Skip to main content

Mass Spectrometry in Natural Product Structure Elucidation

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 100

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 100))

Abstract

Starting in the sixties of the last century mass spectrometry has steadily gained in importance in natural products chemistry. Originally limited to electron ionization of molecules that can be vaporized un-decomposed in high vacuum, the introduction of alternate ionization techniques allows today the access to compounds with masses well over one million Daltons. In this review six classes of natural products will be presented where structural information can be obtained from the fragmentation patterns, considering also historical developments. Using the example of pentacyclic triterpenoids, it is shown how structural studies with electron ionization have been developed over the years. Vertebrate alkaloids cover a field where the structural studies mainly stem from the last twenty years relying also on electron ionization but in part introducing more recent techniques. The chapters on lipids and on carbohydrates demonstrate specifically how new ionization techniques have allowed the handling of involatile compounds and have extended the area of structural research step by step. The chapters covering peptides and nucleotides show the access to very high masses and to three-dimensional information of molecules. Fast computers with almost unlimited data storage capacities have made possible automated structural studies and the analysis of complex mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    McLafferty rearrangement (transfer of the C-15 H) of the 7-oxo compound with subsequent cleavage of the 12,13-bond (cf. 11c → g) would lead to an ion m/z 277).

  2. 2.

    Kindly provided by Prof. Dr. Sabira Begum, University of Karachi, Pakistan.

  3. 3.

    As an example for the danger possibly arising from relying on an isolated literature reference: for olean-18-ene-3-one (50) quotes the expected m/z 204 with 64% rel. int. and m/z 218 with 24%, while (91) quotes m/z 218 with 100% and not m/z 204.

  4. 4.

    “Ueberhaupt scheint es mir auch angemessen, die bis jetzt bekannten alkalischen Pflanzenstoffe nicht mit dem Namen Alkalien, sondern Alkaloide zu belegen, da sie doch in manchen Eigenschaften von den Alkalien sehr abweichen.” (Actually, it seems to me as adequate to designate the alkaline plant constituents known till now not as alkalis but rather as alkaloids as they differ much in several aspects from the alkalis) (102).

  5. 5.

    “Unter Alkaloiden im engeren Sinn verstehen wir dagegen Verbindungen mit heterocyklisch gebundenen Stickstoffatomen, mehr oder weniger stark ausgeprägtem basischem Charakter, ausgesprochener physiologischer Wirkung, kompliziertem molekularem Bau, die in Pflanzen gefunden werden, …” (Under alkaloids in a more restrictive sense we understand however compounds with heterocyclic bound nitrogen atoms, more or less pronounced basic character, explicit physiological activity, complicated molecular structure, which are found in plants, …) (103). This classical definition by Winterstein and Trier from 1910 was criticized by Pelletier in the introductory chapter of the first volume of the series Alkaloids: Chemical and Biological Perspectives (104). He offered a rather vague new definition—“An alkaloid is a cyclic organic compound containing nitrogen in a negative oxidation state which is of limited distribution among living organisms.”—and justified the wording as excluding compounds that should not be considered as alkaloids.

  6. 6.

    In a detailed GC/MS study it could be shown that alkaloids present in the skin of the Brazilian toad Melanophryniscus simplex were also to be found in the same relative portions in muscles, liver etc. (137 ).

  7. 7.

    Feeding on poisonous prey with the purpose to sequester toxic compounds for their own defense is spread over the entire animal kingdom (for examples, see Sect. 4.2). It is an ongoing field of interdisciplinary research (140) where mass spectrometry plays an important role (screening and identification, structural transformations, labeling studies, etc.).

  8. 8.

    In (119) under Supporting Information, with the exception of the steroidal alkaloids, all known amphibian alkaloids are listed, including samples for which the structures have not been established yet or are considered as tentative. The listing follows the shorthand designation (see above) and hence the molecular masses. The data comprise elemental formulas (for unknown structures based on high resolution MS measurements), diagnostic EI-MS fragments, GC and other characteristic data, and where known, assignment to a structural class, natural origin etc. It should be mentioned that 127 complete EI mass spectra of frog alkaloids can be found in (602).

  9. 9.

    A poisonous substance from toad skin glands was apparently first isolated by Phisalix and Betrand in 1893 (148) and named bufoténine (149). Jensen and Chen (150) described in 1932 several bufotenines, which they characterized as indole derivatives. The constitution of 22 was finally established 1934 by Wieland et al. (151).

  10. 10.

    For an enantioselective synthesis of the alkaloids cis-195A, (pumiliotoxin C) and trans-195A, see (161).

  11. 11.

    Dr. H.M. Garraffo, Bethesda, MD, private communication.

  12. 12.

    For syntheses of 5,8-disubstituted indolizidines, see (168, 169).

  13. 13.

    The 17β-hydroxy isomer of 55 allegedly (212) obtained (cf. (183)) from the Asian salamander Cryptobranchus maximus exists only as a synthesis product (209). For a total synthesis of samandarone (16-oxo analog of 55) see (210). For additional literature, see (671).

  14. 14.

    Californian garter snakes (Thamnophis sp.) can accumulate tetrodotoxin (49) especially in the liver and store it for prolonged periods of time. In this way the non-venomous snake becomes poisonous for its mainly avian predators. Tetrodotoxin is sequestered by eating newts (Taricha sirtalis) (see Sect. 4.1.2) (140, 223), whose skin contains the toxin. The snake has become resistant by changing the amino acid pattern of the muscular Na+ channels (224) in the area critical for the binding of tetrodotoxin.

