Skip to main content
  • 197 Accesses

Abstract

Several attempts were made to describe the mechanical properties of skin by mathematical models (Ridge and Wright 1965; Harkness 1971; Hirsch and Sonnerup 1968; Jamison et al. 1968; Viidik 1968, 1969, 1973, 1979; Frisén et al. 1969a, b; Veronda and Westman 1970; Danielson 1973; Soong and Huang 1973; Wilkes et al. 1973; Jenkins and Little 1974; Lanir and Fung 1974; Vogel 1976, 1986; Barbanel and Evans 1981; Barbanel et al. 1978; Lanir 1979; Barbanel and Payne 1980; Burlin 1980, 1981; Fung 1981; Sanjeevi 1982; Potts and Breuer 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References and Further Reading

General Considerations

  • Barbanel JC, Evans JH (1977) The time-dependent mechanical properties of skin. J Invest Dermatol 69:318–320

    Google Scholar 

  • Barbanel JC, Payne PA (1981) In vivo mechanical testing of dermal properties. Bioeng Skin 3:8–38

    Google Scholar 

  • Barbanel JC, Evans JH, Jordan MM (1978) Tissue mechanics. Eng Med 7:5–9

    Google Scholar 

  • Burlin TE (1980) Towards a standard for in vivo testing of the skin subject to uniaxial extension. Bioeng Skin 2:37–40

    Google Scholar 

  • Burlin TE (1981) Towards a standard for in vivo testing of the skin subject to biaxial extension. Bioeng Skin 3:47–49

    Google Scholar 

  • Danielson DA (1973) Human skin as an elastic membrane. J Biomech 6:539–546

    CAS  PubMed  Google Scholar 

  • Ferry JD (1970) Viscoelastic properties of polymers, 2nd edn. Wiley, New York/London/Sydney/Toronto

    Google Scholar 

  • Frisén M, Mägi M, Sonnerup M, Viidik A (1969a) Rheological analysis of soft collagenous tissue. Part I: theoretical considerations. J Biomech 2:13–20

    PubMed  Google Scholar 

  • Frisén M, Mägi M, Sonnerup M, Viidik A (1969b) Rheological analysis of soft collagenous tissue. Part II: experimental evaluation and verification. J Biomech 2:21–28

    PubMed  Google Scholar 

  • Flynn DM, Peura GD, Grigg P, Hoffman AH (1998) A finite element based method to determine the properties of planar soft tissue. J Biomech Eng 120:202–210

    CAS  PubMed  Google Scholar 

  • Fung YC (1981) Biomechanics. Mechanical properties of living tissue. Springer, New York

    Google Scholar 

  • Harkness RD (1971) Mechanical properties of skin in relation to its biological function and its chemical components. In: Elden HR (ed) Biophysical properties of the skin. Wiley-Interscience, New York, pp 393–436

    Google Scholar 

  • Hirsch C, Sonnerup L (1968) Macroscopic rheology in collagen material. J Biomech 1:13–18

    CAS  PubMed  Google Scholar 

  • Jamison CE, Marangoni RC, Glaser AA (1968) Viscoelastic properties of soft tissue by discrete model characterization. J Biomech 1:33–46

    CAS  PubMed  Google Scholar 

  • Jenkins RB, Little RW (1974) A constitutive equation for parallel-fibered elastic tissue. J Biomech 7:397–402

    CAS  PubMed  Google Scholar 

  • Lanir Y (1979) A structural theory for the homogeneous biaxial stress–strain relationships in flat collagenous tissue. J Biomech 12:423–436

    CAS  PubMed  Google Scholar 

  • Lanir Y, Fung YC (1974) Two-dimensional properties of rabbits skin. II. Experimental results. J Biomech 7:171–182

    CAS  PubMed  Google Scholar 

  • Larrabee WF Jr (1986) A finite element model of skin deformation. I. Biomechanics of skin and soft tissue: a review. Laryngoscope 96:399–405

    PubMed  Google Scholar 

  • Larrabee WF Jr, Galt JA (1986) A finite element model of skin deformation. III. The finite element model. Laryngoscope 96:413–419

    PubMed  Google Scholar 

  • Larrabee WF Jr, Sutton D (1986) A finite element model of skin deformation. II. An experimental model of skin deformation. Laryngoscope 96:406–412

    PubMed  Google Scholar 

  • Potts RO, Breuer MM (1983) The low-strain, viscoelastic properties of skin. Bioeng Skin 4:105–114

    Google Scholar 

  • Ridge MD, Wright V (1965) The rheology of skin. A bioengineering study of the mechanical properties of human skin in relation to its structure. Br J Dermatol 77:639–649

    CAS  PubMed  Google Scholar 

  • Riedl H, Nemetscheck TH (1977) Molekularstruktur und mechanisches Verhalten von Kollagen. Sitzungsberichte der Heidelberger Akademie der Wissenschaften. Mathematisch-naturwissenschaftliche Klasse, pp 216–248

    Google Scholar 

  • Sanjeevi R (1982) A viscoelastic model for the mechanical properties of biological materials. J Biomech 15:107–109

    CAS  PubMed  Google Scholar 

  • Soong TT, Huang WN (1973) A stochastic model for biological tissue elasticity in simple elongation. J Biomech 6:451–485

    CAS  PubMed  Google Scholar 

  • Veronda DR, Westman RA (1970) Mechanical characterization of skin – finite deformations. J Biomech 3:111–124

    CAS  PubMed  Google Scholar 

  • Viidik A (1968) A rheological model for uncalcified parallel-fibred collagenous tissue. J Biomech 1:3–11

    CAS  PubMed  Google Scholar 

  • Viidik A (1969) The aging of collagen as reflected in its physical properties. In: Engel A, Larsson T (eds) Aging of connective and skeletal tissue. Thule International Symposia, Nordiska Bokhandels Förlag, Stockholm, pp 125–152

    Google Scholar 

  • Viidik A (1973) Functional properties of collagenous tissues. In: Hall DA, Jackson DS (eds) International review of connective tissue research, vol 6. Academic, New York/London, pp 127–215

    Google Scholar 

  • Viidik A (1977) Thermal contraction – relaxation and dissolution of rat tail tendon collagen in different ages. Akt Gerontol 7:493–498

    CAS  Google Scholar 

  • Viidik A (1979) Connective tissues – possible implications of the temporal changes for the aging process. Mech Ageing Dev 9:267–285

    CAS  PubMed  Google Scholar 

  • Vogel HG (1976) Tensile strength, relaxation and mechanical recovery in rat skin as influenced by maturation and age. J Med 2:177–188

    Google Scholar 

  • Vogel HG (1986) In vitro test systems for evaluation of the physical properties of skin. In: Marks R, Plewig G (eds) Skin models. Springer, Berlin/Heidelberg/New York/Tokyo, pp 412–419

