1013–1018

    CAS  PubMed  Google Scholar 

  • Ohno Y, Warnick JE (1990) Selective depression of the segmental polysynaptic reflex by phencyclidine and its analogs in the rat in vitro: Interaction with N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 252:246–252

    CAS  PubMed  Google Scholar 

  • Otsuka M, Konishi S (1974) Electrophysiology of mammalian spinal cord in vitro. Nature 252:733–734

    CAS  PubMed  Google Scholar 

  • Otsuka M, Yanagisawa M (1988) Effect of a tachykinin antagonist on a nociceptive reflex in the isolated spinal cord tail preparation of the newborn rat. J Physiol 395:255–270

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pook P, Brugger F, Hawkins NS, Clark KC, Watkins JC, Evans RH (1993) A comparison of action of agonists and antagonists at non-NMDA receptors of C fibres and motoneurons of the immature rat spinal cord in vitro. Br J Pharmacol 108:179–184

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shinozaki H, Ishida M, Shimamoto K, Ohfune Y (1989) Potent NMDA-like actions and potentiation of glutamate responses by conformational variants of a glutamate analogue in the rat spinal cord. Br J Pharmacol 98:1213–1224

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith JC, Feldman JL (1987) In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion. J Neurosci Methods 21:321–333

    CAS  PubMed  Google Scholar 

  • Thompson SWN, Gerber G, Sivilotti LG, Woolf CJ (1992) Long duration of ventral root potentials in the neonatal spinal cord in vitro: the effects of ionotropic and metabotropic excitatory amino acid receptor antagonists. Brain Res 595:87–97

    CAS  PubMed  Google Scholar 

  • Woodley SJ, Kendig JJ (1991) Substance P and NMDA receptors mediate a slow nociceptive ventral root potential in neonatal rat spinal cord. Brain Res 559:17–22

    CAS  PubMed  Google Scholar 

  • Yanagisawa M, Otsuka M, Konishi S, Akagi H, Folkers K, Rosell S (1982) A substance P antagonist inhibits a slow reflex response in the spinal cord of the newborn rat. Acta Physiol Scand 116:109–112

    CAS  PubMed  Google Scholar 

  • Yanagisawa MT, Murakoshi T, Tamai S, Otsuka M (1985) Tailpinch method in vitro and the effect of some antinociceptive compounds. Eur J Pharmacol 106:231–239

    Google Scholar 

  • Zeman S, Lodge D (1992) Pharmacological characterization of non-NMDA subtypes of glutamate receptor in the neonatal rat hemisected spinal cord in vitro. Br J Pharmacol 106:367–372

    Google Scholar 

Cell Culture of Neurons

  • Araujo DM, Cotman CW (1993) Trophic effects of interleukin-4, -7, and -8 on hippocampal neuronal cultures: potential involvement of glial-derived factors. Brain Res 600:49–55

    CAS  PubMed  Google Scholar 

  • Banker GA, Cowan WM (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res 126:397–425

    Google Scholar 

  • Brewer GJ (1997) Isolation and culture of adult hippocampal neurons. J Neurosci Methods 71:143–155

    CAS  PubMed  Google Scholar 

  • Brewer GJ (1999) Regeneration and proliferation of embryonic and adult rat hippocampal neurons in culture. Exp Neurol 159:237–247

    CAS  PubMed  Google Scholar 

  • Brewer GJ, Deshmane S, Ponnusamy E (1998) Precocious axons and improved survival of rat hippocampal neurons on lysine-alanine polymer substrate. J Neurosci Methods 85:13–20

    CAS  PubMed  Google Scholar 

  • Canals S, Casarejos MJ, Rodríguez-Martin E, de Bernardo S, Mena MA (2001) Neurotrophic and neurotoxic effects of nitric oxide on fetal midbrain cultures. J Neurochem 76:56–68

    CAS  PubMed  Google Scholar 

  • Chaudieu I, Privat A (1999) Neuroprotection of cultured foetal rat hippocampal cells against glucose deprivation: are GABAergic neurons less vulnerable or more sensitive to TCP protection? Eur J Neurosci 11:2413–2421

    CAS  PubMed  Google Scholar 

  • Ehret A, Haaf A, Jeltsch H, Heinrich B, Feuerstein TJ, Jakisch R (2001) Modulation of electrically evoked acetylcholine release in cultured septal neurones. J Neurochem 76:555–564

    CAS  PubMed  Google Scholar 

  • Flavin MP, Ho LT (1999) Propentofylline protects neurons in culture from death triggered by macrophage or microglia secretory products. J Neurosci Res 56:54–59

    CAS  PubMed  Google Scholar 

  • Hampson RE, Mu J, Deadwyler SA (2000) Cannabinoid and kappa opioid receptors reduced potassium K current via activation of Gs proteins in cultured hippocampal neurons. J Neurophysiol 84:2356–2364

    CAS  PubMed  Google Scholar 

  • Jirikowski G, Reisert I, Pilgrim Ch (1981) Neuropeptides in dissociated cultures of hypothalamus and septum: quantitation of immunoreactive neurons. Neuroscience 6:1953–1960

    Google Scholar 

  • Li YX, Zhang Y, Lester HA, Schuman EM, Davidson N (1998) Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons. J Neurosci 18:10231–10240

    CAS  PubMed  Google Scholar 

  • López E, Arce C, Vicente S, Oset-Gasque MJ, González MP (2001) Nicotinic receptors mediate the release of amino acid neurotransmitters in cultured cortical neurons. Cereb Cortex 11:158–163

    PubMed  Google Scholar 

  • May PC, Robison PM, Fuson KS (1999) Stereoselective neuroprotection by a novel 2,3-benzodiazepine non-competitive AMPA antagonist against non-NMDA receptor mediated excitotoxicity in primary rat hippocampal culture. Neurosci Lett 262:219–221

    CAS  PubMed  Google Scholar 

  • Mitoma J, Ito M, Furuya S, Hirabayashi Y (1998) Bipotential roles of ceramide in the growth of hippocampal neurones: promotion of cell survival and dendritic outgrowth in dose and developmental stage-dependent manners. J Neurosci Res 51:712–722

    CAS  PubMed  Google Scholar 

  • Noh K-M, Koh J-Y (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 20:RC111, 1–5

    CAS  PubMed  Google Scholar 

  • Novitskaya V, Grigorian M, Kriajevska M, Tarabykina S, Bronstein I, Berezin V, Bock E, Lukanidin E (2000) Oligomeric forms of the metastasis-related Mts1 (S100A4) protein stimulate neuronal differentiation in cultures of rat hippocampal neurons. J Biol Chem 275:41278–41286

    CAS  PubMed  Google Scholar 

  • Pickard L, Noël J, Henley JM, Collingridge GL, Molnar E (2000) Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci 20:7922–7931

    CAS  PubMed  Google Scholar 

  • Saluja I, Granneman JG, Skoff RP (2001) PPAR δ agonists stimulate oligodendrocyte differentiation in tissue culture. Glia 33:191–204

    CAS  PubMed  Google Scholar 

  • Semkowa I, Wolz P, Krieglstein J (1998) Neuroprotective effect of 5-HT1A receptor agonist, Bay X 3702, demonstrated in vitro and in vivo. Eur J Pharmacol 359:251–260

    Google Scholar 

  • Semkowa I, Häberlein C, Krieglstein J (1999) Ciliary neurotrophic factor protects hippocampal neurons from excitotoxic damage. Neurochem Int 35:1–10

    Google Scholar 

  • Sinor JD, Du S, Venneti S, Blitzblau RC, Leszkiewicz DN, Rosenberg PA, Aizenman E (2000) NMDA and glutamate evoke excitotoxicity at distinct cellular locations in rat cortical neurones in vitro. J Neurosci 20:8831–8837

    CAS  PubMed  Google Scholar 

  • Skaper SD, Facci L, Milani L, Leon A, Toffano G (1990) Culture and use of primary and clonal neural cells. In: Conn PM (ed) Methods in neuroscience, vol 2. Academic, San Diego, pp 17–33

    Google Scholar 

  • Skaper SD, Leon A, Facci L (1993) Basic fibroblast growth factor modulates sensitivity of cultured hippocampal pyramidal neurones to glutamate cytotoxicity: interaction with ganglioside GM1. Brain Res Dev Brain Res 71:1–8

    CAS  PubMed  Google Scholar 

  • Skaper SD, Facci L, Kee WJ, Strijbös PJLM (2001) Potentiation by histamine of synaptically mediated excitotoxicity in cultured hippocampal neurones: a possible role for mast cells. J Neurochem 76:47–55

    CAS  PubMed  Google Scholar 

  • Tang DG, Tokumoto YM, Apperly JA, Lloyd AC, Raff MC (2001) Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science 291:868–871

    CAS  PubMed  Google Scholar 

  • Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97:14720–14725

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vergun O, Sobolevsky AI, Yelshansky MV, Keelan J, Khodorov BI, Duchen MR (2001) Exploration of the role of reactive oxygen species in glutamate neurotoxicity in rat hippocampal neurons in culture. J Physiol 531:147–163

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamagishi S, Yamada M, Ishikawa Y, Matsumoto T, Ikeuchi T, Hatanaka H (2001) p38 Mitogen-activated protein kinase regulates low potassium-induced c-Jun phosphorylation and apoptosis in cultured cerebellar granule neurons. J Biol Chem 276:5129–5133

    CAS  PubMed  Google Scholar 

Electroshock in Mice

  • Cashin CH, Jackson H (1962) An apparatus for testing anticonvulsant drugs by electroshock seizures in mice. J Pharm Pharmacol 14:445–475

    Google Scholar 

  • Kitano Y, Usui C, Takasuna K, Hirohashi M, Nomura M (1996) Increasing-current electroshock seizure test: a new method for assessment of anti- and pro-convulsant activities of drugs in mice. J Pharmacol Toxicol Methods 35:25–29

    CAS  PubMed  Google Scholar 

  • Löscher W, Stephens DN (1988) Chronic treatment with diazepam or the inverse benzodiazepine receptor agonist FG 7142 causes different changes in the effects of GABA receptor stimulation. Epilepsy Res 2:253–259