    A second example constitutes the Asian snake Rhabdophis tigrinus, which collects in its nuchal glands dietary toad venoms (see Sect. 4.1.1.16) (225, 226).

    Another defense system of snakes consists of the ejection of an evil-smelling fluid from anal glands. GC/EI-MS analysis of the volatile components of the secretions of garter snakes (Thamnophis spp.) resulted in the identification of small (C2 to C5) carboxylic acids, (CH3)3 N, and 2-piperidone. The same compounds were also found in the secretions of species from other snake families (672). Analysis of the secretion of Dumaril’s ground boa (Acrantophis dumerili) (673, 674) yielded cholesterol, fatty acids, and their amides. Among the volatile compounds small carboxylic acids (C3 to C5) were identified by GC/EI-MS. Three compounds were tentatively classified as amines. The ion m/z 30 of high abundance accompanied by m/z 44 (20% rel. int.) suggests the presence of a -CH2-CH2-NH2 end group. The low abundance of all other ions would be in agreement with aliphatic amines (17), but the ions m/z 172, 186, and 200 considered as molecular ions would have to be [M + H]+ species. In the secretion of the western diamondback rattlesnake (Crotalus atrox) 1-O-monoalkylglycerols were found (676) and identified by the EI spectra of their trimethylsilyl and isopropylidene derivatives; cf. Sect. 5.2.1.

  15. 15.

    For example, exendin-3 and -4 with 39 amino acids (213, 214), helodermin with 35 amino acids (215), helospectin I and II with 38 and 37 amino acids, respectively (216), or helothermine containing approximately 220 amino acids (217). For mass spectrometric techniques used for the structure elucidation, see Sect. 7.2.1.

  16. 16.

    Ions m/z 73, 147, and 221 have been observed in GC column bleeding (239).

  17. 17.

    FWHM: full width half maximum (17), a term used to define mass spectral resolution.

  18. 18.

    [M–H] comprises the main ion (nominal mass 703, exact mass 703.3667 Da) consisting of 12C, 1H, 14 N, 16O and 32S isotopes, and it is accompanied by a series of satellites containing heavier isotopes. The ions 2 mass units higher (705 Da) comprise a species containing 34S and several other species made up of combinations of 13C, 2H, 15 N, 17O, 18O, 33S, all of them differing somewhat in their exact masses. With sufficiently high resolution obtainable with an ICR instrument they can be separated. The signal representing the 34S-containing ion can be recognized by the exact mass difference between 32S and 34S (1.9958 Da) and its high intensity (4.4% of the intensity of the m/z 703 signal for each S atom present in the molecule; all the other m/z 705 signals amounting to about 1% or less). The observed intensity of 8.6% establishes the presence of two S atoms.

  19. 19.

    Platypus and Echidna (in German Schnabeltier and Ameisenigel) produce in crural glands connected to a spur on each hind limb toxic proteins of 4–6 kDa size (679681), which in part resemble those of reptiles (682).

  20. 20.

    The lorises when threatened raise their arms and eject the content of brachial glands together with saliva. GC/MS analysis of the secretion has revealed the presence of a host of compounds, and LC/MS a single 17.6 kDa protein component consisting of two chains (7.8 and 9.8 kDa) linked by two disulfide bridges (720).

  21. 21.

    It is a ravening beast, …, being touched it biteth deepe, and poisoneth deadly.” M.J. Dufton (657) in a historical review quotes from an English natural history text from 1607 enlarging then on the evil fame the shrew had in Britain and—probably introduced from there—in the USA. In the “Thierbuch” by Swiss Naturalist C. Gesner (1606) a similar statement can be found (“Ein klein fräsig/räubig Thier ist die Spitzmaus/eines unbarmhertzigen/trüglichen sins:.. und dañ so sie mag/so ertödtet sie mit ihrem giftigen biß” (A voraceous, rapaceous animal is the shrew, of a pitiless, deceptive mind: …and then if she wants she kills with her venomous bite) (662). In continental Europe, however, the fear seems to have been less pronounced: in a Swiss Natural History from 1809 there is nothing anymore from the deadly bite: “Es ist ein Irrthum, daß man sie für giftig hält, weil Hunde und Katzen sie nicht fressen, …” (It is an error to consider her as poisonous because dogs and cats don’t eat her) (661).

  22. 22.

    A few hints regarding the genesis of m/z 135 are: a compound lacking 3,4-methyl groups yields m/z 107, hence these methyl groups are not involved (710); compounds where both side chains contain double bonds conjugated with the furan ring yield the two ions arising from allylic cleavage (711, 717); small model compounds give no information (718); neither do analogous pyrrole compounds (718).

  23. 23.

    Kindly provided by Dr. P. Knechtle, Evolva SA, Reinach, Switzerland.

  24. 24.

    Post-source decay, this constitutes an ion fragmentation technique used with reflector-TOF instruments (17).

  25. 25.

    One must keep in mind that phosphate and sulfate residues have the same nominal mass and similar negative mass increments (-PO3H2 … 80.974, -SO3H … 80.965); see also (775).

  26. 26.