    Google Scholar 

  • Vogel HG (1993) Mechanical measurements in assessing aging. In: Frosch PJ, Kligman AM (eds) Noninvasive methods for the quantification of skin functions. An update on methodology and clinical applications. Springer, Berlin/Heidelberg/New York, pp 145–180

    Google Scholar 

  • Vogel HG, Hilgner W (1979) The “step phenomenon” as observed in animal skin. J Biomech 12:75–81

    CAS  PubMed  Google Scholar 

  • Wilkes GL, Brown IA, Wildnauer RH (1973) The biomechanical properties of skin. In: Fleming D (ed) Critical reviews in bioengineering. CRC Press, Boca Raton

    Google Scholar 

In Vitro (ex Vivo) Experiments

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638

    CAS  Google Scholar 

  • Andreassen TT, Seyer-Hansen K, Oxlund H (1981) Biomechanical changes in connective tissue induced by experimental diabetes. Acta Endocrinol (Copenh) 98:432–436

    CAS  Google Scholar 

  • Belkoff SM, Naylor EC, Walshaw R, Lanigan E, Colony L, Haut RC (1995) Effect of subcutaneous expansion on the mechanical properties of porcine skin. J Surg Res 58:117–123

    CAS  PubMed  Google Scholar 

  • Foutz TL, Stone EA, Abrams CF Jr (1992) Effects of freezing on mechanical properties of rats skin. Am J Vet Res 53:788–792

    CAS  PubMed  Google Scholar 

  • Friedrich L, Wuppermann D, Zimmermann F (1975) Einfluss hoher Dosen von d-Penicillamin und Paramethason auf die mechanischen Eigenschaften des Bindegewebes der Ratte. Arch Dermatol Forsch 252:161–166

    CAS  PubMed  Google Scholar 

  • Fry P, Harkness MLR, Harkness RD (1964) Mechanical properties of the collagenous framework of skin in rats of different ages. Am J Physiol 206:1425–1429

    CAS  PubMed  Google Scholar 

  • Holzmann H, Korting GW, Kobelt D, Vogel HG (1971) Prüfung der mechanischen Eigenschaften von menschlicher Haut in Abhängigkeit von Alter und Geschlecht. Arch Klin Exp Dermatol 239:355–397

    CAS  PubMed  Google Scholar 

  • Hutton WC, Burlin TE, Ranu HS (1977) The effect of split dose radiations on the mechanical properties of the skin. Phys Med Biol 22:411–421

    CAS  PubMed  Google Scholar 

  • Jørgensen PH, Andreassen TT, Jørgensen KD (1989) Growth hormone influences collagen deposition and mechanical strength in intact rat skin. A dose–response study. Acta Endocrinol (Copenh) 120:767–772

    Google Scholar 

  • Lofstrom DE, Felts WJL, Halberg F (1973) Circadian variation in skin tensile strength of two inbred strains of mice. Int J Chronobiol 1:259–267

    CAS  PubMed  Google Scholar 

  • Mustoe TA, Bartell TH, Garner WL (1989) Physical, biochemical, histologic, and biochemical effects of rapid versus conventional expansion. Plast Reconstr Surg 83:691–787

    Google Scholar 

  • de Nimni ME, Guia E, Bavetta LA (1966) Collagen, hexosamine and tensile strength of rabbit skin during aging. J Invest Dermatol 47:156–158

    CAS  Google Scholar 

  • Oxlund H, Manthorpe R (1982) The biochemical properties of tendon and skin as influences by long term glucocorticoid treatment and food restriction. Biorheology 19:631–641

    CAS  PubMed  Google Scholar 

  • Oxlund H, Rundgren A, Viidik A (1980) The influence of adrenalectomy on the biomechanical properties of collagenous structures of rats in the post-partum phase. Acta Obstet Gynecol Scand 59:453–458

    CAS  PubMed  Google Scholar 

  • Oxlund H, Adreassen TT, Junker P, Jensen PA, Lorenzen I (1984) Effect of d-penicillamine on the mechanical properties of aorta, muscle tendon and skin in rats. Atherosclerosis 52:243–252

    CAS  PubMed  Google Scholar 

  • Pan L, Zan L, Foster FS (1998) Ultrasonic and viscoelastic properties of skin under transverse mechanical stress in vitro. Ultrasound Med Biol 24:995–1007

    CAS  PubMed  Google Scholar 

  • Schneider MS, Borkow JE, Cruz IT, Marangoni RD, Shaffer J, Grove D (1988) The tensiometric properties of expanded guinea pig skin. Plast Reconstr Surg 81:398–405

    CAS  PubMed  Google Scholar 

  • Schröder HG, Babej M, Vogel HG (1974) Tierexperimentelle Untersuchungen mit dem lokal wirksamen 9-Fluor-16-methyl-17-desoxy-prednisolon. Arzneimittel-Forsch 24:3–5

    Google Scholar 

  • Spittle RF, Ranu HS, Hutton WC, Challoner AV, Burlin TE (1980) A comparison of different treatment regimens on the visual appearance and mechanical properties of mouse skin. Br J Radiol 53:697–702

    CAS  PubMed  Google Scholar 

  • Töpert M, Olivar A, Opitz D (1990) New developments in corticosteroid research. J Dermatol Treat 1(Suppl 3):S5–S9

    Google Scholar 

  • Vogel HG (1969) Zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Binde- und Stützgewebes. Arzneim Forsch/Drug Res 19:1495–1503, 1732–1742, 1790–1801, 1981–1996

    CAS  Google Scholar 

  • Vogel HG (1970) Beeinflussung der mechanischen Eigenschaften der Haut von Ratten durch Hormone. Arzneim Forsch/Drug Res 20:1849–1857

    CAS  Google Scholar 

  • Vogel HG (1971) Antagonistic effect of aminoacetonitrile and prednisolone on mechanical properties of rat skin. Biochim Biophys Acta 252(3):580–585

    CAS  PubMed  Google Scholar 

  • Vogel HG (1972a) Effects of d-penicillamine and prednisolone on connective tissue in rats. Connect Tissue Res 1:283–289

    CAS  Google Scholar 

  • Vogel HG (1972b) Influence of age, treatment with corticosteroids and strain rate on mechanical properties of rat skin. Biochim Biophys Acta 286:79–83

    CAS  PubMed  Google Scholar 

  • Vogel HG (1974a) Organ specificity of the effects of d-penicillamine and of lathyrogen (aminoacetonitrile) on mechanical properties of connective and supporting tissue. Arzneimittel-Forsch 24:157–163