    PubMed  Google Scholar 

  • Rastogi SA, Ticku MK (1985) Involvement of a GABAergic mechanism in the anticonvulsant effect of phenobarbital against maximal electroshock-induced seizures in rats. Pharmacol Biochem Behav 222:141–146

    Google Scholar 

  • Sohn YJ, Levitt B, Raines A (1970) Anticonvulsive properties of diphenylthiohydantoin. Arch Int Pharmacodyn 188:284–289

    CAS  PubMed  Google Scholar 

  • Swinyard EA (1972) Electrically induced convulsions. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven, New York, pp 433–458

    Google Scholar 

  • Swinyard EA, Brown WC, Goodman LS (1952) Comparative assays of antiepileptic drugs in mice and rats. J Pharmacol Exp Ther 106:319–330

    CAS  PubMed  Google Scholar 

  • Toman JEP (1964) Animal techniques for evaluating anticonvulsants. In: Nodin JH, Siegler PE (eds) Animal and clinical techniques in drug evaluation, vol 1. Year Book Medical Publishers, Chicago, pp 348–352

    Google Scholar 

  • Toman JEP, Everett GM (1964) Anticonvulsants. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London, New York, pp 287–300

    Google Scholar 

  • Turner RA (1965) Anticonvulsants. Academic, New York/London, pp 164–172

    Google Scholar 

  • Woodbury LA, Davenport VO (1952) Design and use of a new electroshock seizure apparatus and analysis of factors altering seizure threshold and pattern. Arch Int Pharmacodyn 92:97–107

    CAS  PubMed  Google Scholar 

Isoniazid-Induced Convulsions in Mice

  • Hahn F, Oberdorf A (1960) Vergleichende Untersuchungen über die Krampfwirkung von Begrimid, Pentetrazol und Pikrotoxin. Arch Int Pharmacodyn 135:9–30

    Google Scholar 

  • Leander JD, Lawson RR, Ornstein PL, Zimmerman DM (1988) N-methyl-d-aspartic acid induced lethality in mice: selective antagonism by phencyclidine-like drugs. Brain Res 448:115–120

    CAS  PubMed  Google Scholar 

  • Pollack GM, Shen DD (1985) A timed intravenous pentylenetetrazol infusion seizure model for quantitating the anticonvulsant effect of valproic acid in the rat. J Pharmacol Methods 13:135–146

    CAS  PubMed  Google Scholar 

  • Shouse MN, Siegel JM, Wu MF, Szymusiak R, Morrison AR (1989) Mechanism of seizure suppression during rapid-eye-movement (REM) sleep in cats. Brain Res 505:271–282

    CAS  PubMed  Google Scholar 

  • Snead OC III (1988) γ-Hydroxybutyrate model of generalized absence seizures: further characterization and comparison with other absence models. Epilepsia 29:361–368

    CAS  PubMed  Google Scholar 

  • Stone WE (1972) Systemic chemical convulsants and metabolic derangements. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven, New York, pp 407–432

    Google Scholar 

  • Testa R, Graziani L, Graziani G (1983) Do different anticonvulsant tests provide the same information concerning the profiles of antiepileptic activity? Pharmacol Res Commun 15:765–774

    CAS  PubMed  Google Scholar 

  • Toussi HR, Schatz RAS, Waszczak BL (1987) Suppression of methionine sulfoximine seizures by intranigral γ -vinyl GABA injection. Eur J Pharmacol 137:261–264

    CAS  PubMed  Google Scholar 

  • Tursky WA, Cavalheiro EA, Coimbra C, da Penha Berzaghi M, Ikonomidou-Turski C, Turski L (1987) Only certain antiepileptic drugs prevent seizures induced by pilocarpine. Brain Res Rev 12:281–305

    Google Scholar 

Bicuculline Test in Rats

  • Buckett WR (1981) Intravenous bicuculline test in mice: characterisation with GABAergic drugs. J Pharmacol Methods 5:35–41

    CAS  PubMed  Google Scholar 

  • Clineschmidt BV, Martin GE, Bunting PR (1982) Anticonvulsant activity of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a, d]cyclohepten-5,10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Dev Res 2:123–134

    CAS  Google Scholar 

  • Czuczwar SJ, Frey HH, Löscher W (1985) Antagonism of N-methyl-d, l-aspartic acid-induced convulsions by antiepileptic drugs and other agents. Eur J Pharmacol 108:273–280

    CAS  PubMed  Google Scholar 

  • Lloyd KG, Morselli PL (1987) Psychopharmacology of GABAergic drugs. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York pp 183–195

    Google Scholar 

  • Mecarelli O, de Feo MR, Rina MF, Ricci GF (1988) Effects of progabide on bicuculline-induced epileptic seizures in developing rats. Clin Neuropharmacol 11:443–453

    CAS  PubMed  Google Scholar 

4-Aminopyridine-Induced Seizures in Mice

  • Morales-Villagran A, Urena-Guerrero ME, Tapia R (1996) Protection by NMDA receptor antagonists against seizures induced by intracerebral administration of 4-aminopyridine. Eur J Pharmacol 305:87–93

    CAS  PubMed  Google Scholar 

  • Rogawski MA, Porter RJ (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 42:223–286

    Google Scholar 

  • Rutecki PA, Lebeda FJ, Johnston D (1987) 4-aminopyridine produces epileptiform activity in hippocampus and enhances synaptic excitation and inhibition. J Neurophysiol 57:1911–1924

    CAS  PubMed  Google Scholar 

  • Schaefer EW Jr, Brunton RB, Cunningham DJ (1973) A summary of the acute toxicity of 4-aminopyridine to birds and mammals. Toxicol Appl Pharmacol 26:532–538

    Google Scholar 

  • Yamaguchi SI, Rogawski MA (1992) Effects of anticonvulsant drugs on 4-aminopyridine-induced seizures in mice. Epilepsy Res 11:9–16

    CAS  PubMed  Google Scholar 

3-Nitropropionic Acid-Induced Seizures in Mice

  • Alston TA, Mela L, Bright HL (1977) 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc Natl Acad Sci U S A 74:3767–3771

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M (1991) 3-Nitropropionic acid – exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 18:492–498

    CAS  PubMed  Google Scholar 

  • Urbańska EM, Blaszczak P, Saran T, Kleinrok Z, Turski WA (1998) Mitochondrial toxin 3-nitropropionic acid evokes seizures in mice. Eur J Pharmacol 359:55–58

    PubMed  Google Scholar 

  • Urbańska EM, Blaszczak P, Saran T, Kleinrok Z, Turski WA (1999) AMPA/kainate-related mechanisms contribute to convulsant and proconvulsant effects of 3-nitropropionic acid. Eur J Pharmacol 370:251–256

    PubMed  Google Scholar 

  • Zuchora B, Wielosz M, Urbańska EM (2005) Adenosine A1 receptors and the anticonvulsant potential of drugs effective in the model of 3-nitropropionic acid-induced seizures in mice. Eur Neuropsychopharmacol 15:85–93

    CAS  PubMed  Google Scholar 

Epilepsy Induced by Focal Lesions

  • Albe-Fessard D, Stutinsky F, Libouban S (1971) Atlas Stéréotaxique du Diencéphale du Rat Blanc. C.N.R.S., Paris

    Google Scholar 

  • Anderer P, Barbanoj MJ, Saletu B, Semlitsch HV (1993) Restriction to a limited set of EEG-target variables may lead to misinterpretation of pharmaco-EEG results. Neuropsychobiology 27:112–116

    CAS  PubMed  Google Scholar 

  • Atsev E, Yosiphov T (1969) Changes in evoked perifocal electrical activity with an acute epileptogenic focus in cat’s cortex. Electroencephalogr Clin Neurophysiol 27:444

    Google Scholar 

  • Bernhard CG, Bohm E (1955) The action of local anaesthetics on experimental epilepsy in cats and monkeys. Br J Pharmacol 10:288–295

    CAS  Google Scholar 

  • Bernhard CG, Bohm E, Wiesel T (1956) On the evaluation of the anticonvulsive effect of local anaesthetics. Arch Int Pharmacodyn 108:392–407

    CAS  PubMed  Google Scholar 

  • Black RG, Abraham J, Ward AA Jr (1967) The preparation of tungstic acid gel and its use in the production of experimental epilepsy. Epilepsia 8:58–63

    CAS  PubMed  Google Scholar 

  • Blum B, Liban E (1960) Experimental basotemporal epilepsy in the cat. Discrete epileptogenic lesions produced in the hippocampus or amygdaloid by tungstic acid. Neurology 10:546–554

    CAS  PubMed  Google Scholar 

  • Campell AM, Holmes O (1984) Bicuculline epileptogenesis in the rat. Brain Res 323:239–246

    Google Scholar 

  • Cavalheiro EA, Riche DA, Gal L, la Salle G (1982) Long-term effects of intrahippocampal kainic acid injections in rats: a method for inducing spontaneous recurrent seizures. Electroencephalogr Clin Neurophysiol 53:581–589

    CAS  PubMed  Google Scholar 

  • Daniels JC, Spehlman R (1973) The convulsant effect of topically applied atropine. Electroencephalogr Clin Neurophysiol 34:83–87

    CAS  PubMed  Google Scholar 

  • Dow RS, Fernández-Guardiola A, Manni E (1962) The production of cobalt experimental epilepsy in the rat. Electroencephalogr Clin Neurophysiol 14:399–407

    CAS  PubMed  Google Scholar 

  • Ferguson JH, Jasper HH (1971) Laminar DC studies of acetylcholine-activated epileptiform discharge in cerebral cortex. Electroencephalogr Clin Neurophysiol 30:377–390

    CAS  PubMed  Google Scholar 

  • Feria-Velasco A, Olivares N, Rivas F, Velasco M, Velasco F (1980) Alumina cream-induced focal motor epilepsy in cats. Arch Neurol 37:287–290

    CAS  PubMed  Google Scholar 

  • Fischer J, Holubar J, Malik V (1967) A new method of producing chronic epileptogenic cortical foci in the rat. Physiol Bohemoslov 16:272–277

    CAS  PubMed  Google Scholar 

  • Hanna GR, Stalmaster RM (1973) Cortical epileptic lesions produced by freezing. Neurology 23:918–925