    Reference is given to (611). There are among other data major ions of an EI mass spectrum reported. The ion referred to as M (m/z 204) is 16 Da too low and the fragment ions correspond to those obtained from 22 (see Fig. 33). This would mean that the true M (m/z 220) is missing completely and only [M–O] is obtained, an unlikely proposition (generally not observed for N-oxides; even the EI mass spectrum of (CH3)3NO yields M+. (m/z 75) with 100% and [M−O] with 50% relative intensity. It seems more likely that the mass spectrum of 22 had been obtained.

  27. 27.

    For total syntheses, see (614).

  28. 28.

    In the Master’s thesis of Li-Ping Dai (612) bufogargarizanine D is designated as bufogargarizanine A. In addition to NMR data the ESI mass spectra of all three bufogargarizanines are reproduced, but they show besides [M + H]+ or [M–H] signals of low to medium abundance a large number of peaks not belonging to the compounds in question.

  29. 29.

    Bufogargarizanines should not be confused with bufogargarizins, which are 19-nor-bufadienolides from the same animal (652).

References

  1. Ryhage R, Stenhagen E (1959) Mass Spectrometric Studies. I. Methyl Esters of Saturated Normal Chain Carboxylic Acids. Arkiv Kemi 13:523

    Google Scholar 

  2. Finan PA, Reed RI, Snedden W (1958) The Application of Mass Spectrometry to Carbohydrate Chemistry. Chem Ind:1172

    Google Scholar 

  3. Kotchetkov NK, Wulfson NS, Chizhov OS, Zolotarev BM (1962) Investigation of Carbohydrates by Mass Spectrometry. Methyl Ethers of Monosaccharides. Докл Акад Наук СССР 147:1369

    Google Scholar 

  4. Heyns K, Scharmann H (1963) Massenspektroskopische Untersuchungen, II. Die Massenspektren von Derivaten der Monosaccharide und Aminozucker. Liebigs Ann Chem 667:183

    Google Scholar 

  5. Biemann K (1960) The Determination of Carbon Skeleton of Sarpagine by Mass Spectrometry. Tetrahedron Lett 1(36):9

    Google Scholar 

  6. Biemann K, Seibl J, Gapp F (1959) Mass Spectrometric Identification of Amino Acids. Biochem Biophys Res Commun 1:307

    CAS  Google Scholar 

  7. Budzikiewicz H, Djerassi C (1962) Mass Spectrometry in Structural and Stereochemical Problems. I. Steroid Ketones. J Am Chem Soc 84:1430

    CAS  Google Scholar 

  8. Djerassi C, Budzikiewicz H, Wilson JM (1962) Mass Spectrometry in Structural and Stereochemical Problems. VIII. Unsaturated Pentacyclic Triterpenoids. Tetrahedron Lett 3:263

    Google Scholar 

  9. Gilbert B, Ferreira JM, Owellen RJ, Swanholm CE, Budzikiewicz H, Durham LJ, Djerassi C (1962) Mass Spectrometry in Structural and Stereochemical Problems. II. Pyrifoline and Refractidine. Tetrahedron Lett 3:59

    Google Scholar 

  10. Selected Mass Spectral Data (Matrix) and (Standard) (1972) American Petroleum Institute Research Project 44, Texas A&M University, College Station, TX, USA

    Google Scholar 

  11. Hood A (1963) The Molecular Structure of Petroleum. In: McLafferty FW (ed) Mass Spectrometry of Organic Ions. Academic Press, New York, p 597

    Google Scholar 

  12. Biemann K (1966) Mass Spectrometry of Selected Natural Products. In: Zechmeister L (ed) Progress in the Chemistry of Organic Natural Products. Springer-Verlag, Wien, Austria, vol 24, p 1

    Google Scholar 

  13. Howe I, Jarman M (1985) New Techniques for the Mass Spectrometry of Natural Products. In: Herz W, Grisebach H, Kirby GW, Tamm Ch (eds) Progress in the Chemistry of Organic Natural Products. Springer-Verlag, Wien, Austria, vol 47, p 107

    Google Scholar 

  14. Budzikiewicz H, Djerassi C, Williams DH (1964) Structure Elucidation of Natural Products by Mass Spectrometry, Vol I: Alkaloids, Vol II: Steroids, Terpenoids, Sugars, and Miscellaneous Classes. Holden-Day, San Francisco

    Google Scholar 

  15. Waller GR, Ed. (1972) Biochemical Applications of Mass Spectrometry. Wiley, New York

    Google Scholar 

  16. Waller GR, Dermer OC, Eds. (1980) Biochemical Applications of Mass Spectrometry. First Supplementary Volume. Wiley, New York

    Google Scholar 

  17. Budzikiewicz H, Schäfer M (2012) Massenspektrometrie. Eine Einführung. 6. Aufl. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  18. Harrison AG (1992) Chemical Ionization Mass Spectrometry; 2nd Edn. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  19. Beckey HD (1977) Principles of Field Ionization and Field Desorption Mass Spectrometry. Pergamon, Oxford, UK

    Google Scholar 

  20. Fenselau C, Cotter RJ (1987) Chemical Aspects of Fast Atom Bombardment. Chem Rev 87:501

    CAS  Google Scholar 

  21. Zenobi R, Knochenmuss R (1998) Ion Formation in MALDI Mass Spectrometry. Mass Spectrom Rev 17:337

    CAS  Google Scholar 

  22. Gaskell SJ (1997) Electrospray. Principles and Practice. J Mass Spectrom 32:677

    CAS  Google Scholar 

  23. Mamyrin BA (2001) Time of Flight Mass Spectrometry (Concepts, Achievements, and Prospects). Int J Mass Spectrom 206:251