    CAS  Google Scholar 

  • Vogel HG (1974b) Correlation between tensile strength and collagen content in rat skin. Effect of age and cortisol treatment. Connect Tissue Res 2:177–182

    CAS  PubMed  Google Scholar 

  • Vogel HG (1976a) Measurement of some viscoelastic properties of rat skin following repeated load. Connect Tissue Res 4:163–168

    CAS  PubMed  Google Scholar 

  • Vogel HG (1976b) Tensile strength, relaxation and mechanical recovery in rat skin as influenced by maturation and age. J Med 2:177–188

    Google Scholar 

  • Vogel HG (1977) Mechanical and chemical properties of various connective tissue organs in rats as influenced by non-steroidal antirheumatic drugs. Connect Tissue Res 5:91–95

    CAS  PubMed  Google Scholar 

  • Vogel HG (1978) Influence of maturation and age on mechanical and biochemical parameters of connective tissue of various organs in the rat. Connect Tissue Res 6:161–166

    CAS  PubMed  Google Scholar 

  • Vogel HG (1983) Effects of age on the biomechanical and biochemical properties of rat and human skin. J Soc Cosmet Chem 34:453–463

    Google Scholar 

  • Vogel HG (1987a) Age dependence of mechanical and biochemical properties of human skin. Part I: stress–strain experiments, skin thickness and biochemical analysis. Bioeng Skin 3:67–91

    Google Scholar 

  • Vogel HG (1987b) Age dependence of mechanical and biochemical properties of human skin. Part II: hysteresis, relaxation, creep and repeated strain experiments. Bioeng Skin 3:141–176

    Google Scholar 

  • Vogel HG (1988) Age-dependent mechanical and biomechanical changes in the skin. Bioeng Skin 4:75–81

    Google Scholar 

  • Vogel HG (1989) Mechanical properties of rat skin with aging. In: Balin AK, Kligman AM (eds) Aging and the skin. Raven, New York, pp 227–275

    Google Scholar 

  • Vogel HG (1993a) Mechanical measurements in assessing aging. In: Frosch PJ, Kligman AM (eds) Noninvasive methods for the quantification of skin functions. An update on methodology and clinical applications. Springer, Berlin/Heidelberg/New York, pp 145–180

    Google Scholar 

  • Vogel HG (1993b) Strength and viscoelastic properties of anisotropic rat skin after treatment with desmotropic drugs. Skin Pharmacol 6:92–102

    CAS  PubMed  Google Scholar 

  • Vogel HG, Hilgner W (1977) Analysis of the low part of stress–strain curves in rat skin. Influence of age and desmotropic drugs. Arch Dermatol Res 258:141–150

    CAS  PubMed  Google Scholar 

  • Vogel HG, Petri W (1985) Comparison of various pharmaceutical preparations of prednicarbate after repeated topical administration to the skin of rats. Arzneim-Forsch/Drug Res 35:939–946

    CAS  Google Scholar 

  • Vogel HG, Kobelt D, Korting GW, Holzmann H (1970) Prüfung der Festigkeitseigenschaften von Rattenhaut in Abhängigkeit von Alter und Geschlecht. Arch klin exp Derm 239:296–305

    CAS  PubMed  Google Scholar 

Measurement of Mechanical Properties at Low Extension Degrees

  • Belkoff SM, Haut RC (1991) A structural model to evaluate the changing microstructure of maturing rat skin. J Biomech 24:711–720

    CAS  PubMed  Google Scholar 

  • Foutz TL, Abrams CF Jr, Stone EA, Thrall DE (1994) Characterization of the non-linear loading curve of rat skin. Front Med Biol Eng 6:187–197

    CAS  PubMed  Google Scholar 

  • Vogel HG (1969) Zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Binde- und Stützgewebes. Arzneim Forsch/Drug Res 19:1495–1503, 1732–1742, 1790–1801, 1981–1996

    CAS  Google Scholar 

  • Vogel HG (1970) Beeinflussung der mechanischen Eigenschaften der Haut von Ratten durch Hormone. Arzneim Forsch/Drug Res 20:1849–1857

    CAS  Google Scholar 

  • Vogel HG (1981) Mechanical properties of rat skin at high and low loads. Influence of age and desmotropic drugs. In: Marks R, Payne PA (eds) Bioengineering and the skin. Proceedings of the European society for dermatological research symposium, held at the Welsh National School of Medicine, Cardiff, 19–21 July 1979. MTP Press 1981, pp 79–101

    Google Scholar 

  • Vogel HG (1989) Mechanical properties of rat skin with aging. In: Balin AK, Kligman AM (eds) Aging and the skin. Raven, New York, pp 227–275

    Google Scholar 

  • Vogel HG (1993) Mechanical measurements in assessing aging. In: Frosch PJ, Kligman AM (eds) Noninvasive methods for the quantification of skin functions. An update on methodology and clinical applications. Springer, Berlin/Heidelberg/New York, pp 145–180

    Google Scholar 

  • Vogel HG, Hilgner W (1977) Analysis of the low part of stress–strain curves in rat skin. Influence of age and desmotropic drugs. Arch Dermatol Res 258:141–150

    CAS  PubMed  Google Scholar 

Step Phenomenon

  • Vogel HG (1988) Further studies on directional variations and the “step-phenomenon” in rat skin depending on age. Bioeng Skin 4:297–309

    Google Scholar 

  • Vogel HG, Hilgner W (1977) Analysis of the low part of stress–strain curves in rat skin. Influence of age and desmotropic drugs. Arch Dermatol Res 258:141–150

    CAS  PubMed  Google Scholar 

  • Vogel HG, Hilgner W (1979a) The “step phenomenon” as observed in animal skin. J Biomech 12:75–81

    CAS  PubMed  Google Scholar 

  • Vogel HG, Hilgner W (1979b) Influence of age and of desmotropic drugs on the step phenomenon observed in rat skin. Arch Dermatol Res 264:225–241

    CAS  PubMed  Google Scholar 

Anisotropy of Skin

  • Belkoff SM Haut RC (1991) A structural model used to evaluate the changing microstructure of maturing rat skin. J Biomech 24:711–720

    CAS  PubMed  Google Scholar 

  • Daly CH (1982) Biomechanical properties of dermis. J Invest Dermatol 79:17s–20s

    PubMed  Google Scholar 

  • Gibson T, Stark H, Evans JH (1969) Directional variation in extensibility of human skin in vivo. J Biomech 2:201–204

    PubMed  Google Scholar 

  • Hussein MAF (1972) The orientation of connective tissue fibers in rat skin. Acta Anat 82:549–564