    CAS  PubMed  Google Scholar 

  • Hawkins CA, Mellanby JH (1987) Limbic epilepsy induced by tetanus toxin: a longitudinal electroencephalographic study. Epilepsia 28:431–444

    CAS  PubMed  Google Scholar 

  • Karpiak SE, Graf L, Rapport MM (1976) Antiserum to brain gangliosides produces recurrent epileptiform activity. Science 194:735–737

    CAS  PubMed  Google Scholar 

  • Karpiak SE, Mahadik SP, Graf L, Rapport MM (1981) An immunological model of epilepsy: seizures induced by antibodies to GM1 ganglioside. Epilepsia 22:189–196

    CAS  PubMed  Google Scholar 

  • Kopeloff LM, Barrera SE, Kopeloff N (1942) Recurrent convulsive seizures in animals produced by immunologic and chemical means. Am J Psychiatry 98:881–902

    CAS  Google Scholar 

  • Kopeloff L, Chusid JG, Kopeloff N (1955) Epilepsy in Maccaca mulatta after cortical or intracerebral alumina. Arch Neurol Psychiatry 74:523–526

    CAS  Google Scholar 

  • Krupp E, Löscher W (1998) Anticonvulsant drug effects in the direct cortical ramp-stimulation model in rats: comparison with convulsive seizure models. J Pharmacol Exp Ther 285:1137–1149

    CAS  PubMed  Google Scholar 

  • Lange SC, Neafsey EJ, Wyler AR (1980) Neuronal activity in chronic ferric chloride epileptic foci in cats and monkey. Epilepsia 21:251–254

    CAS  PubMed  Google Scholar 

  • Loiseau H, Avaret N, Arrigoni E, Cohadon F (1987) The early phase of cryogenic lesions: an experimental model of seizures updated. Epilepsia 28:251–258

    CAS  PubMed  Google Scholar 

  • Marsan CA (1972) Focal electrical stimulation. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven, New York, pp 147–172

    Google Scholar 

  • Matsumoto H, Marsan CA (1964) Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exp Neurol 9:286–304

    CAS  PubMed  Google Scholar 

  • Mellanby J, Hawkins C, Mellanby H, Rawlins JNP, Impey ME (1984) Tetanus toxin as a tool for studying epilepsy. J Physiol Paris 79:207–215

    CAS  PubMed  Google Scholar 

  • Pei Y, Zhao D, Huang J, Cao L (1983) Zinc-induced seizures: a new experimental model of epilepsy. Epilepsia 24:169–176

    CAS  PubMed  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation: I. After-discharge threshold. Electroencephalogr Clin Neurophysiol 32:269–279

    Google Scholar 

  • Reid SA, Sypert GW, Boggs WM, Wilmore LJ (1979) Histopathology of the ferric-induced chronic epileptic focus in cat: a Golgi study. Exp Neurol 66:205–219

    CAS  PubMed  Google Scholar 

  • Remler MP, Marcussen WH (1986) Systemic focal epileptogenesis. Epilepsia 27:35–42

    CAS  PubMed  Google Scholar 

  • Remler MP, Sigvardt K, Marcussen WH (1986) Pharmacological response of systemically derived focal epileptic lesions. Epilepsia 27:671–6777

    CAS  PubMed  Google Scholar 

  • Stalmaster RM, Hanna GR (1972) Epileptic phenomena of cortical freezing in the cat: persistent multifocal effects of discrete superficial lesions. Epilepsia 13:313–324

    CAS  PubMed  Google Scholar 

  • Turski WA, Czuczwar SJ, Kleinrok Z, Turski L (1983) Cholinomimetics produce seizures and brain damage in rats. Experientia 39:1408–1411

    CAS  PubMed  Google Scholar 

  • Walton NY, Treiman DM (1989) Phenobarbital treatment of status epilepticus in a rodent model. Epilepsy Res 4:216–222

    CAS  PubMed  Google Scholar 

  • Walton NY, Gunnawan S, Treiman DM (1994) Treatment of experimental status epilepticus with the GABA uptake inhibitor, tiagabine. Epilepsy Res 19:237–244

    Google Scholar 

  • Ward AA Jr (1972) Topical convulsant metals. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven, New York, pp 13–35

    Google Scholar 

Kindled Rat Seizure Model

  • Babington RG (1975) Antidepressives and the kindling effect. In: Fielding S, Lal H (eds) Antidepressants, vol 2, Industrial pharmacology. Futura Publishing Company, New York, pp 113–124

    Google Scholar 

  • Croucher MJ, Cotterell KL, Bradford HF (1996) Characterization of N-methyl-d-aspartate (NMDA)-induced kindling. Biochem Soc Transact 24:295S

    CAS  Google Scholar 

  • Durmuller N, Craggs M, Meldrum BS (1994) The effect of the non-NMDA receptor antagonists GYKI 52446 and NBQX and the competitive NMDA receptor antagonist D-CPPene on the development of amygdala kindling and on amygdala-kindled seizures. Epilepsy Res 17:167–174

    CAS  PubMed  Google Scholar 

  • Ebert U, Löscher W (1999) Characterization of phenytoin-resistant kindled rats, a new model of drug-resistant epilepsy: influence of genetic factors. Epilepsy Res 33:217–226

    CAS  PubMed  Google Scholar 

  • Ebert U, Cramer S, Löscher W (1997) Phenytoin’s effect on the spread of seizures in the amygdala kindling model. Naunyn-Schmiedebergs Arch Pharmacol 356:341–347

    CAS  PubMed  Google Scholar 

  • Gal L, la Salle G (1981) Amygdaloid kindling in the rat: regional differences and general properties. In: Wada JA (ed) Kindling 2. Raven, New York, pp 31–47

    Google Scholar 

  • Gilbert ME (1994) The phenomenology of limbic kindling. Toxicol Ind Health 10:4–5

    Google Scholar 

  • Girgis M (1981) Kindling as a model for limbic epilepsy. Neuroscience 6:1695–1706

    CAS  PubMed  Google Scholar 

  • Goddard GV (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021

    CAS  PubMed  Google Scholar 

  • Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330

    CAS  PubMed  Google Scholar 

  • Goddard GV, Dragunow M, Maru E, Macleod EK (1986) Kindling and the forces that oppose it. In: Doane BK, Livingston KE (eds) The limbic system: functional organization and clinical disorders. Raven, New York, pp 95–108

    Google Scholar 

  • Heit MC, Schwark WS (1987) An efficient method for time course studies of antiepileptic drugs using the kindled rat seizure model. J Pharmacol Methods 18:319–325

    CAS  PubMed  Google Scholar 

  • Hoenack D, Loescher W (1989) Amygdala-kindling as a model for chronic efficacy studies on antiepileptic drugs: experiments with carbamazepine. Neuropharmacology 28:599–610

    CAS  Google Scholar 

  • Koella WP (1985) Animal experimental methods in the study of antiepileptic drugs, Chapter 12. In: Frey HH, Danz D (eds) Antiepileptic drugs. Springer, Heidelberg/New York/Tokyo, pp 283–339

    Google Scholar 

  • Löscher W (1998) Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy. Prog Neurobiol 54:721–741

    Google Scholar 

  • Löscher W, Nolting B, Hönack D (1988) Evaluation of CPP, a selective NMDA antagonist, in various rodent models of epilepsy. Comparison with other NMDA antagonists, and with diazepam and phenobarbital. Eur J Pharmacol 152:9–17

    PubMed  Google Scholar 

  • Löscher W, Rundfeldt C, Honack D (1993) Pharmacological characterization of phenytoin-resistant amygdala-kindled rats, a new model of drug-resistant partial epilepsy. Epilepsy Res 15:207–219

    PubMed  Google Scholar 

  • Lothman EW, Salerno RA, Perlin JB, Kaiser DL (1988) Screening and characterization of anti-epileptic drugs with rapidly recurring hippocampal seizures in rats. Epilepsy Res 2:367–379

    CAS  PubMed  Google Scholar 

  • Mason CR, Cooper RM (1972) A permanent change in convulsive threshold in normal and brain-damaged rats with repeated small doses of pentylenetetrazol. Epilepsia 13:663–674

    CAS  PubMed  Google Scholar 

  • McNamara JO (1984) Kindling: an animal model of complex partial epilepsy. Ann Neurol 16(Suppl):S72–S76

    PubMed  Google Scholar 

  • McNamara JO (1986) Kindling model of epilepsy, Chapter 14. In: Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Basic mechanisms of the epilepsies. Molecular and cellular approaches, vol 44, Advances in neurology. Raven, New York, pp 303–318

    Google Scholar 

  • Pellegrino LJ, Pellegrino AS, Cushman AJ (1979) A stereotactic atlas of the brain, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Pinel JPJ, Rovner LI (1978) Experimental epileptogenesis: kindling-induced epilepsy in rats. Exp Neurol 58:190–202

    CAS  PubMed  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin Neurophysiol 32:281–294

    Google Scholar 

  • Racine R (1978) Kindling: the first decade. Neurosurgery 3:234–252

    CAS  PubMed  Google Scholar 

  • Schmidt J (1990) Comparative studies on the anticonvulsant effectiveness of nootropic drugs in kindled rats. Biomed Biochim Acta 49:413–419

    CAS  PubMed  Google Scholar 

  • Suzuki K, Mori N, Kittaka H, Iwata Y, Osonoe K, Niwa SI (1996) Anticonvulsant action of metabotropic glutamate receptor agonists in kindled amygdala of rats. Neurosci Lett 204:41–44

    CAS  PubMed  Google Scholar 

  • Wada JA (1977) Pharmacological prophylaxis in the kindling model of epilepsy. Arch Neurol 34:387–395

    Google Scholar 

  • Wada JKA, Osawa T (1976) Spontaneous recurrent seizure state induced by daily amygdaloid stimulation in Senegalese baboons (Papio papio). Neurology 22:273–286

    Google Scholar 

  • Wada JA, Mizoguichi T, Osawa T (1978) Secondarily generalized convulsive seizures induced by daily amygdaloid stimulation in rhesus monkeys. Neurology 28:1026–1036

    CAS  PubMed  Google Scholar 

  • Wahnschaffe U, Loescher W (1990) Effect of selective bilateral destruction of the substantia nigra on antiepileptic drug actions in kindled rats. Eur J Pharmacol 186:157–167