    CAS  Google Scholar 

  24. Miller PE, Denton MB (1986) The Quadrupole Mass Filter: Basic Operating Concepts. J Chem Educ 63:617

    CAS  Google Scholar 

  25. March RE (1997) An Introduction to Quadrupole Ion Trap Mass Spectrometry. J Mass Spectrom 32:351

    CAS  Google Scholar 

  26. Marshall AG, Hendrickson CL (2002) Fourier Transform Ion Cyclotron Resonance Detection: Principles and Experimental Configurations. Int J Mass Spectrom 215:59

    CAS  Google Scholar 

  27. Perry RH, Cooks RG, Noll RJ (2008) Orbitrap Mass Spectrometry: Instrumentation, Ion Motion and Applications. Mass Spectrom Rev 27:661

    CAS  Google Scholar 

  28. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr (2008) Ion Mobility-Mass Spectrometry. J Mass Spectrom 43:1

    CAS  Google Scholar 

  29. Uetrecht C, Rose RJ, van Duijn E, Lorenzen K, Heck AJR (2010) Ion Mobility Mass Spectrometry of Proteins and Protein Assemblies. Chem Soc Rev 39:1633

    CAS  Google Scholar 

  30. Caprioli RM (1990) Continuous-Flow Fast Atom Bombardment Mass Spectrometry. Anal Chem 62:477A

    CAS  Google Scholar 

  31. Bier ME, Cooks RG (1987) Membrane Interface for Selective Introduction of Volatile Compounds Directly into the Ionization Chamber of a Mass Spectrometer. Anal Chem 59:597

    CAS  Google Scholar 

  32. Nytoft HP, Bojesen-Koefoed JA, Christiansen FG, Fowler MG (2002) Oleanane or Lupane? Reappraisal of the Presence of Oleanane in Cretaceous-Tertiary Oils and Sediments. Org Geochem 33:1225

    CAS  Google Scholar 

  33. Panosyan AG, Mnatsakanyan VA (1977) Structure of a Pentacyclic Triterpene Alcohol from Centaurea aquarrosa. Chem Nat Comp 13:50

    Google Scholar 

  34. Henderson W, Wollrab V, Eglinton G (1969) Identification of Steranes and Triterpanes from a Geological Source by Capillary Gas Liquid Chromatography and Mass Spectrometry. Earth Sciences (Adv Org Geochem 1968) 31:181

    Google Scholar 

  35. Caspi E, Greig JB, Zander JM, Mandelbaum A (1969) Incorporation of Deuterium from Deuterium Oxide into Tetrahymanol Biosynthesised from Squalene. Chem Commun:28

    Google Scholar 

  36. Crawford M, Hanson SW, Koker MES (1975) The Structure of Cymbopogone, a Novel Triterpenoid from Lemongrass. Tetrahedron Lett 16:3099

    Google Scholar 

  37. Courtney JL, Shannon JS (1963) Studies in Mass Spectrometry. Triterpenoids: Structure Assignment to Some Friedelane Derivatives. Tetrahedron Lett 4:13

    Google Scholar 

  38. Shannon JS, MacDonald CG, Courtney JL (1963) Studies in Mass Spectrometry. Triterpenoids: Structure Assignment to Friedelane-y-one (y-al) and Derivatives. Tetrahedron Lett 4:173

    Google Scholar 

  39. Igoli OJ, Gray IA (2008) Friedelanone and other Triterpenoids from Hymenocardia acida. Int J Phys Sci 3:156

    Google Scholar 

  40. Hirota H, Moriyama Y, Tsuyuki T, Tanahashi Y, Takahashi T, Katoh Y, Satoh H (1975) The High Resolution Mass Spectra of Shionane and Fridelane Derivatives. Bull Chem Soc Japan 48:1884

    CAS  Google Scholar 

  41. Sengupta P, Chakraborty AK, Duffield AM, Durham LJ, Djerassi C (1968) Chemical Investigation on Putranjiva roxburghii. The Structure of a New Triterpene, Putranjivadione. Tetrahedron 24:1205

    CAS  Google Scholar 

  42. Protiva J, Pouzar V, Vystrčil A (1976) Mass Spectra of 12-Oxolupane Derivatives. Coll Czech Chem Commun 41:2225

    CAS  Google Scholar 

  43. Galbraith MN, Miller CJ, Rawson JWL, Ritchie E, Shannon JS, Taylor WC (1965) Moretenol and Other Triterpenes from Ficus macrophylla Desf. Aust J Chem 18:226

    CAS  Google Scholar 

  44. Ageta H, Arai Y (1983) Fern Constituents: Pentacyclic Triterpenoids Isolated from Polypodium niponicum and P. formosanum. Phytochemistry 22:1801

    CAS  Google Scholar 

  45. Van Dorsselaer A, Albrecht P, Ourisson G (1977) Identification of Novel (17αH)-Hopanes in Shales, Coals, Lignites, Sediments and Petroleum. Bull Soc Chim Fr:165

    Google Scholar 

  46. Hills IR, Whitehead EV (1970) Pentacyclic Triterpanes from Petroleum and Their Significance. Earth Sciences (Adv Org Geochem, 1966) 32:89