    CAS  PubMed  Google Scholar 

  • Hussein MAF (1973) Skin cleavage lines in the rat. Eur Surg Res 5:73–79

    CAS  PubMed  Google Scholar 

  • Langer K (1861) Zur Anatomie und Physiologie der Haut. I. Über die Spaltbarkeit der Cutis. Sitzungsberichte der Akademie in Wien, vol 44. pp 19–46

    Google Scholar 

  • Menton DN, Hess RA, Lichtenstein JR, Eisen AZ (1978) The structure and tensile properties of the skin of tight-skin (Tsk) mutant mice. J Invest Dermatol 70:4–10

    CAS  PubMed  Google Scholar 

  • Stark HL, Strath PD, Eng C, Mech MI, Aust MIE (1977) Directional variations in the extensibility of human skin. Br J Plast Surg 30:114–195

    Google Scholar 

  • Vogel HG (1981) Directional variations of mechanical parameters in rat skin depending on maturation and age. J Invest Dermatol 76:493–497

    CAS  PubMed  Google Scholar 

  • Vogel HG (1983a) Effects of age on the biomechanical and biochemical properties of rat and human skin. J Soc Cosmet Chem 34:453–463

    Google Scholar 

  • Vogel HG (1983b) Age dependence of viscoelastic properties in rat skin. Directional variations in stress–strain and hysteresis experiments. Bioengin Skin 4:136–155

    Google Scholar 

  • Vogel HG (1985a) Age dependence of viscoelastic properties in rat skin; directional variations in relaxation experiments. Bioeng Skin 1:157–174

    Google Scholar 

  • Vogel HG (1985b) Repeated relaxation and determination of the isorheological point in skin strips of rats as influenced by maturation and ageing. Bioeng Skin 1:321–335

    Google Scholar 

  • Vogel HG (1988) Further studies on directional variations and the “step-phenomenon” in rat skin depending on age. Bioeng Skin 4:297–309

    Google Scholar 

  • Vogel HG, Hilgner W (1979a) The “step phenomenon” as observed in animal skin. J Biomech 12:75–81

    CAS  PubMed  Google Scholar 

  • Vogel HG, Hilgner W (1979b) Influence of age and of desmotropic drugs on the step phenomenon observed in rat skin. Arch Dermatol Res 264:225–241

    CAS  PubMed  Google Scholar 

  • Wright V (1971) Elasticity and deformation of skin. In: Elden HR (ed) Biophysical properties of skin. Wiley Interscience, New York, pp 437–449

    Google Scholar 

Relaxation Phenomenon

  • Purslow PP, Wess TJ, Hukins DW (1998) Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissue. J Exp Biol 201:135–142

    CAS  PubMed  Google Scholar 

  • Vogel HG (1973) Stress relaxation in rat skin after treatment with hormones. J Med 4:19–27

    CAS  PubMed  Google Scholar 

  • Vogel HG (1976a) Measurement of some viscoelastic properties of rat skin following repeated load. Connect Tissue Res 4:163–168

    CAS  PubMed  Google Scholar 

  • Vogel HG (1976b) Tensile strength, relaxation and mechanical recovery in rat skin as influenced by maturation and age. J Med 2:177–188

    Google Scholar 

  • Vogel HG (1983) Effects of age on the biomechanical and biochemical properties of rat and human skin. J Soc Cosmet Chem 34:453–463

    Google Scholar 

  • Vogel HG (1985) Age dependence of viscoelastic properties in rat skin; directional variations in relaxation experiments. Bioeng Skin 1:157–174

    Google Scholar 

  • Vogel HG (1993a) Mechanical measurements in assessing aging. In: Frosch PJ, Kligman AM (eds) Noninvasive methods for the quantification of skin functions. An update on methodology and clinical applications. Springer, Berlin/Heidelberg/New York, pp 145–180

    Google Scholar 

  • Vogel HG (1993b) Strength and viscoelastic properties of anisotropic rat skin after treatment with desmotropic drugs. Skin Pharmacol 6:92–102

    CAS  PubMed  Google Scholar 

Hysteresis Experiments

  • Vogel HG (1976) Measurement of some viscoelastic properties of rat skin following repeated load. Connect Tissue Res 4:163–168

    CAS  PubMed  Google Scholar 

  • Vogel HG (1978) Age dependence of mechanical parameters in rat skin following repeated strain. Akt Gerontol 8:601–618

    CAS  Google Scholar 

  • Vogel HG (1983) Age dependence of viscoelastic properties in rat skin. Directional variations in stress–strain and hysteresis experiments. Bioeng Skin 4:136–155

    Google Scholar 

  • Vogel HG (1993) Strength and viscoelastic properties of anisotropic rat skin after treatment with desmotropic drugs. Skin Pharmacol 6:92–102

    CAS  PubMed  Google Scholar 

Isorheological Point

  • Buss V, Lippert H, Zech M, Arnold G (1976) Zur Biomechanik menschlicher Sehnen: Zusammenhänge von Relaxation und Spannungsrückgewinn. Arch Orthop Unfallchir 86:169–182

    CAS  PubMed  Google Scholar 

  • Vogel HG (1984) Messung der Relaxation und des isorheologischen Punkts an Hautstreifen von Ratten. Zeitschr Rheumatol 43(Suppl 1):46–47

    Google Scholar 

  • Vogel HG (1985) Repeated relaxation and determination of the isorheological point in skin strips of rats as influenced by maturation and ageing. Bioeng Skin 1:321–335

    Google Scholar 

  • Vogel GH (1987) Repeated loading followed by relaxation and isorheological behaviour of rat skin after treatment with desmotropic drugs. Bioeng. Skin 3:255–269

    CAS  Google Scholar 

Creep Experiments

  • Vogel HG (1977) Strain of rat skin at constant load (creep experiments). Influence of age and desmotropic agents. Gerontology 23:77–86

    CAS  PubMed  Google Scholar 

  • Vogel HG (1987) Age dependence of mechanical and biochemical properties of human skin. Part I: stress–strain experiments, skin thickness and biochemical analysis. Bioeng Skin 3:67–91

    Google Scholar 

Repeated Strain

  • Lafrance H, Yahia L’H Germain L, Auger FA (1998) Mechanical properties of human skin equivalents submitted to cyclic forces. Skin Res Technol 4:228–236

    Google Scholar 

  • Vogel HG (1987) Age dependence of mechanical and biochemical properties of human skin. Part II: hysteresis, relaxation, creep and repeated strain experiments. Bioeng Skin 3:141–176

    Google Scholar 

  • Vogel HG Hilgner W (1978) Viscoelastic behaviour of rat skin after repeated and stepwise increased strain. Bioeng Skin 1:22–33

    Google Scholar 

Correlation Between Biomechanical and Biochemical Parameters

  • Bitter T, Muir H (1960) A modified uronic acid carbazole reaction. Anal Biochem 4:330–334

    Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265

    CAS  PubMed  Google Scholar 

  • Naum Y, Morgan TE (1973) A microassay for elastin. Anal Biochem 53:392–396

    CAS  PubMed  Google Scholar 

  • Oxlund H, Manschot J, Viidik A (1988) The role of elastin in the mechanical properties of skin. J Biomech 21:213–218

    CAS  PubMed  Google Scholar 

  • Stegemann H (1958) Mikrobestimmung von Hydroxyprolin mit Chloramin-T und p-Dimethylaminobenzaldehyd. Hoppe-Seylers Z Physil Chemie 311:41–45

    CAS  Google Scholar 

  • Vogel HG (1973) Attempts to correlate tensile strength of skin to solubility of collagen. In: Proceedings of the workshop conference HOECHST Schloss Reisensburg 21–22 April 1972. International congress series no 264, Excerpta Medica, Amsterdam

    Google Scholar 

  • Vogel HG (1974) Correlation between tensile strength and collagen content in rat skin. Effect of age and cortisol treatment. Connect Tissue Res 2:177–182

    CAS  PubMed  Google Scholar 

  • Vogel HG (1976) Altersabhängige Veränderungen der mechanischen und biochemischen Eigenschaften der Cutis bei Ratten. Aktuelle Gerontologie 6:477–487

    Google Scholar 

  • Vogel HG (1980) Influence of maturation and aging on mechanical and biochemical properties of connective tissue in rats. Mech Ageing Dev 14:283–292

    CAS  PubMed  Google Scholar 

  • Vogel HG (1987) Age dependence of mechanical and biochemical properties of human skin. Part I: stress–strain experiments, skin thickness and biochemical analysis. Bioeng Skin 3:67–91

    Google Scholar 

  • Vogel HG (1988) Age-dependent mechanical and biomechanical changes in the skin. Bioeng Skin 4:75–81

    Google Scholar 

  • Vogel HG Hilgner W (1977) Analysis of the low part of stress–strain curves in rat skin. Influence of age and desmotropic drugs. Arch Dermatol Res 258:141–150

    CAS  PubMed  Google Scholar 

Thermocontraction

  • Allain JC, Bazin S, le Lous M, Delaunay A (1977) Pathologie expérimentale – Variations de la contraction hydrothermique de la peau du rat en fonction de l’âge des animaux. C R Acad Sci Paris 284:1131–1134

    CAS  Google Scholar 

  • Blackett AD, Hall DA (1980) The action of vitamin E on the ageing of connective tissues in the mouse. Mech Ageing Dev 14:305–316

    CAS  PubMed  Google Scholar 

  • Boros-Farkas M, Everitt AV (1967) Comparative studies of age tests on collagen fibers. Gerontologia 13:37–49

    CAS  PubMed  Google Scholar 

  • Danielsen CC (1981) Thermal stability of reconstituted collagen fibrils. Shrinkage characteristics upon in vitro maturation. Mech Ageing Dev 15:269–278

    CAS  PubMed  Google Scholar 

  • Flandin F, Buffevant C, Herbage D (1984) A differential scanning calorimetry analysis of the age-related changes in the thermal stability of rat skin collagen. Biochim Biophys Acta 791:205–211

    CAS  PubMed  Google Scholar 

  • Joseph KT, Bose SM (1962) Influence of biological ageing on the stability of skin collagen in albino rats. In: Ramanathan N (ed) Collagen. Interscience, New York, pp 371–393

    Google Scholar 

  • Le Allain JC, Lous M, Cohen-Solal L, Bazin S, Maroteaux P (1980) Isometric tensions developed during the hydrothermal swelling of rat skin. Connect Tissue Res 7:127–133

    CAS  PubMed  Google Scholar 

  • Lerch H (1951) Über Wärmeschrumpfungen des Kollagengewebes. Gegenbaur’s Morphol Jahrb 90:206–220

    Google Scholar 

  • Le Lous M, Flandin F, Herbage D, Allain JC (1982a) Influence of collagen denaturation on the chemorheological properties of skin, assessed by differential scanning calorimetry and hydrothermal isometric tension measurement. Biochim Biophys Acta 717:295

    PubMed  Google Scholar 

  • Le Lous M, Allain JC, Cohen-Solal L, Maroteaux P (1982b) The rate of collagen maturation in rat and human skin. Connect Tissue Res 9:253–262

    PubMed  Google Scholar 

  • Le Lous M, Allain JC, Cohen-Solal L, Maroteaux P (1983) Hydrothermal isometric tension curves from different connective tissues. Role of collagen genetic types and noncollagenous components. Connect Tissue Res 11:199–206

    PubMed  Google Scholar 

  • Rasmussen DM Wakim KG Winkelmann RK (1964) Effect of aging on human dermis: studies of thermal shrinkage and tension. In: Montagna W (ed) Advances in biology of skin, vol 6. pp 151–162

    Google Scholar 

  • Rundgren A (1976) Age changes of connective tissue in the rat as influenced by repeated pregnancies. Akt Gerontol 6:15–18

    Google Scholar 

  • Verzár F (1955) Veränderungen der thermoelastischen Kontraktion von Haut und Nerv bei alternden Tieren. Experientia (Basel) 11:230–231

    Google Scholar 

  • Verzár F (1957) The ageing of connective tissue. Gerontologica 1:363–378

    Google Scholar 

  • Viidik A (1969) The aging of collagen as reflected in its physical properties. In: Engel A, Larsson T (eds) Aging of connective and skeletal tissue. Thule International Symposia, Nordiska Bokhandels Förlag, Stockholm, pp 125–152

    Google Scholar 

  • Viidik A (1977) Thermal contraction – relaxation and dissolution of rat tail tendon collagen in different ages. Akt Gerontol 7:493–498

    CAS  Google Scholar 

  • Viidik A (1979) Connective tissues – possible implications of the temporal changes for the aging process. Mech Ageing Dev 9:267–285

    CAS  PubMed  Google Scholar 

  • Vogel HG (1969) Zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Binde- und Stützgewebes. Arzneim Forsch/Drug Res 19:1495–1503, 1732–1742, 1790–1801, 1981–1996

    CAS  Google Scholar 

  • Wöhlisch E (1932) Die thermischen Eigenschaften der faserig strukturierten Gebilde des tierischen Bewegungsapparates. Ergebn Physiol 34:406–493

    Google Scholar 

  • du Wöhlisch E, de Rochemont M (1927) Die Thermodynamik der Wärmeumwandlung des Kollagens. Z Biol 85:406

    Google Scholar 

In Vivo Experiments

  • Baker MR, Bader DL, Hopewell JW (1988) An apparatus for testing of mechanical properties of skin in vivo: its application to the assessment of normal and irradiated pig skin. Bioeng Skin 4:87–103