    CAS  PubMed  Google Scholar 

Posthypoxic Myoclonus in Rats

  • Fahn S (1986) Posthypoxic action myoclonus: literature review update. Adv Neurol 43:157–169

    CAS  PubMed  Google Scholar 

  • Jaw SP, Hussong MJ, Matsumoto RR, Truong DD (1994) Involvement of 5-HT2 receptors in posthypoxic stimulus-sensitive myoclonus in rats. Pharmacol Biochem Behav 49:129–131

    CAS  PubMed  Google Scholar 

  • Jaw SP, Dang T, Truong DD (1995) Chronic treatments with 5-HT1A agonists attenuate posthypoxic myoclonus in rats. Pharmacol Biochem Behav 52:577–580

    CAS  PubMed  Google Scholar 

  • Jaw SP, Nguyen B, Vuong QTV, Trinh TA, Nguyen M, Truong DD (1996) Effects of glutamate receptor antagonists in post-hypoxic myoclonus in rats. Brain Res Bull 40:163–166

    CAS  PubMed  Google Scholar 

  • Lance JW (1968) Myoclonic jerks and falls: aetiology, classification and treatment. Med J Aust 1:113–119

    CAS  PubMed  Google Scholar 

  • Lance W, Adams RD (1963) The syndrome of intention or action myoclonus as a sequel to hypoxic encephalopathy. Brain 86:111–136

    CAS  PubMed  Google Scholar 

  • Truong DD, Matsumoto RR, Schwartz PH, Hussong MJ, Wasterlain CG (1994) Novel cardiac arrest model of posthypoxic myoclonus. Mov Disord 9:201–206

    CAS  PubMed  Google Scholar 

Rat Kainate Model of Epilepsy

  • Bardgett ME, Jackson JL, Taylor GT, Csernansky JG (1995) Kainic acid decreases hippocampal neuronal number and increases dopamine receptor binding in the nucleus accumbens: an animal model of schizophrenia. Behav Brain Res 70:153–164

    CAS  PubMed  Google Scholar 

  • Bolanos AR, Sarkisian M, Yang Y, Hori A, Helmers SL, Mikati M, Tandon P, Stafstrom CE, Holmes GL (1998) Comparison of valproate and phenobarbital treatment after status epilepticus in rats. Neurology 51:41–48

    CAS  PubMed  Google Scholar 

  • Bouilleret V, Ridoux V, Depaulis A, Marescaux C, Nehling A, LaSalles GLG (1999) Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience 89:717–729

    CAS  PubMed  Google Scholar 

  • Cilio MR, Bolanos AR, Liu Z, Schmid R, Yang Y, Stafstrom CE, Mikati MA, Holmes GL (2001) Anticonvulsant action and long-term effects of gabapentin in the immature brain. Neuropharmacology 40:139–147

    CAS  PubMed  Google Scholar 

  • Csernansky JG, Csernansky CA, Kogelman L, Montgomery EM, Bardgett ME (1998) Progressive neurodegeneration after intracerebroventricular kainic acid administration in rats: implications for schizophrenia? Biol Psychiatry 44:1143–1150

    CAS  PubMed  Google Scholar 

  • Ebert U, Brandt C, Löscher W (2002) Delayed sclerosis, neuroprotection, and limbic epileptogenesis after status epilepticus in the rat. Epilepsia 43(Suppl 5):86–95

    PubMed  Google Scholar 

  • Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE (1998) Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res 31:73–84

    CAS  PubMed  Google Scholar 

  • Hu RQ, Koh S, Torgerson T, Cole AJ (1998) Neuronal stress and injury in C57/BL mice after systemic kainic acid administration. Brain Res 810:229–240

    Google Scholar 

  • Humphrey WM, Bardgett ME, Montgomery EM, Taylor GT, Csernanansky JG (2001) Methods for inducing neuronal loss in preweanling rats using intracerebroventricular infusion of kainic acid. Brain Res Protocol 7:1–10

    CAS  Google Scholar 

  • Longo BM, Mello LEAM (1998) Supragranular mossy fiber sprouting in rat is not necessary for spontaneous seizures in the intrahippocampal kainate model epilepsy in the rat. Epilepsy Res 32:172–182

    CAS  PubMed  Google Scholar 

  • Madsen U, Stensbol TB, Krogsgaard-Larsen P (2001) Inhibitors of AMPA and kainate receptors. Curr Med Chem 8:1291–1301

    CAS  PubMed  Google Scholar 

  • Maj R, Fariello RG, Ukmar G, Varasi M, Pevarello P, McArthur RA, Salvati P (1998) PNU-151774E protects against kainate-induced status epilepticus and hippocampal lesions in the rat. Eur J Pharmacol 359:27–32

    CAS  PubMed  Google Scholar 

  • Pitkânen A, Nissinen J, Jolkkonen E, Tuunanan J, Halonen T (1999) Effects of vigabatrin treatment on status epilepticus-induced neuronal damage and mossy fiber sprouting in the rat hippocampus. Epilepsy Res 33:67–85

    PubMed  Google Scholar 

  • Tamagami H, Morimoto K, Watanabe T, Ninomiya T, Hirao T, Tanaka A, Kakumoto M (2004) Quantitative evaluation of central-type benzodiazepine receptors with [125I]Iomazenil in experimental epileptogenesis. I. The rat kainate model of temporal lobe epilepsy. Epilepsy Res 61:105–112

    CAS  PubMed  Google Scholar 

Pilocarpine Model of Epilepsy

  • André V, Ferrandon A, Marescaux C, Nehlig A (2001) Vigabatrin protects against hippocampal damage but is not antiepileptogenic in the lithium-pilocarpine model of temporal lobe epilepsy. Epilepsy Res 47:99–117

    PubMed  Google Scholar 

  • Arida RM, Sanabria ERG, da Silva AC, Faria LC, Scorza FA, Cavalheiro EA (2004) Physical training reverts hippocampal electrophysiological changes in rats submitted to the pilocarpine model of epilepsy. Physiol Behav 83:165–171

    CAS  PubMed  Google Scholar 

  • Biagini G, Avoli M, Marcinkiewicz J, Marcinkiewicz M (2001) Brain-derived neurotrophic factor superinduction parallels anti-epileptic-neuroprotective treatment in the pilocarpine epilepsy model. J Neurochem 76:1814–1822

    CAS  PubMed  Google Scholar 

  • Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L (1991) Long-term effects of pilocarpine in rats: structural damages of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32:778–782

    CAS  PubMed  Google Scholar 

  • Honchar MP, Olney JW, Sherman WR (1983) Systemic agents induce seizures and brain damage in lithium-treated rats. Science 220:323–325

    CAS  PubMed  Google Scholar 

  • Hort J, Brozek G, Mares P, Langmeier M, Komarek V (1999) Cognitive functions after pilocarpine-induced status epilepticus: changes during silent period precede appearance of spontaneous recurrent seizures. Epilpesia 40:1177–1183

    CAS  Google Scholar 

  • Klitgaard H, Matagne A, Vanneste-Goemaere J, Margineanu G (2002) Pilocarpine-induced epileptogenesis in the rat: impact of initial duration of status epilepticus on electrophysiological and neuropathological alterations. Epilepsy Res 51:93–107

    CAS  PubMed  Google Scholar 

  • Leite JP, Cavalheiro EA (1995) Effect of conventional antiepileptic drugs in a model of spontaneous recurrent seizures in rats. Epilepsy Res 20:93–104

    CAS  PubMed  Google Scholar 

  • Leite JP, Garcia-Cairasco N, Cavalheiro EA (2002) New insights from the use of pilocarpine and kainate models. Epilepsy Res 50:93–103

    CAS  PubMed  Google Scholar 

  • Leroy C, Poisbeau P, Keller AF, Nehlig A (2004) Pharmacological plasticity of GABAA receptors at dentate gyrus synapses in a rat model of temporal lobe epilepsy. J Physiol (Lond) 557:473–487

    CAS  Google Scholar 

  • Löscher W (2002) Animal models for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 50:105–123

    Google Scholar 

  • Lyon A, Marone S, Wainman D, Weaver DF (2004) Implementing a bioassay to screen molecules for antiepileptogenic activity. Chronic pilocarpine versus subdural haematoma models. Seizure 13:82–86

    PubMed  Google Scholar 

  • Rigoulot MA, Koning E, Ferrandon A, Nehlig A (2004) Neuroprotective properties of topiramate in the lithium-pilocarpine model of epilepsy. J Pharmacol Exp Ther 308:787–795

    CAS  PubMed  Google Scholar 

  • Setkowicz Z, Ciarach M, Guzik R, Janeczko K (2004) Different effects of neuroprotectants FK-506 and cyclosporine A on susceptibility to pilocarpine-induced seizures in rats with brain injured at different developmental stages. Epilepsy Res 61:63–72

    CAS  PubMed  Google Scholar 

  • Tang FR, Chia SC, Chen PM, Gao H, Lee WL, Yeo TS, Burgunder JM, Probst A, Sim MK, Ling EA (2004) Metabotropic glutamate receptor 2/3 in the hippocampus of patients with mesial temporal lobe epilepsy, and of rats and mice after pilocarpine-induced status epilepticus. Epilepsy Res 59:167–180

    CAS  PubMed  Google Scholar 

  • Vergnes M, Marescaux C, Micheletti G, Reis J, Depaulis A, Rumbach L, Warter SM (1982) Spontaneous paroxysmal electroclinical patterns in rat: a model of generalized nonconvulsive epilepsy. Neurosci Lett 33:97–101

    Google Scholar 

  • Wallace MJ, Blair RE, Falenski KW, Martin BR, Delorenzo RJ (2003) The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther 307:129–137

    CAS  PubMed  Google Scholar 

Self-Sustained Status Epilepticus

  • Barton ME, Klein BD, Wolf HH, White HS (2001) Pharmacological characterization of the 6Hz psychomotor seizure model of partial epilepsy. Epilepsy Res 47:217–227

    CAS  PubMed  Google Scholar 

  • Brandt C, Glien M, Potschka H, Volk H, Löscher W (2003) Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats. Epilepsy Res 55:83–103