    Google Scholar 

  47. Ekweozor CM, Okogun JI, Ekong DEU, Maxwell JR (1979) Preliminary Organic Geochemical Studies of Samples from the Niger Delta (Nigeria). I. Analyses of Crude Oils for Triterpanes. Chem Geol 27:11

    CAS  Google Scholar 

  48. Wardroper AMK, Brooks PW, Humberston MJ, Maxwell JR (1977) Analysis of Steranes and Triterpanes in Geolipid Extracts by Automatic Classification of Mass Spectra. Geochim Cosmochim Acta 41:499

    CAS  Google Scholar 

  49. Kumar N, Seshadri TR (1976) A New Triterpene from Pterocarpus santalinus Bark. Phytochemistry 15:1417

    CAS  Google Scholar 

  50. Shiojima K, Arai Y, Masuda K, Takase Y, Ageta T, Ageta H (1992) Mass Spectra of Pentacyclic Triterpenoids. Chem Pharm Bull 40:1683

    CAS  Google Scholar 

  51. Herz W, Santhanam PS, Wahlberg I (1972) 3-epi-Betulinic Acid, a New Triterpenoid from Picramnia pentandra. Phytochemistry 11:3061

    CAS  Google Scholar 

  52. Roitman JN, Jurd L (1978) Triterpenoid and Phenolic Constituents of Colubrina granulosa. Phytochemistry 17:491

    CAS  Google Scholar 

  53. Protiva J, Tureček F, Vystrčil A (1977) Revised Structure of Thurberine. Synthesis of 3,12-Lupanedione. Coll Czech Chem Commun 42:140

    Google Scholar 

  54. Corbett RE, Young H (1966) Lichens and Fungi. Part II. Isolation and Structural Elucidation of 7β-Acetoxy-22-hydroxyhopane from Stricta billardierii Del. J Chem Soc (C):1556

    Google Scholar 

  55. Ogunkoya L (1981) Application of Mass Spectrometry in Structural Problems in Triterpenes. Phytochemistry 20:121

    CAS  Google Scholar 

  56. Hui WH, Li MM (1976) Structures of Eight New Triterpenoids and Isolation of Other Triterpenoids and Epi-ikshusterol from Stems of Lithocarpus cornea. J Chem Soc Perkin Trans I:23

    Google Scholar 

  57. Nakane T, Maeda Y, Ebihara H, Arai Y, Masuda K, Takano A, Ageta H, Shiojima K, Cai SQ, Abdel-Halim OB (2002) Fern Constituents: Triterpenoids fom Adiantum capillus-veneris. Chem Pharm Bull 50:1273

    CAS  Google Scholar 

  58. Řezanka T, Siristova L, Melzoch K, Sigler K (2010) Hopanoids from Bacteria and Cyanobacteria - Their Role in Cellular Biochemistry and Physiology, Analysis and Occurrence. Mini-Rev Org Chem 7:300

    Google Scholar 

  59. Karliner J, Djerassi C (1966) Terpenoids. LXVII. Mass Spectral and Nuclear Magnetic Resonance Studies of Pentacyclic Triterpene Hydrocarbons. J Org Chem 31:1945

    CAS  Google Scholar 

  60. Shannon JS (1963) Studies in Mass Spectrometry. VII. Triterpenoids: Ifflaionic Acid. Aust J Chem 16:683

    Google Scholar 

  61. Tschesche R, Axen U, Snatzke G (1963) Über Triterpene, XI. Die Konstitution des Äscins. Liebigs Ann Chem 669:171

    Google Scholar 

  62. Wünsche C, Löw I (1966) Zur retro-Diels-Alder-Reaktion pentacyclischer Triterpene unter Elektronenbeschuß. Protoäscigenin und verwandte Verbindungen. Tetrahedron 22:1893

    Google Scholar 

  63. Tursch B, Tursch E, Harrison IT, da Silva GBCT de CB, Monteiro HJ, Gilbert B, Mors WB, Djerassi C (1963) Terpenoids. LIII. Demonstration of Ring Conformational Changes in Triterpenes of the β-Amyrin Class Isolated from Stryphnodendron coriaceum. J Org Chem 28:2390

    Google Scholar 

  64. Budzikiewicz H, Wilson JM, Djerassi C (1963) Mass Spectrometry in Structural and Stereochemical Problems. XXXII. Pentacyclic Triterpenes. J Am Chem Soc 85:3688

    CAS  Google Scholar 

  65. Wyrzykiewicz E, Wrzeciono U, Zaprutko L (1989) Triterpenoids. Part IV. Mass Spectrometry of Pentacyclic Triterpenoids: 18β- and 18α-11-Oxooleanic Acid Derivatives. Org Mass Spectrom 24:105

    Google Scholar 

  66. Elgamal MHA, Fayez MBE, Snatzke G (1965) Constituents of Local Plants - VI. Liquoric Acid, a New Triterpenoid from the Roots of Glycyrrhiza glabra L. Tetrahedron 21:2109

    CAS  Google Scholar 

  67. Budzikiewicz H, Brauman JI, Djerassi C (1965) Massenspektrometrie und ihre Anwendung auf strukturelle und stereochemische Probleme - LXVII. Zum retro-Diels-Alder-Zerfall organischer Moleküle unter Elektronenbeschuß. Tetrahedron 21:1855