    Google Scholar 

  • Baker MR, Bader DL, Hopewell JW (1989) The effect of single doses of X-rays on the mechanical properties of pig skin in vivo. Br J Radiol 62:830–837

    CAS  PubMed  Google Scholar 

  • Barbanel JC, Payne PA (1981) In vivo mechanical testing of dermal properties. Bioeng Skin 3:8–38

    Google Scholar 

  • Cook T, Alexander H, Cohen M (1977) Experimental method for determining the 2-dimensional mechanical properties of living human skin. Med Biol Eng Comput 15:381–390

    CAS  PubMed  Google Scholar 

  • Denkel K (1983) Vergleich rheologischer parameter in vivo und in vitro an der Rückenhaut der Ratte. Ingenieurarbeit Frankfurt-Hoechst

    Google Scholar 

  • Vogel HG (1981a) Attempts to compare “in vivo” and “in vitro” measurement of mechanical properties in rat skin. Bioeng Skin 3:39–46

    Google Scholar 

  • Vogel HG (1981b) Comments on the paper by Barbenel and Payne ‘In vivo’ mechanical testing of dermal properties”. Bioeng Skin 3:53–56

    Google Scholar 

  • Vogel HG (1982) Mechanical properties of rat skin as compared by in vivo and in vitro measurement. Bioeng Skin 3:198–209

    Google Scholar 

  • Vogel HG, Denkel K (1982) Methodological studies on biomechanics of rat skin comparing in vivo and in vitro results. Bioeng Skin 4:71–79

    Google Scholar 

  • Vogel HG, Denkel K (1985) Influence of maturation and age, and of desmotropic compounds on the mechanical properties of rat skin in vivo. Bioeng Skin 1:35–54

    Google Scholar 

  • Wijn PFF (1980) The alinear viscoelastic properties of human skin in vivo for small deformations. Proefschrift ter Verkrijging van de Graad von Doctor in de Wiskunde en Natuurwetenschappen an de Katholieke Universiteit te Nijmegen

    Google Scholar 

  • Zeng Y, Huang K, Xu C, Zhang J, Sun G (2001) Biorheological characteristics of skin after expansion. Biorheology 38:367–378

    CAS  PubMed  Google Scholar 

Repeated Strain in Vivo

  • Denkel K (1983) Vergleich rheologischer Parameter in vivo und in vitro an der Rückenhaut der Ratte. Ingenieurarbeit Frankfurt-Hoechst “Hütte” Des Ingenieurs Taschenbuch (1915) Berlin, Verlag von Wilhelm Ernst & Sohn, vol II, pp 630–631

    Google Scholar 

  • Nementscheck T, Riedl H, Jonak R, Nementscheck-Gansler H, Bordas J, Koch MHJ, Schilling V (1980) Die Viskoelastizität parallelsträhnigen Bindegewebes und ihre Bedeutung für die Funktion. Virchows Arch 386:125–151

    Google Scholar 

  • Vogel HG (1988) Restitution of mechanical properties of rat skin after repeated strain. Influence of maturation and ageing. Bioeng Skin 4:343–359

    Google Scholar 

  • Vogel HG, Denkel K (1985) Influence of maturation and age, and of desmotropic compounds on the mechanical properties of rat skin in vivo. Bioeng Skin 1:35–54

    Google Scholar 

In Vivo Recovery After Repeated Strain

  • Denkel K (1983) Vergleich rheologischer Parameter in vivo und in vitro an der Rückenhaut der Ratte. Ingenieurarbeit Frankfurt-Hoechst “Hütte” Des Ingenieurs Taschenbuch (1915) Berlin, Verlag von Wilhelm Ernst & Sohn, vol II, pp 630–631

    Google Scholar 

  • Vogel HG (1988) Restitution of mechanical properties of rat skin after repeated strain. Influence of maturation and ageing. Bioeng Skin 4:343–359

    Google Scholar 

  • Vogel HG (1990) Restitutio ad integrum der mechanischen Eigenschaften von Rattenhaut nach wiederholter Dehnung. Einfluß von Reifung und Alterung. Z Gerontol 23:126–127

    CAS  PubMed  Google Scholar 

  • Vogel HG (1993a) In vivo recovery of repeatedly strained rat skin after systemic treatment with desmotropic drugs. Skin Pharmacol 6:103–110

    CAS  PubMed  Google Scholar 

  • Vogel HG (1993b) Mechanical measurements in assessing aging. In: Frosch PJ, Kligman AM (eds) Noninvasive methods for the quantification of skin functions. An update on methodology and clinical applications. Springer, Berlin/Heidelberg/New York, pp 145–180

    Google Scholar 

  • Vogel HG, Denkel K (1985c) In vivo recovery of mechanical properties in rat skin after repeated strain. Arch Dermatol Res 277:484–488

    CAS  PubMed  Google Scholar 

Healing of Skin Wounds

  • Adamson B, Schwarz D, Klugston P, Gilmont R, Perry L, Fisher J, Lindblad W, Rees R (1996) Delayed repair: the role of glutathione in a rat incisional wound model. J Surg Res 62:159–164

    CAS  PubMed  Google Scholar 

  • Ågren MS, Mertz PM (1994) Are excessive granulation tissue formation and retarded wound contraction due to decreased collagenase activity in wounds in tight-skin mice? Br J Dermatol 131:337–340

    PubMed  Google Scholar 

  • Albina JE, Gladden P, Walsh WR (1993) Detrimental effects of an ω3 fatty acid-enriched diet on wound healing. J Parenter Enteral Nutr 17:519–521

    CAS  Google Scholar 

  • Al Sadi HI, Gourley IM (1997) Simplified method for studying mechanical properties of healing linear skin wounds in the dog. Am J Vet Res 38:903–906

    Google Scholar 

  • Andreassen TT, Fogdestam I, Rundgren Å (1977) A biomechanical study of healing of skin incisions in rats during pregnancy. Surg Gynecol Obstet 145:175–178

    CAS  PubMed  Google Scholar 

  • Andreassen TT, Oxlund H (1987) The influence of experimental diabetes and insulin treatments on the biochemical properties of rat skin incisional wounds. Acta Chir Scand 153:405–409

    CAS  PubMed  Google Scholar 

  • Bernstein EF, Harisiadis L, Solomon G, Norton J, Sollberg S, Uitto J, Glatstein E, Glass J, Talbot T, Russo A, Mitchel JB (1991) Transforming growth factor-β improved healing of radiation-impaired wounds. J Invest Dermatol 97:430–434

    CAS  PubMed  Google Scholar 

  • Bitar MS (1998) Glucocorticoid dynamics and impaired wound healing in diabetes mellitus. Am J Pathol 152:547–554