    PubMed  Google Scholar 

  • Brown WC, Schiffman DO, Swinyard EA, Goodman LS (1953) Comparative assay of antiepileptic drugs by “psychomotor” seizure test and minimal electroshock threshold test. J Pharmacol Exp Ther 107:273–283

    CAS  PubMed  Google Scholar 

  • De Vasconcelos AP, Mazarati AM, Wasterlain CG, Nehlig A (1999) Self-sustaining status epilepticus after a brief electrical stimulation of the perforant path. A 2-deoxyglucose study. Brain Res 838:110–118

    Google Scholar 

  • Halonen T, Nissinen J, Jansen JA, Pitkänen A (1996) Tiagabine prevents seizures, neuronal damage and memory impairment in experimental status epilepticus. Eur J Pharmacol 299:69–81

    CAS  PubMed  Google Scholar 

  • Halonen T, Nissinen J, Pitkänen A (1999) Neuroprotective effect of remacemide hydrochloride in a perforant pathway stimulation model of status epilepticus in the rat. Epilepsy Res 34:251–269

    CAS  PubMed  Google Scholar 

  • Halonen T, Nissinen J, Pitkänen A (2001) Effect of lamotrigine treatment on status epilepticus-induced neuronal damage and memory impairment of rats. Epilepsy Res 46:205–223

    CAS  PubMed  Google Scholar 

  • Laurén HB, Pitkänen A, Nissinen J, Soini SL, Korpi ER, Holopainen IE (2003) Selective changes in gamma-aminobutyric acid type A receptor subunits in the hippocampus in spontaneously seizing rats with chronic temporal lobe epilepsy. Neurosci Lett 349:58–62

    PubMed  Google Scholar 

  • Mazarati A, Liu H, Wasterlain C (1999) Opioid peptide pharmacology and immunocytochemistry in an animal model of self-sustaining status epilepticus. Neuroscience 89:167–173

    CAS  PubMed  Google Scholar 

  • Mazarati AM, Baldwin R, Klitgaard H, Matagne A, Wasterlain CG (2004) Anticonvulsant effects of levetiracetam and levetiracetam-diazepam combination in experimental status epilepticus. Epilepsy Res 58:167–174

    Google Scholar 

  • Nissinen J, Halonen T, Koivisto E, Pitkänen A (2000) A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res 38:177–205

    CAS  PubMed  Google Scholar 

  • Pitkänen A, Tuumanen J, Halonen T (1996) Vigabatrin and carbamazepine have different efficacies in the prevention of status epilepticus induced neuronal damage in the hippocampus and amygdala. Epilepsy Res 24:29–45

    PubMed  Google Scholar 

  • Walton NY, Jaing Q, Hyun B, Treiman DM (1996) Lamotrigine vs. phenytoin for treatment of status epilepticus: comparison in an experimental model. Epilepsy Res 24:19–28

    CAS  PubMed  Google Scholar 

Rat Model of Cortical Dysplasia

  • Aicardi J (1994) The place of neuronal migration abnormalities in child neurology. Can J Neurol Sci 21:185–193

    CAS  PubMed  Google Scholar 

  • Amano S, Ihara N, Umeura S (1996) Development of novel rat mutant with spontaneous limbic-like seizures. Am J Pathol 149:329–336

    Google Scholar 

  • Baraban SC, Schwartzkroin PA (1995) Electrophysiology of CA1 pyramidal neurons in an animal model of neuronal migration disorders: prenatal methylazoxymethanol treatment. Epilepsy Res 22:145–156

    CAS  PubMed  Google Scholar 

  • Baraban SC, Schwartzkroin PA (1996) Flurothyl seizure susceptibility in rats following prenatal methylazoxymethanol treatment. Epilepsy Res 23:189–194

    CAS  PubMed  Google Scholar 

  • Baraban SC, Wenzel HJ, Hochman DW, Schwartzkroin PA (2000) Characterization of heterotopic cell clusters in the hippocampus of rats exposed to methylazoxymethanol in utero. Epilepsy Res 39:87–102

    CAS  PubMed  Google Scholar 

  • Becker LE (1991) Synaptic dysgenesis. Can J Neurol Sci 18:170–180

    CAS  PubMed  Google Scholar 

  • Benardete EA, Kriegstein AR (2002) Increased excitability and decreased sensitivity to GABA in an animal model of dysplastic cortex. Epilepsia 43:970–982

    CAS  PubMed  Google Scholar 

  • Chevassus au Louis N, Baraban SC, Gaiarsa JL, Ben-Ari Y (1999) Cortical malformations and epilepsy: new insight from animal models. Epilepsia 40:811–821

    CAS  PubMed  Google Scholar 

  • Germano IM, Sperber EF (1997) Increased seizure susceptibility in adult rats with neuronal migration disorders. Brain Res 777:219–222

    CAS  PubMed  Google Scholar 

  • Hirotsune S, Fleck MW, Gambello MJ, Bix GJ, Chen A, Clark GD, Ledbetter DH, McBain CJ, Wynshaw-Boris A (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 19:333–339

    CAS  PubMed  Google Scholar 

  • Jacobs KM (1996) Hyperexcitability in a model of cortical maldevelopment. Cereb Cortex 6:514–523

    CAS  PubMed  Google Scholar 

  • Jacobs KM, Prince DA (2005) Excitatory and inhibitory polysynaptic currents in a rat model of epileptogenic microgyria. J Neurophysiol 93:687–696

    CAS  PubMed  Google Scholar 

  • Jacobs KM, Hwang BJ, Pronce DA (1999) Focal epileptogenesis in a rat model of polymicrogyria. J Neurophysiol 81:159–173

    CAS  PubMed  Google Scholar 

  • Lee KS, Schottler F, Collins JL, Lanzino G, Couture D, Rao A, Hiramatsu KI, Goto Y, Hong SC, Caner H, Yamamoto H, Chen ZF, Bertram E, Berr S, Omary R, Scrable H, Jackson T, Goble J, Eisenman L (1997) A genetic animal model of human neocortical heterotypia associated with seizures. J Neurosci 17:6236–6242

    CAS  PubMed  Google Scholar 

  • Leré C, el Bahh B, La Salle GLG, Rougier A (2002) A model of “epileptic tolerance” for investigating neuroprotection, epileptic susceptibility and gene expression-related plastic changes. Brain Res Protocol 9:49–56

    Google Scholar 

  • Morimoto K, Watanabe T, Ninomiya T, Hirao T, Tanaka A, Onishi T, Tamagami H (2004) Quantitative evaluation of central-type benzodiazepine receptors with [I125]Iomazenil in an experimental epileptogenesis: II. The rat cortical dysplasia model. Epilepsy Res 61:113–118

    CAS  PubMed  Google Scholar 

  • Smyth MD, Barbaro NM, Baraban SC (2002) Effects of antiepileptic drugs on induced epileptiform activity in a rat model of dysplasia. Epilepsy Res 50:251–264

    Google Scholar 

  • Wenzel HJ, Robbins CA, Tsai LH, Schwartzkroin PA (2001) Abnormal morphological and functional organization of the hippocampus in a p35 mutant model of cortical dysplasia associated with spontaneous seizures. J Neurosci 21:983–998

    CAS  PubMed  Google Scholar 

  • Zhu WJ, Roper SN (2000) Reduced inhibition in an animal model of cortical dysplasia. J Neurosci 20:8925–8931

    CAS  PubMed  Google Scholar 

Genetic Animal Models of Epilepsy

  • Amano S, Ihara N, Uemura S, Yokoyama M, Ikeda M, Serikawa T, Sasahara M, Kataoka H, Hayase Y, Hazama F (1996) Development of a novel rat mutant with spontaneous limbic-like seizures. Am J Pathol 149:329–336

    Google Scholar 

  • Bartoszewicz ZP, Noronha AB, Fujita N, Sato S, Bo L, Trapp BD, Quarles RK (1995) Abnormal expression and glycosylation of the large and small isoforms of myelinassociated glycoprotein in dysmyelinating quaking mutants. J Neurosci Res 41:27–38

    CAS  PubMed  Google Scholar 

  • Bartoszyk GD, Hamer M (1987) The genetic animal model of reflex epilepsy in the Mongolian gerbil: differential efficacy of new anticonvulsive drugs and prototype antiepileptics. Pharmacol Res Commun 19:429–440

    CAS  PubMed  Google Scholar 

  • Batini C, Teillet MA, Naquet R (2004) An avian model of genetic reflex epilepsy. Arch Ital Biol 142:297–312

    CAS  PubMed  Google Scholar 

  • Bouwman BM, van Rijn CM (2004) Effects of levetiracetam on spike and wave discharges in WAG/Rij rats. Seizure 13:591–594

    PubMed  Google Scholar 

  • Budziszewska B, Van Luijtelaar G, Coenen AML, Leźniewicz M, Lasoń W (1999) Effects of neurosteroids on spike-wave discharges in the genetic epileptic WAG/RiJ rat. Epilepsy Res 33:23–29

    CAS  PubMed  Google Scholar 

  • Chapman AG, Croucher MJ, Meldrum BS (1984) Evaluation of anticonvulsant drugs in DBA/2 mice with sound-induced seizures. Arzneim Forsch/Drug Res 34:1261–1264

    CAS  Google Scholar 

  • Chapman AG, Durmüller N, Harrison BL, Baron BM, Parvez N, Meldrum BS (1995) Anticonvulsant activity of a novel NMDA/glycine site antagonist, MDL 104,653, against kindled and sound-induced seizures. Eur J Pharmacol 274:83–88

    CAS  PubMed  Google Scholar 

  • Chermat R, Doaré L, Lachapelle F, Simon P (1981) Effects of drugs affecting the noradrenergic system on convulsions in the quaking mouse. Naunyn-Schmiedeberg’s Arch Pharmacol 318:94–99

    CAS  Google Scholar 

  • Coenen AML, Drinkenburg WHIM, Inoue M, Van Luijtelaar ELJM (1992) Genetic models of absence epilepsy, with emphasis on the WAG/RiJ strain of rats. Epilepsy Res 12:75–86

    CAS  PubMed  Google Scholar 

  • Collins RL (1972) Audiogenic seizures. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven, New York, pp 347–372

    Google Scholar 

  • Consroe P, Picchioni A, Chin L (1979) Audiogenic seizure susceptible rats. Fed Proc 38:2411–2416