    CAS  Google Scholar 

  68. Berti G, Bottari F, Marsili A, Morelli I, Mandelbaum A (1968) Rearrangements of the Oxides of Hopene-I and Hopene-II under the Action of Boron Trifluoride. Tetrahedron Lett 9:529

    Google Scholar 

  69. Protiva J, Vystrčil A (1976) Reaction of Amides of 28-Lupanoic Acid with Lead Tetraacetate and Iodine. Mass Spectra of 12-Lupene Derivatives. Coll Czech Chem Commun 41:1200

    Google Scholar 

  70. Ageta H, Shiojima K, Masuda K, Lin T (1981) Composite Constituents: Four New Triterpenoids, Neolupenol, Tarolupenol and their Acetates Isolated from the Roots of a Japanese Dandelion, Taraxacum japonicum. Tetrahedron Lett 22:2289

    CAS  Google Scholar 

  71. Sultana N, Khalid A (2010) Phytochemical and Enzyme Inhibitory Studies on Indigenous Medicinal Plant Rhazia stricta. Nat Prod Res 24:305

    CAS  Google Scholar 

  72. Honda T, Round BAV, Bore L, Finley HJ, Favaloro FG Jr, Suh N, Wang Y, Sporn MB, Gribble GW (2000) Synthetic Oleanane and Ursane Triterpenoids with Modified Rings A and C: A Series of Highly Active Inhibitors of Nitric Oxide Production in Mouse Macrophages. J Med Chem 43:4233

    CAS  Google Scholar 

  73. Aiyar VN, Chopra GR, Jain AC, Seshadri TR (1973) Constitution of Putrone & Putrol. Indian J Chem 11:525

    CAS  Google Scholar 

  74. Sengupta P, Sen M, Rao SN, Das KG (1979) Terpenoids and Related Compounds. Part 25. Structures of the 25-Nortriterpenoids Putrol and Putrone. J Chem Soc Perkin Trans I:60

    Google Scholar 

  75. Akihisa T, Kokke WCMC, Tamura T, Nambara T (1992) 7-Oxodihydrokarounidiol [7-Oxo-D:C-friedo-olean-8-ene-3α,29-diol], a Novel Triterpene from Trichosanthes kirilowii. Chem Pharm Bull 40:1199

    CAS  Google Scholar 

  76. Rozen S, Shahak I, Bergmann ED (1975) Reactions of Ring C in Glycyrrhetic Acid Derivatives. Isr J Chem 13:234

    CAS  Google Scholar 

  77. Amirova GS (1982) The Structure of Isomeristotropic Acid. Хим Природ Соед 262 (Chem Nat Comp 18:246)

    Google Scholar 

  78. Diaz, JG, Fraga BM, Gonzales AG, Gonzáles P, Hernandez MG, Miranda JM (1984) Triterpenes from Ferula linkii. Phytochemistry 23:1471

    CAS  Google Scholar 

  79. Gonzáles AG, Ferro EA, Ravelo AG (1987) Triterpenes from Maytenus horrida. Phytochemistry 26:2785

    Google Scholar 

  80. Zeng L, Zhang RY, Wang D, Lou ZC (1990) Two Triterpenoids from Roots of Glycyrrhiza yunnanensis. Phytochemistry 29:3605

    CAS  Google Scholar 

  81. Kutney JP, Eigendorf G, Rogers IH (1969) Mass Spectral Fragmentation Studies of Triterpenes Related to Serratenediol. Tetrahedron 25:3753

    CAS  Google Scholar 

  82. Bryce TA, Martin-Smith M, Osske G, Schreiber K, Subramanian G (1967) Sterols and Triterpenoids - XI. Isolation of Arundoin and Sawamilletin from Cuban Sugar Cane Wax. Tetrahedron 23:1283

    CAS  Google Scholar 

  83. Salmykova IA, Zorina AD, Lushchizkaya IM, Matyukhina LG, Martynov VF (1983) Miricolon - New Triterpenoid from the Bark of Alnaster fructicosus Ledeb. Ж Общей Хим 53:2412

    Google Scholar 

  84. Heupel RC (1985) Varietal Similarities and Differences in the Polycyclic Isopentenoid Composition of Sorghum. Phytochemistry 24:2929

    CAS  Google Scholar 

  85. Ahmed Z, Ali D, Malik A (2006) Structure Determination of Ursene-type Triterpenes by NMR Techniques. Magn Reson Chem 44:717

    CAS  Google Scholar 

  86. Savina AA, Sokolskaya TA, Zakharov VF (1988) 11,12-Dehydroursolic Acid Lactone from Leaves of Eucalyptus viminalis. Chem Nat Comp 24:253 (Original: Хим Прир Соед 1988:295)

    Google Scholar 

  87. Siddiqui BS, Sultana I, Begum S (2000) Triterpenoidal Constituents from Eucalyptus camaldulensis var. obtusa Leaves. Phytochemistry 54:861

    CAS  Google Scholar 

  88. Begum S, Farhat, Sultana I, Siddiqui BS, Shaheen F, Gilani AH (2000) Spasmolytic Constituents from Eucalyptus camaldulensis var. obtusa Leaves. J Nat Prod 63:1265