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brunius U, Ahren C (1996) Healing during the cicatrization phase of skin incisions closed by non-suture technique. A tensiometric and histologic study in the rat. Acta Chir Scand 135:289–295

    Google Scholar 

  • Butler PEM, Barry-Walsh C, Curren B, Grace PA, Leader M, Bouchier Hayes D (1991) Improved wound healing with a modified electrosurgical electrode. Br J Plast Surg 44:495–499

    CAS  PubMed  Google Scholar 

  • Canturk NZ, Vural B, Esen N, Canturk Z, Oktay G, Kirkali G, Solakoglu S (1999) Effects of granulocyte-macrophage colony-stimulating factor on incisional wound healing in an experimental diabetic rat model. Endocr Res 25:105–116

    CAS  PubMed  Google Scholar 

  • Celebi N, Erden N, Gonul B, Koz M (1994) Effects of epidermal growth factor dosage forms on dermal wound strength in mice. J Pharm Pharmacol 46:386–387

    CAS  PubMed  Google Scholar 

  • Chang HS, Hom DB, Agarwal RP, Pernell K, Manivel JC, Song C (1998) Effect of basic fibroblast growth factor on irradiated porcine skin flaps. Arch Otolaryngol Head Neck Surg 124:307–312

    CAS  PubMed  Google Scholar 

  • Corps BV (1969) Wound contracture in the hooded rat in relation to skin tension lines and design of injury. Br J Plast Surg 22:44–47

    CAS  PubMed  Google Scholar 

  • DaCosta ML, Regan MC, Al Sader M, Leader M, Bouchier-Hayes D (1998) Diphenylhydantoin sodium promotes early and marked angiogenesis and results in increased collagen deposition and tensile strength in healing wounds. Surgery 123:287–293

    CAS  PubMed  Google Scholar 

  • Drucker M, Cardenas E, Arizti P, Valenzuela A, Gamboa A, Kerstein MD (1998) Experimental studies on the effect of lidocaine on wound healing. World J Surg 22:394–398

    CAS  PubMed  Google Scholar 

  • Forslund C, Rueger D, Aspenberg P (2006) A comparative dose–response study of cartilage-derived morphogenetic protein (CDMP)-1, -2 and -3 for tendon healing in rats. J Orthop Res 21:617–621

    Google Scholar 

  • Fung LC, Mingin GC, Massicotte M, Felsen D, Poppas DP (1999) Effects of temperature on thermal injury and wound strength after photothermal wound closure. Lasers Surg Med 25:290–295

    Google Scholar 

  • Gonul B, Soylemezoglu T, Babul A, Celebi N (1998) Effect of epidermal growth factor dosage forms on mice full-thickness skin wound zinc levels and relation to wound strength. J Pharm Pharmacol 50:641–644

    CAS  PubMed  Google Scholar 

  • Greenwald DP, Shumway S, Zachary LS, LaBarbera M, Albear P, Temaner M, Gottlieb LJ (1993) Endogenous versus toxin-induced diabetes in rats: a mechanical comparison of two skin wound-healing models. Plast Reconstr Surg 91:1087–1093

    CAS  PubMed  Google Scholar 

  • Gupta A, Jain GK, Raghubir R (1999) A time course study for the development of an immunocompromised wound model, using hydrocortisone. J Pharmacol Toxicol Methods 41:183–187

    CAS  PubMed  Google Scholar 

  • Higashiyama M, Hashimoto K, Takada A, Fujita K, Kido K, Yoshikawa K (1992) The role of growth factor in wound healing. J Dermatol 19:676–679

    CAS  PubMed  Google Scholar 

  • Holm-Pedersen P, Zederfeldt B (1971) Strength development of skin incisions in young and old rats. Scand J Plast Reconstr Surg 5:7–12

    CAS  PubMed  Google Scholar 

  • Holm-Pedersen P, Viidik A (1972a) Maturation of collagen in healing wounds in young and old rats. Scand J Plast Reconstr Surg 6:16–23

    CAS  PubMed  Google Scholar 

  • Holm-Pedersen P, Viidik A (1972b) Tensile properties and morphology of healing wounds in young and old rats. Scand J Plast Reconstr Surg 6:24–35

    CAS  PubMed  Google Scholar 

  • Howes EL, Sooy JW, Harvey SC (1929) The healing of wounds as determined by their tensile strength. JAMA 92:42–45

    Google Scholar 

  • Jiminez PA, Rampy MA (1999) Keratinocyte growth factor-2 accelerates wound healing in incisional wounds. J Surg Res 81:238–242

    Google Scholar 

  • Jyung RW, Mustoe TA, Busby WH, Clemmons DR (1994) Increased wound-breaking strength induced by insulin-like growth factor I in combination with insulin-like growth factor binding protein-1. Surgery 115:233–239

    CAS  PubMed  Google Scholar 

  • Kashyap A, Beezhold D, Wiseman J, Beck WC (1995) Effect of povidone iodine dermatologic ointment on wound healing. Am Surg 61:486–491

    CAS  PubMed  Google Scholar 

  • Kim LR, Pomeranz B (1999) The sympathomimetic agent, 6-hydroxydopamine, accelerates cutaneous wound healing. Eur J Pharmacol 376:257–264

    CAS  PubMed  Google Scholar 

  • Knabl JS, Bauer W, Andel H, Schwendenwein I, Dado PF, Mittlbock M, Romer W, Choi MS, Horvat R, Meissl G, Frey M (1999) Progression of burn wound depth by systemic application of a vasoconstrictor: an experimental study with a new rabbit model. Burns 25:715–721

    CAS  PubMed  Google Scholar 

  • Koshizuka S, Kanazawa K, Kobayashi N, Takazawa I, Waki Y, Shibusawa H, Shumiya S (1997) Beneficial effects of recombinant human insulin-like growth factor-I (IGF-I) on wound healing in severely wounded senescent mice. Surg Today 27:946–952

    CAS  PubMed  Google Scholar 

  • Kyriakides TR, Tam JWY, Bornstein P (1999) Accelerated wound healing in mice with a disruption of the thrombospondin 2 gene. J Invest Dermatol 113:782–787

    CAS  PubMed  Google Scholar 

  • Langrana NA, Alexander H, Strauchler I, Metha H, Ricci J (1983) Effect of mechanical load in wound healing. Ann Plast Surg 10:200–208

    CAS  PubMed  Google Scholar 

  • Matsuda H, Koyama H, Sato H, Sawada J, Itakura A, Tanaka A, Matsumoto M, Konno K, Ushio H, Matsuda K (1998) Role of nerve growth factor in cutaneous wound healing: accelerating effects in normal and healing-impaired diabetic mice. J Exp Med 187:297–306