    CAS  PubMed  Google Scholar 

  • Crawford RD (1969) A new mutant causing epileptic seizures in domestic fowl. Poult Sci 48:1799

    Google Scholar 

  • Crawford RD (1970) Epileptic seizures in domestic fowl. J Hered 61:185–188

    CAS  PubMed  Google Scholar 

  • Cunningham JG (1971) Canine seizure disorders. J Am Vet Med Assoc 158:589–598

    CAS  PubMed  Google Scholar 

  • Dailey JW, Jobe PC (1985) Anticonvulsant drugs and the genetically epilepsy-prone rat. Fed Proc 44:2640–2644

    CAS  PubMed  Google Scholar 

  • Dailey JW, Reigel CE, Mishra PK, Jobe PC (1989) Neurobiology of seizure predisposition in the genetically epilepsy-prone rat. Epilepsy Res 3:3–17

    CAS  PubMed  Google Scholar 

  • Dailey JW, Yan QS, Adams-Curtis LE, Ryu JR, Ko KH, Mishra PK, Jobe PC (1996) Neurochemical correlation of antiepileptic drugs in the genetically epilepsy-prone rat. Life Sci 58:259–266

    CAS  PubMed  Google Scholar 

  • Danober L, Depaulis A, Vergnes M, Marescaux C (1995) Mesopontine cholinergic control over generalized non-convulsive seizures in a genetic model of absence epilepsy in the rat. Neuroscience 69:1183–1193

    CAS  PubMed  Google Scholar 

  • Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C (1998) Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 55:27–57

    CAS  PubMed  Google Scholar 

  • Deransart C, Riban V, Lê BT, Marescaux C, Depaulis A (2000) Dopamine in the striatum modulates seizures in a genetic model of absence epilepsy in the rat. Neuroscience 100:335–344

    CAS  PubMed  Google Scholar 

  • Di Pasquale E, Keegan KD, Noebels JL (1997) Increase excitability and inward rectification in layer V cortical pyramidal neurons in the epileptic mouse stargazer. J Neurophysiol 77:621–631

    PubMed  Google Scholar 

  • Edmonds HL, Hegreberg GA, van Gelder NM, Sylvester DM, Clemmons RM, Chatburn CG (1979) Spontaneous convulsions in beagle dogs. Fed Proc 38:2424–2428

    PubMed  Google Scholar 

  • Faingold CL (1988) The genetically epilepsy-prone rat. Gen Pharmacol 19:331–338

    CAS  PubMed  Google Scholar 

  • Faingold CL, Naritoku DK (1992) The genetically epilepsy-prone rat: neuronal networks and actions of amino acid neurotransmitters. In: Faingold CL, Fromm GH (eds) Drugs for control of epilepsy: actions on neuronal networks involved in seizure disorders. CRC Press, Boca Raton, pp 277–308

    Google Scholar 

  • Faingold CL, Randall ME, Boersma Anderson CA (1994) Blockade of GABA uptake with tiagabine inhibits audiogenic seizures and reduces neuronal firing in the inferior colliculus of the genetically epilepsy-prone rat. Exp Neurol 126:225–232

    CAS  PubMed  Google Scholar 

  • Famula TR, Oberbauer AM, Brown KN (1997) Heritability of epileptic seizures in the Belgian tervueren. J Small Anim Pract 38:349–352

    CAS  PubMed  Google Scholar 

  • Fletcher CF, Lutz CM, O’Sullivan TM, Shaughnessy JD Jr, Hawkes R, Frankel WN, Copeland NG, Jenkins NA (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel deficits. Cell 87:607–617

    CAS  PubMed  Google Scholar 

  • Galvis-Alonzo OY, Cortes de Oliveira JA, Garcia-Cairasco N (2004) Limbic epileptogenicity, cell loss and axonal reorganization induced by audiogenic and amygdala kindling in Wistar audiogenic rats (WAR strain). Neuroscience 125:787–802

    Google Scholar 

  • Green RC, Seyfried TN (1991) Kindling susceptibility and genetic seizure predisposition in inbred mice. Epilepsia 32:22–26

    CAS  PubMed  Google Scholar 

  • Green MC, Sidman RL (1962) Tottering – a neuromuscular mutation in the mouse. J Hered 53:233–237

    CAS  PubMed  Google Scholar 

  • Heckroth JA, Abbott LC (1994) Purkinje cell loss from alternating sagittal zones in the cerebellum of leaner mutant mice. Brain Res 658:93–104

    CAS  PubMed  Google Scholar 

  • Herrup K, Wilczynsnki SL (1982) Cerebellar cell degeneration in the leaner mutant mouse. Neuroscience 7:2185–2196

    CAS  PubMed  Google Scholar 

  • Hogan EL (1977) Animals models of genetic disorders of myelin. In: Morell P (ed) Myelin. Plenum Press, New York, pp 489–520

    Google Scholar 

  • Hosford DA, Lin FH, Wang Y, Caddick SJ, Rees M, Parkinson NJ, Barclay J, Cox RD, Gardiner RM, Hosford DA, Denton P, Wang Y, Seldin MF, Chan B (1999) Studies of the lethargic (Ih/lh) mouse model of absence seizures: regulatory mechanisms and identification of the gene. Adv Neurol 79:239–252

    CAS  PubMed  Google Scholar 

  • Iida K, Sasa M, Serikawa T, Noda A, Ishihara K, Akimitsu T, Hanaya R, Arita K, Kurisu K (1998) Induction of convulsive seizures by acoustic priming in a new genetically defined model of epilepsy (Noda epileptic rat: NER). Epilepsy Res 30:115–126

    CAS  PubMed  Google Scholar 

  • Imaizumi K, Ito S, Kutukake G, Takizawa T, Fujiwara K, Tutikawa K (1959) Epilepsy like anomaly of mice. Exp Anim (Tokyo) 8:6–10

    Google Scholar 

  • Jobe PC, Mishira PK, Dailey JW (1992) Genetically epilepsy-prone rats: actions of antiepileptic drugs and monoaminergic neurotransmitters. In: Faingold CL, Fromm GH (eds) Drugs for control of epilepsy: actions on neuronal networks involved in seizure disorders. CRC Press, Boca Raton, pp 253–275

    Google Scholar 

  • Jobe PC, Mishra PK, Adams-Curtis LE, Deoskar VU, Ko KH, Browning RA, Dailey JW (1995) The genetically epilepsy-prone rat (GEPR). Ital J Neurol Sci 16:91–99

    CAS  PubMed  Google Scholar 

  • Johnson DD, Davis HL, Crawford RD (1979) Pharmacological and biochemical studies in epileptic fowl. Fed Proc 38:2417–2423

    CAS  PubMed  Google Scholar 

  • Killam EK, Killam KF Jr (1984) Evidence for neurotransmitter abnormalities related to seizure activity in the epileptic baboon. Fed Proc 43:2510–2515

    CAS  PubMed  Google Scholar 

  • Killam KF, Naquet R, Bert J (1966) Paroxysmal responses to intermittent light stimulation in a population of baboons (Papio papio). Epilepsia 7:215–219

    Google Scholar 

  • Killam KF, Killam EK, Naquet R (1967) An animal model of light sensitivity epilepsy. Electroencephalogr Clin Neurophysiol 22:497–513

    CAS  PubMed  Google Scholar 

  • King JT Jr, LaMotte CC (1989) El mouse as a model of focal epilepsy. Epilepsia 30:257–265

    CAS  PubMed  Google Scholar 

  • Ko KH, Dailey JW, Jobe PC (1982) Effect of increments of norepinephrine concentrations on seizure intensity in the genetically epilepsy-prone rat. J Pharmacol Exp Ther 222:662–669

    CAS  PubMed  Google Scholar 

  • Kuebler D, Tanouye MA (2000) Modification of seizure susceptibility in Drosophila. J Neurophysiol 83:998–1009

    CAS  PubMed  Google Scholar 

  • Kuebler D, Zhang H, Ren X, Tanouye MA (2001) Genetic suppression of seizure susceptibility in Drosophila. J Neurophysiol 86:1211–1225

    CAS  PubMed  Google Scholar 

  • Kurtz BS, Lehman J, Galick P, Amberg J, Mishra PK, Daikey JW, Weber R, Jobe PC (2001) Penetrance and expressivity of genes involved in the development of epilepsy in the genetically epilepsy-prone rat (GEPR). J Neurogenet 15:233–244

    CAS  PubMed  Google Scholar 

  • Laird HE 2nd (1989) The genetically epilepsy-prone rat. A valuable model for the study of epilepsies. Mol Chem Neuropathol 11:45–59

    PubMed  Google Scholar 

  • Lakaye B, Thomas E, Minet A, Grisar T (2002) The genetic absence epilepsy rat from Strasbourg (GAERS), a rat model of epilepsy: computer modeling and differential gene expression. Epilepsia 43(Suppl 5):123–129

    CAS  PubMed  Google Scholar 

  • Lee RJ, Lomax P (1984) The effect of spontaneous seizures on pentylenetetrazole and maximum electroshock induced seizures in the Mongolian gerbil. Eur J Pharmacol 106:91–98

    CAS  PubMed  Google Scholar 

  • Lee RJ, Hong JS, McGinty JF, Lomax P (1987) Increased enkephalin and dynorphin immunoreactivity in the hippocampus of seizure sensitive Mongolian gerbils. Brain Res 401:353–358

    CAS  PubMed  Google Scholar 

  • Letts VA, Mahaffey CL, Beyer B, Frankel WN (2005) A targeted mutation in Cacng4 exacerbates spike-wave seizures in stargazer (Cacng2) mice. Proc Natl Acad Sci U S A 102:2123–2128

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li W-X, Kuchler S, Zaepfel M, Badache A, Thomas D, Vincedon G, Baumann N, Zanetta JP (1993) Cerebellar soluble lectin and its glycoprotein ligands in the developing brain of control and dysmyelinating mutant mice. Neurochem Int 22:125–133

    CAS  PubMed  Google Scholar 

  • Löscher W (1984) Genetic animal models of epilepsy as a unique resource for the evaluation of anticonvulsant drugs. A review. Methods Find Exp Clin Pharmacol 6:531–547