    Google Scholar 

  89. Pereda-Miranda R, Delgado G (1990) Triterpenoids and Flavonoids from Hyptis albida. J Nat Prod 53:182

    CAS  Google Scholar 

  90. Misra L, Laatsch H (2000) Triterpenoids, Essential Oil and Photo-Oxidative 28 → 13-Lactonization of Oleanolic Acid from Lantana camera. Phytochemistry 54:969

    CAS  Google Scholar 

  91. Arai Y, Kusumoto Y, Nagao M, Shiojima K, Ageta H (1983) Composite Substituents: Aliphatics and Triterpenoids Isolated from the Whole Plants of Ixeris debilis and I. dentata. Yakugaku Zasshi 103:356

    CAS  Google Scholar 

  92. Nishimoto K, Ito M, Natori S, Ohmoto T (1968) The Structures of Arundoin, Cylindrin and Fernenol. Triterpenoids of Fernane and Arborane Groups of Imperata cylindica var. koenigii. Tetrahedron 24:735

    CAS  Google Scholar 

  93. Ageta H, Shiojima K, Arai Y (1987) Acid-Induced Rearrangement of Triterpenoid Hydrocarbons Belonging to the Hopane and Migrated Hopane Series. Chem Pharm Bull 35:2705

    CAS  Google Scholar 

  94. Vorbrüggen H, Pakrashi SC, Djerassi C (1963) Terpenoide LIV. Arborinol, ein neuer Triterpen-Typus. Liebigs Ann Chem 668:57

    Google Scholar 

  95. Kennard O, Riva di Sanseverino L, Vorbrüggen H, Djerassi C (1965) The Complete Structure of the Triterpene Arborinol. Tetrahedron Lett 6:3433

    Google Scholar 

  96. Arthur HR, Hui WH, Aplin RT (1965) The Structure of Simiarenol from the Hong Kong Species of Rhododendron simiarum. Tetrahedron Lett 6:937

    Google Scholar 

  97. Aplin RT, Arthur HR, Hui WH (1966) The Structure of the Triterpene Simiarenol (an E:B friedo-Hop-5-ene) from the Hong Kong Species of Rhododendron simiarum. J Chem Soc (C):1251

    Google Scholar 

  98. Gonzáles AG, Martín JD, Pérez C (1974) Three New Triterpenes from the Lichen Xanthoria resendei. Phytochemistry 13:1547

    Google Scholar 

  99. Singh H, Kapoor VK, Piozzi F, Passannanti S, Paternostro M (1978), Isomotiol, a New Triterpene from Strychnos potatorum. Phytochemistry 17:154

    CAS  Google Scholar 

  100. Hauke V, Graff R, Wehrung P, Trendel JM, Albrecht P, Riva A, Hopfgartner G, Gülaçar FO, Buchs A, Eakin PA (1992) Novel Triterpene-Derived Hydrocarbons of the Arborane/Fernane Series in Sediments: Part II. Geochim Cosmochim Acta 56:3595

    CAS  Google Scholar 

  101. Friedrich C, von Domarus C (1998) Carl Friedrich Wilhelm Meissner (1792-1853) - Apotheker und Alkaloidforscher. Pharmazie 53:67

    CAS  Google Scholar 

  102. Meissner W (1819) II. Ueber ein neues Pflanzenalkali (Alkaloid). J Chem Phys 25:377 (recte 379)

    Google Scholar 

  103. Winterstein E, Trier G (1910) Die Alkaloide. Eine Monographie der natürlichen Basen. Gebrüder Borntraeger, Berlin

    Google Scholar 

  104. Pelletier SW (1983) The Nature and Definition of an Alkaloid. In: Pelletier SW (ed) Alkaloids: Chemical and Biological Perspectives. Wiley-Interscience, New York, Vol 1, p 1.

    Google Scholar 

  105. Fehlhaber HW (1968) Massenspektrometrische Strukturermittlung von Peptid-Alkaloiden. Fresenius Z Anal Chem 235:91

    CAS  Google Scholar 

  106. Giacomelli SR, Maldaner G, Gonzaga WA, Garcia CM, da Silva UF, Dalcol II, Morel AF (2004) Cyclic Peptide Alkaloids from the Bark of Discaria americana. Phytochemistry 65:933

    CAS  Google Scholar 

  107. Bienz S, Bisegger P, Guggisberg A, Hesse M (2005) Polyamine Alkaloids. Nat Prod Rep 22:647

    CAS  Google Scholar 

  108. Hesse M (2005) Alkaloids. In: Gross ML, Caprioli RM, Nibbering NMM (eds) The Encyclopedia of Mass Spectrometry, vol 4. Elsevier, Amsterdam, p 748

    Google Scholar 

  109. Rinehart KL Jr, Van Lear GE (1970) Antibiotics. In: Waller GR (ed) Biochemical Applications of Mass Spectrometry. Wiley-Interscience, New York, p 449

    Google Scholar 

  110. Borders DB, Hargreaves RT (1980) Antibiotics. In: Waller GR, Dermer OC (eds) Biochemical Applications of Mass Spectrometry. First Supplementary Volume. Wiley-Interscience, New York, p 567

    Google Scholar 

  111. Budzikiewicz H (2010) Microbial Siderophores. In: Kinghorn AD, Falk H, Kobayashi J (eds) Progress in the Chemistry of Organic Natural Products. Springer-Verlag, Wien, Austria, vol 92, p 1