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maxwell GL Soisson AP Brittain PC Harris R Scully T (1998) Tissue glue as an adjunct to wound healing in the porcine model. J Gynecol Tech

    Google Scholar 

  • Michalik L, Desvergne B, Tan NS, Basu-Modak S, Escher P, Rieusset J, Peters JM, Kaya G, Gonzales FJ, Zakany J, Metzger D, Chambon P, Duboule D, Wahli W (2001) Impaired skin wound healing in peroxisome proliferator-activated receptor PPARα and PPARβ mutant mice. J Cell Biol 154:799–814

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oxlund H, Fogdestam I, Viidik A (1979) The influence of cortisol on wound healing of the skin and distant connective tissue response. Surg Gynecol Obstet 148:867–880

    Google Scholar 

  • Oxlund H, Christensen H, Seyer-Hansen M, Andreassen TT (1996) Collagen deposition and mechanical strength of colon anastomoses and skin incisional wounds of rats. J Surg Res 66:25–30

    CAS  PubMed  Google Scholar 

  • Pandit A, Ashar R, Feldman D, Thompson A (1998) Investigation of acidic fibroblast growth factor delivered through a collagen scaffold for the treatment of full-thickness skin defects in a rabbit model. Plast Reconstr Surg 101:766–775

    CAS  PubMed  Google Scholar 

  • Pandit A, Ashar R, Feldman D (1999) The effect of TGF-β delivered through a collagen scaffold on wound healing. J Invest Surg 12:89–100

    CAS  PubMed  Google Scholar 

  • Paul RG, Tarlton JF, Purslow PP, Sims TJ, Watkins P, Marshall F, Ferguson JM, Bailey AJ (1997) Biomechanical and biochemical study of a standardized wound healing model. Int J Biochem Cell Biol 29:211–220

    CAS  PubMed  Google Scholar 

  • Phillips LG, Abdullah KM, Geldner PD, Dobbins S, Ko F, Linares HA, Broemeling LD, Robson MC (1993) Application of basic fibroblast growth factor may reverse diabetic wound healing impairment. Ann Plast Surg 31:331–334

    CAS  PubMed  Google Scholar 

  • Quirinia A, Viidik A (1991) The influence of age on the healing of normal and ischemic incisional skin wounds. Mech Ageing Dev 58:221–232

    CAS  PubMed  Google Scholar 

  • Quirinia A, Viidik A (1998) The effect of recombinant basic fibroblast growth factor (bFGF) in fibrin adhesive vehicle on the healing of ischemic and normal incision skin wounds. Scand J Plast Reconstr Surg Hand Surg 32:9–18

    CAS  PubMed  Google Scholar 

  • Sandblom P (1957) Wundheilungsprobleme, mit Reißfestigkeitsmethoden untersucht. Langenbeck’s Arch Dtsch Z Chir 287:469–480

    CAS  Google Scholar 

  • Scardino MS, Swaim SF, Morse BS, Sartin MA, Wright JC, Hoffman CE (1999) Evaluation of fibrin sealants in cutaneous wound closure. J Biomed Mater Res 48:315–321

    CAS  PubMed  Google Scholar 

  • Schaffer MR, Tantry U, Gross SS, Wasserkrug HL, Barbul A (1996) Nitric oxide regulates wound healing. J Surg Res 63:237–240

    CAS  PubMed  Google Scholar 

  • Seyer-Hansen M, Andreassen TT, Jørgensen PH, Oxlund H (1993) Influence of biosynthetic human growth hormone on the biomechanical strength development in skin incisional wounds of diabetic rats. Eur Surg Res 25:162–168

    CAS  PubMed  Google Scholar 

  • Silverstein RJ, Landsman AS (1999) The effects of a moderate and a high dose of vitamin C on wound healing in a controlled guinea pig model. J Foot Ankle Surg 38:333–338

    CAS  PubMed  Google Scholar 

  • Smith KJ, Dipreta E, Skelton H (2001a) Peroxisomes in dermatology. Part I. J Cutan Med Surg 5:231–243

    CAS  PubMed  Google Scholar 

  • Smith KJ, Dipreta E, Skelton H (2001b) Peroxisomes in dermatology. Part II. J Cutan Med Surg 5:315–322

    CAS  PubMed  Google Scholar 

  • Struck H, Schink W, Hernández-Richter J, Moll W (1967) Eine Apparatur zur Bestimmung der Wundfestigkeit in vivo. Zschr Ges Exp Med 142:87–94

    CAS  Google Scholar 

  • Tan NS, Michalik L, Desvergne B, Wahli W (2003) Peroxisome proliferator-activated receptor (PPAR)-β as a target for wound healing drugs. What is possible? Am J Clin Dermatol 4:523–530

    PubMed  Google Scholar 

  • Taylor DL, Schafer SA, Nordquist R, Payton ME, Dickey DT, Bartels KE (1997) Comparison of high power diode laser with the Nd:YAG laser using in situ wound strength analysis of healing cutaneous incisions. Lasers Surg Med 21:248–254

    CAS  PubMed  Google Scholar 

  • Van Dorp AG, Verhoeven MC, Van der Koerten HK, Nat van der Meij TH, Van Blitterswijk CA, Ponec M (1998) Dermal regeneration in full-thickness wounds in Yukatan miniature pigs using a biodegradable copolymer. Wound Repair Regen 6:556–568

    PubMed  Google Scholar 

  • Vegesna V, McBride WH, Taylor JGM, Withers HR (1995) The effect of interleukin 1β or transforming growth factor β on radiation impaired murine skin wound healing. J Surg Res 59:600–704

    Google Scholar 

  • Vogel HG (1970) Tensile strength of skin wounds in rats after treatment with corticosteroids. Acta Endocrinol 64:295–303

    CAS  PubMed  Google Scholar 

  • Witte MB, Thornton FJ, Kiyama T, Efron DT, Schulz GS, Moldawer LL, Barbul A, Hunt TK (1998) Metalloproteinase inhibitors and wound healing: a novel enhancer of wound strength. Surgery 124:464–470

    CAS  PubMed  Google Scholar 

  • Wu L, Mustoe TA (1995) Effect of ischemia on growth factor enhancement of incisional wound healing. Surgery 117:570–576

    CAS  PubMed  Google Scholar 

  • Xia YP, Zhao Y, Marcus J, Jimenez PA, Ruben SM, Moore PA, Khan F, Mustoe TA (1999) Effects of keratinocyte growth factor-2 (KGF-2) on wound healing in an ischaemia-impaired rabbit ear model and on scar formation. J Pathol 188:431–438

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Maibach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Maibach, H. (2016). Biomechanics of Skin. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_106

Download citation

Publish with us

Policies and ethics