    PubMed  Google Scholar 

  • Löscher W, Frey HH (1984) Evaluation of anticonvulsant drugs in gerbils with reflex epilepsy. Arzneim Forsch/Drug Res 34:1484–1488

    Google Scholar 

  • Löscher W, Meldrum BS (1984) Evaluation of anticonvulsant drugs in genetic animal models of epilepsy. Fed Proc 43:276–284

    PubMed  Google Scholar 

  • Löscher W, Fisher JE Jr, Schmidt D, Fredow G, Honack D, Iturrian WB (1989) The sz mutant hamster: a genetic model of epilepsy or of paroxysmal dystonia? Mov Disord 4:219–232

    PubMed  Google Scholar 

  • Loskota WJ, Lomax P, Rich ST (1974) The gerbil as a model for the study of epilepsies. Epilepsia 15:109–119

    CAS  PubMed  Google Scholar 

  • Magalhães LHM, Garcia-Cairasco N, Massensini AR, Doretto MC, Moraes MFD (2004) Evidence for augmented brainstem activated forebrain seizures in Wistar Audiogenic rats subjected to transauricular electroshock. Neurosci Lett 369:19–23

    PubMed  Google Scholar 

  • Majkowski J, Kaplan H (1983) Value of Mongolian gerbils in antiepileptic drug evaluation. Epilepsia 24:609–615

    CAS  PubMed  Google Scholar 

  • Mitrovic N, Le Saux R, Gioanni H, Gioanni Y, Besson MJ, Maurin Y (1992) Distribution of [3H]clonidine binding sites in the brain of the convulsive mutant quaking mouse: a radioautographic analysis. Brain Res 578:26–32

    CAS  PubMed  Google Scholar 

  • Moraes MFD, Chavali M, Mishra PK, Jobe PC, Garcia-Cairasco N (2005) A comprehensive electrographic and behavioral analysis of generalized tonic-clonic seizures of GEPR-9s. Brain Res 1033:1–12

    CAS  PubMed  Google Scholar 

  • Naquet R, Meldrum BS (1972) Photogenic seizures in baboon. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven, New York, pp 373–406

    Google Scholar 

  • Nehling A, Boehrer A (2003) Effects of remacemide in two models of genetically determined epilepsy, the GAERS and the audiogenic Wistar AS. Epilepsy Res 52:253–261

    Google Scholar 

  • Nikulina EM, Skrinskaya JA, Avgustinovich DF, Popova NK (1995) Dopaminergic brain system in the quaking mutant mouse. Pharmacol Biochem Behav 50:333–337

    CAS  PubMed  Google Scholar 

  • Noda A, Hashizume R, Maihara T, Tomizawa Y, Ito Y, Inoue M, Kobayashi K, Asano Y, Sasa M, Serikawa T (1998) NER rat strain: a new type of genetic model in epilepsy research. Epilepsia 39:99–107

    CAS  PubMed  Google Scholar 

  • Noebels JL (1979) Analysis of inherited epilepsy using single locus mutations in mice. Fed Proc 38:2405–2410

    CAS  PubMed  Google Scholar 

  • Noebels JL, Sidman RL (1979) Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering. Science 204:1334–1336

    CAS  PubMed  Google Scholar 

  • Noeberls JL, Qiao X, Bronson RT, Spencer C, Davisson MT (1990) Stargazer, a new neurological mutant in chromosome 15 in the mouse with prolonged cortical seizures. Epilepsy Res 7:129–135

    Google Scholar 

  • Oberbauer AM, Grossmann DI, Irion DN, Schaffer AL, Eggleston ML, Famula TR (2003) The genetics of epilepsy in the Belgian tervuren and sheepdog. J Hered 94:57–63

    CAS  PubMed  Google Scholar 

  • Oguro K, Ito M, Tsuda H, Mutoh K, Shiraishi H, Shirasaka Y, Mikawa H (1991) Association of NMDA receptor sites and seizures E1 mice. Epilepsy Res 9:225–230

    CAS  PubMed  Google Scholar 

  • Patel S, Chapman AG, Graham JL, Meldrum BS, Frey P (1990) Anticonvulsant activity of NMDA antagonists, D(−)4-(3-phosphonopropyl)piperazine-2-carboxylic acid (D-CPP) and D(−)(E)-4-(3-phosphonoprop-2-enyl)piperazine-2-carboxylic acid (D-CPPene) in a rodent and a primate model of reflex epilepsy. Epilepsy Res 7:3–10

    CAS  PubMed  Google Scholar 

  • Quesney LF (1984) Pathophysiology of generalized photosensitive epilepsy in the cat. Epilepsia 25:61–69

    CAS  PubMed  Google Scholar 

  • Racine RJ, Steingart M, McIntyre DC (1999) Development of kindling-prone and kindling resistant rats: selective breeding and electrophysiological studies. Epilepsy Res 35:183–195

    CAS  PubMed  Google Scholar 

  • Reigel CE, Dailey JW, Jobe PC (1986) The genetically epilepsy-prone rat: an overview of seizure-prone characteristics and responsiveness to anticonvulsant drugs. Life Sci 39:763–774

    CAS  PubMed  Google Scholar 

  • Sarkisian MR, Rattan S, D’Mello SR, LoTurco LL (1999) Characterization of seizures in the flathead rat: a new genetic model in early postnatal development. Epilepsia 40:394–400

    CAS  PubMed  Google Scholar 

  • Sarkisova KY, Midzianovskaia IS, Kulikov MA (2003) Depressive-like behavioral alterations and c-fos expression in the dopaminergic brain regions in WAG/Rij rats with genetic absence epilepsy. Behav Brain Res 144:211–226

    CAS  PubMed  Google Scholar 

  • Sasa M, Ohno Y, Ujihara H, Fujita Y, Yoshimura M, Takaori S, Serikawa T, Yamada J (1988) Effects of antiepileptic drugs on absence-like and tonic seizures in the spontaneously epileptic rat, a double mutant rat. Epilepsia 29:505–513

    CAS  PubMed  Google Scholar 

  • Scarlatelli-Lima AV, Magalhães LHM, Doretto MC, Moraes MFD (2003) Assessment of the seizure susceptibility of Wistar Audiogenic rat to electroshock, pentylenetetrazole and pilocarpine. Brain Res 960:184–189

    CAS  PubMed  Google Scholar 

  • Seki T, Matsubayashi H, Amano T, Kitada K, Serikawa T, Sakai N, Sasa M (2002) Adenoviral gene transfer of aspartoacyclase into the tremor rat, a genetic model of epilepsy, as a trial of gen therapy for inherited epileptic disorder. Neurosci Lett 328:249–252

    CAS  PubMed  Google Scholar 

  • Serikawa T, Yamada J (1986) Epileptic seizures in rats homozygous for two mutations, zitter and tremor. J Hered 77:441–444

    CAS  PubMed  Google Scholar 

  • Serikawa T, Ohno Y, Sasa M, Yamada J, Takori S (1987) A new model of petit mal epilepsy: spontaneous spike and wave discharges in tremor rats. Lab Anim 21:68–71

    CAS  PubMed  Google Scholar 

  • Serikawa T, Kogishi K, Yamada J, Ohno Y, Ujihara H, Fujita Y, Sasa M, Takaori S (1990) Long-term effects of continual intake of phenobarbital on the spontaneously epileptic rat. Epilepsia 31:9–14

    CAS  PubMed  Google Scholar 

  • Seyfried TN (1979) Audiogenic seizures in mice. Fed Proc 38:2399–2404

    CAS  PubMed  Google Scholar 

  • Seyfried TN, Glaser GH, Yu RK, Palayoor ST (1986) Inherited convulsive disorders in mice. Adv Neurol 44:115–133

    CAS  PubMed  Google Scholar 

  • Sidman M, Ray BA, Sidman RL, Klinger JM (1966) Hearing and vision in neurological mutant mice: a method for their evaluation. Exp Neurol 16:377–402

    CAS  PubMed  Google Scholar 

  • Smith SE, Dürmüller N, Meldrum BS (1991) The non-N-methyl-d-aspartate receptor antagonists, GYKI 52466 and NBQX are anticonvulsant in two animal models of reflex epilepsy. Eur J Pharmacol 201:179–183

    CAS  PubMed  Google Scholar 

  • Srenk P, Jaggy A, Gaillard C, Busato A, Horlin P (1994) Genetische Grundlagen der idiopathischen Epilepsie beim Golden Retriever. Tierärztl Prax 22:574–578

    CAS  PubMed  Google Scholar 

  • Stark LG, Killam KF, Killam EK (1970) The anticonvulsant effects of phenobarbital, diphenylhydantoin and two benzodiazepines in the baboon, Papio papio. J Pharmacol Exp Ther 173:125–132

    CAS  PubMed  Google Scholar 

  • Stenger A, Boudou JL, Briley M (1991) Anticonvulsant effect of some anxiolytic drugs on two models of sound-induced seizures in mice. In: Briley M, File SE (eds) New concepts in anxiety. McMillan Press, London, pp 326–331

    Google Scholar 

  • Suzuki J (2004) Investigations of epilepsy with a mutant animal (EL mouse) model. Epilepsia 45(Suppl 8):2–5

    PubMed  Google Scholar 

  • Tacke U, Björk E, Tuomisto J (1984) The effect of changes in sound pressure level and frequency on the seizure response of audiogenic seizure susceptible rats. J Pharmacol Methods 11:279–290

    CAS  PubMed  Google Scholar 

  • Tehrani MH, Baumgartner BJ, Liu SC, Barnes EM Jr (1997) Aberrant expression of GABAA receptor subunits in the tottering mouse: an animal model for absence seizures. Epilepsy Res 28:213–223

    CAS  PubMed  Google Scholar 

  • Thiessen DD, Lindzey G, Friend HC (1968) Spontaneous seizures in the Mongolian gerbil (Meriones unguiculatus). Psychol Sci 11:227–228

    Google Scholar 

  • Tsubota Y, Miyashita E, Miyajima M, Owada-Makabe K, Yukawa K, Maeda M (2003) The Wakayama epileptic rat (WER), a new mutant exhibiting tonic-clonic seizures and absence-like seizures. Exp Anim 52:53–62

    CAS  PubMed  Google Scholar 

  • Ujihara H, Renming X, Sasa M, Ishihara K, Fujita Y, Yoshimura M, Kishimoto T, Serikawa T, Yamada J, Takaori S (1991) Inhibition by thyrotropin-releasing hormone of epileptic seizures in spontaneously epileptic rats. Eur J Pharmacol 196:15–19

    CAS  PubMed  Google Scholar 

  • Van Luijtelaar ELJM, Coenen AML (1986) Two types of electrocortical paroxysms in an inbred strain of rats. Neurosci Lett 70:393–397

    PubMed  Google Scholar 

  • Van Luijtelaar ELJM, Budziszewska B, Tetich M, Lasoń W (2003) Finasteride inhibits the progesterone-induced spike-wave discharges in a genetic model of absence epilepsy. Pharmacol Biochem Behav 75:889–894

    PubMed  Google Scholar 

  • Vergnes M, Marescaux C, Micheletti G, Reis J, Depaulis A, Rumbach L, Warter SM (1982) Spontaneous paroxysmal electroclinical patterns in the rat: A model of generalized non-convulsive epilepsy. Neurosci Lett 33:97–101

    Google Scholar 

  • Wang H, Burdette LJ, Frankel WN, Masukawa LM (1997) Paroxysmal discharges in the EL mouse, a genetic model of epilepsy. Brain Res 760:266–271

    CAS  PubMed  Google Scholar 

  • Xie R, Fujita Y, Sasa M, Ishihara K, Ujihara H, Takaori S, Serikawa T, Jamada J (1990) Antiepileptic effect of CNK-602A, a TRH analogue, in the spontaneously epileptic rat (SER), a double mutant. Jpn J Pharmacol 52(Suppl 1):290P

    Google Scholar 

  • Zhang HG, Tan J, Reynolds E, Kuebler D, Faulhaber S, Tanouye M (2002) The Drosophila slamdance gene: a mutation in an aminopeptidase can cause seizures, paralysis and neuronal failure. Genetics 162:1283–1299

    PubMed Central  CAS  PubMed  Google Scholar 

Transgenic Animals as Models of Epilepsy

  • Allen KM, Walsh CA (1999) Genes that regulate neuronal migration in the cerebral cortex. Epilepsy Res 36:143–154

    CAS  PubMed  Google Scholar 

  • Butler LS, Silva AJ, Abeliovich A, Watanabe Y, Tonegawa S, McNamara JO (1995) Limbic epilepsy in transgenic mice carrying a Cα 2+/calmodulin-dependent kinase II α-subunit mutation. Proc Natl Acad Sci U S A 92:6852–6855

    PubMed Central  CAS  PubMed  Google Scholar 

  • Campbell KM, Veldman MB, McGrath MJ, Burton FH (2000) TS + OCD-like neuropotentiated mice are supersensitive to seizure induction. Neuroreport 11:2335–2338

    CAS  PubMed  Google Scholar 

  • Diano S, Matthews RT, Patrylo P, Yang L, Beal MF, Barnstable CJ, Horvath TL (2005) Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 144:5014–5021

    Google Scholar 

  • Ferri AL, Cavallaro M, Braida D, Di-Christofano A, Canta A, Vezzani A, Ottolenghi S, Pandolfi PP, Sala M, DeBiasi S, Nicolis SK (2004) Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131:3805–3819

    CAS  PubMed  Google Scholar 

  • Giorgi FS, Pizzanelli C, Biagioni F, Murri L, Fornai F (2004) The role of epinephrine ion epilepsy: from the bench to the bedside. Neurosci Behav Rev 28:507–524

    CAS  Google Scholar 

  • Kearney JA, Plummer NW, Smith MR, Kapur J, Cummins TR, Waxman SG, Goldin AR, Meisler MH (2001) A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience 102:307–317

    CAS  PubMed  Google Scholar 

  • Knuesel I, Riban V, Zuellig RA, Schaub MC, Grady RM, Sanes JR, Fritschy JM (2002) Increase vulnerability to kainate-induced seizures in utrophin-knockout mice. Eur J Neurosci 15:1474–1484

    PubMed  Google Scholar 

  • Kokaia M, Holmberg K, Nanobashvili A, Xu ZQD, Kokaia Z, Lendahl U, Hilke S, Theodorsson E, Kahl U, Bartfai T, Lindvall O, Hökfelt T (2001) Suppressed kindling epileptogenesis in mice with ectopic overexpression of galanin. Proc Natl Acad Sci U S A 98:14006–14011

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kunieda T, Zuscik MJ, Boongird A, Perez DM, Luders HO, Najim IM (2002) Systemic overexpression of the alpha 1Badrenergic receptor in mice: an animal model of epilepsy. Epilepsia 43:1324–1329

    CAS  PubMed  Google Scholar 

  • Lahteinen S, Pitkanen A, Saarelainen T, Nissinen J, Koponen E, Castren E (2002) Decreased BDNF signaling in transgenic mice reduces epileptogenesis. Eur J Neurosci 15:721–734

    PubMed  Google Scholar 

  • Lahteinen S, Pitkanen A, Koponen E, Saarelainen T, Castren E (2003) Exacerbated status epilepticus and acute cell loss, but no changes in epileptogenesis, in mice with increased brain-derived neurotrophic factor signaling. Neuroscience 122:1081–1092

    CAS  PubMed  Google Scholar 

  • Lahteinen S, Pitkanen A, Knuuttila J, Toronen P, Castren E (2004) Brain-derived neurotrophic factor signaling modifies hippocampal gene expression during epileptogenesis in transgenic mice. Eur J Neurosci 19:3245–3254

    PubMed  Google Scholar 

  • Liang LP, Ho YS, Patel M (2000) Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 101:563–570

    CAS  PubMed  Google Scholar 

  • Ludwig A, Budde T, Stieber J, Moosmang S, Langebartels A, Wotjak C, Munsch T, Zong X, Feil S, Feil R, Lancel M, Chien KR, Konnerth A, Pape HC, Biel M, Hofmann F (2003) Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J 22:216–224

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lüthi A, van der Putten H, Botteri FM, Mansuy IM, Meins M, Frey U, Sansig G, Portet C, Schmutz M, Schröder M, Nitsch C, Laurent JP, Monard D (1997) Endogenous serine protease inhibitor modulates epileptic activity and hippocampal long-term potentiation. J Neurosci 17:34688–34699

    Google Scholar 

  • Mazarati A, Lu X, Shinmei S, Badie-Mahdavi H, Bartfai T (2004) Patterns of seizures, hippocampal injury and neurogenesis in three models of status epilepticus in galanin receptor type 1 (GALR1) knockout mice. Neuroscience 128:431–441

    Google Scholar 

  • Meldrum BS, Akbar MT, Chapman AG (1999) Glutamate receptors and transporters in genetic and acquired models of epilepsy. Epilepsy Res 36:189–204

    CAS  PubMed  Google Scholar 

  • Musumeci SA, Bosco B, Calabrese G, Bakker C, De-Sarro GB, Elia M, Ferri R, Oostra BA (2000) Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia 41:19–23

    CAS  PubMed  Google Scholar 

  • Noebels JL (1999) Single-gene models of epilepsy. Adv Neurol 79:227–238

    CAS  PubMed  Google Scholar 

  • Peters HC, Hu H, Pongs O, Storm JF, Isbrandt D (2005) Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci 8:51–60

    CAS  PubMed  Google Scholar 

  • Potschka H, Krupp E, Ebert U, Gumbel C, Leichtlein C, Lorch B, Pickert A, Kramps S, Young K, Grune U, Keller A, Welschof M, Vogt G, Xiao B, Worley PF, Löscher W, Hiemisch H (2002) Kindling-induced overexpression of Homer 1A and its functional implications for epileptogenesis. Eur J Neurosci 16:2157–2165

    CAS  PubMed  Google Scholar 

  • Prasad AN, Prasad C, Stafstrom CE (1999) Recent advances in the genetics of epilepsy: insights from human and animal studies. Epilepsia 40:1329–1352

    CAS  PubMed  Google Scholar 

  • Schauwecker PE (2002) Complications associated with genetic background effects in models of experimental epilepsy. Prog Brain Res 135:139–148

    CAS  PubMed  Google Scholar 

  • Shannon H, Yang L (2004) Seizure susceptibility of neuropeptide-Y null mutant mice in amygdala kindling and chemical-induced seizure models. Epilepsy Res 61:49–62

    CAS  PubMed  Google Scholar 

  • Shimizu T, Ikegami T, Ogawara M, Suzuki Y, Takahashi M, Morio H, Shirasawa T (2002) Transgenic expression of the protein-l-isoaspartyl methyltransferase (PIMT) gene in the brain rescues mice from the fatal epilepsy of PIMT deficiency. J Neurosci Res 69:341–352

    CAS  PubMed  Google Scholar 

  • Toth M, Tecott L (1999) Transgenic approaches to epilepsy. Adv Neurol 79:291–296

    CAS  PubMed  Google Scholar 

  • Upton N, Stratton S (2003) Recent developments from genetic mouse models of epilepsy. Curr Opin Pharmacol 3:19–26

    CAS  PubMed  Google Scholar 

  • Viswanath V, Wu Z, Fonck C, Wei Q, Boonplueang R, Andersen JK (2000) Transgenic mice neuronally expressing baculoviral p35 are resistant to diverse types of induced apoptosis, including seizure-associated neurodegeneration. Proc Natl Acad Sci U S A 97:2270–2275

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weinshenker D, Szot P (2002) The role of catecholamines in seizure susceptibility: new results using genetically engineered mice. Pharmacol Ther 94:213–233

    CAS  PubMed  Google Scholar 

  • Yang Y, Frankel WN (2004) Genetic approaches to studying mouse model of human seizure disorders. Adv Exp Med Biol 548:1–11

    CAS  PubMed  Google Scholar 

  • Zeng Z, Kyaw H, Gakenheimer KR, Augustus M, Fan P, Zhang X, Su K, Carter KC, Li Y (1997) Cloning, mapping, and tissue distribution of a human homologue of the mouse jerky gene product. Biochem Biophys Res Commun 236:389–395

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Jeanne Kallman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Kallman, M.J. (2016). Anti-Epileptic Activity. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_28

Download citation

Publish with us

Policies and ethics