    Google Scholar 

  112. Budzikiewicz H, Djerassi C, Williams DH (1964) Structure Elucidation of Natural Products by Mass Spectrometry, vol 1: Alkaloids. Holden-Day, San Francisco

    Google Scholar 

  113. Hesse M (1974) Indolalkaloide. In: Budzikiewicz H (ed) Progress in Mass Spectrometry, vol 1. Verlag Chemie, Weinheim, Germany

    Google Scholar 

  114. Hesse M, Bernhard HO (1975) Alkaloide außer Indol-, Triterpen- und Steroidalkaloide. In: Budzikiewicz H (ed) Progress in Mass Spectrometry, vol 3. Verlag Chemie, Weinheim, Germany

    Google Scholar 

  115. Budzikiewicz H (1970) Steroids. In: Waller GR (ed) Biochemical Applications of Mass Spectrometry. Wiley-Interscience, New York, p 283

    Google Scholar 

  116. Saporito RA, Spande TF, Garraffo HM, Donnelly MA (2009) Arthropod Alkaloids in Poison Frogs: A Review of the ‘Dietary Hypothesis’. Heterocycles 79:277

    CAS  Google Scholar 

  117. Daly JW, Brown GB, Mensah-Dwumah M, Myers CW (1978) Classification of Skin Alkaloids from Neotropical Poison-Dart Frogs (Dendrobatidae). Toxicon 16:163

    CAS  Google Scholar 

  118. Daly JW, Myers CW, Whittaker N (1987) Further Classification of Skin Alkaloids from Neotropical Poison Frogs (Dendrobatidae), with a General Survey of Toxic/Noxious Substances in the Amphibia. Toxicon 25:1023

    CAS  Google Scholar 

  119. Daly JW, Spande TF, Garraffo HM (2005) Alkaloids from Amphibian Skin: A Tabulation of Over Eight-Hundred Compounds. J Nat Prod. 68:1556

    CAS  Google Scholar 

  120. Saporito RA, Donnelly MA, Spande TF, Garraffo HM (2012) A Review of Chemical Ecology in Poison Frogs. Chemoecology 22:159

    CAS  Google Scholar 

  121. Garraffo HM, Spande TF, Jones TH, Daly JW (1999) Ammonia Chemical Ionization Tandem Mass Spectrometry in Structure Determination of Alkaloids. I. Pyrrolidines, Piperidines, Decahydroquinolines, Pyrrolizidines, Indolizidines, Quinolizidines, and an Azabicyclo[5.3.0]decane. Rapid Commun Mass Spectrom 13:1553

    CAS  Google Scholar 

  122. Smith SQ, Jones TH (2004) Tracking the Cryptic Pumiliotoxins. Proc Natl Acad Sci USA 101:7841

    CAS  Google Scholar 

  123. Smith BP, Tyler MJ, Kaneko T, Garraffo HM, Spande TF, Daly JW (2002) Evidence for the Biosynthesis of Pseudophrynamine Alkaloids by an Australian Myobatrachid Frog (Pseudophryne) and for Sequestration of Dietary Pumiliotoxins. J Nat Prod 65:439

    CAS  Google Scholar 

  124. Saporito RA, Donnelly MA, Norton RA, Garraffo HM, Spande TF, Daly JW (2007) Oribatid Mites as a Major Dietary Source for Alkaloids in Poison Frogs. Proc Natl Acad Sci USA 104:8885

    CAS  Google Scholar 

  125. Daly JW, Ware N, Saporito RA, Spande TF, Garraffo HM (2009) N-Methyldecahydroquinolines: An Unexpected Class of Alkaloids from Amazonian Poison Frogs (Dendrobatidae) J Nat Prod 72:1110

    CAS  Google Scholar 

  126. Saporito RA, Garraffo HM, Donnelly MA, Edwards AL, Longino JT, Daly JW (2004) Formicine Ants: An Arthropod Source for the Pumiliotoxin Alkaloids of Dendrobatid Poison Frogs. Proc Natl Acad Sci USA 101:8045

    CAS  Google Scholar 

  127. Mebs D, Jansen M, Köhler G, Pogoda W, Kauert G (2010) Myrmacophagy and Alkaloid Sequestration in Amphibians: a Study on Ameerega picta (Dendrobatidae) and Elachistocleis sp. (Microhylidae) Frogs. Salamandra 46:11

    Google Scholar 

  128. Clark VC, Raxworthy CJ, Rakotomalala V, Sierwald P, Fisher BL (2005) Convergent Evolution of Chemical Defense in Poison Frogs and Arthropod Prey between Madagascar and the Neotropics. Proc Natl Acad Sci USA 102:11617

    CAS  Google Scholar 

  129. Clark VC, Rakotomalala V, Ramilijaona O, Abrell L, Fisher BL (2006) Individual Variation in the Alkaloid Content of Poison Frogs of Madagascar (Mantella; Mantellidae). J Chem Ecol 32:2219

    CAS  Google Scholar 

  130. Saporito RA, Donnelly MA, Madden AA, Garraffo HM, Spande TF (2010) Sex-Related Differences in Alkaloid Chemical Defenses of the Dendrobatid Frog Oophaga pumilio from Cayo Nancy, Bocas del Toro, Panama. J Nat Prod 73:317

    CAS  Google Scholar 

  131. Takada W, Sakata T, Shimano S, Enami Y, Mori N, Nishida R, Kuwahara Y (2005) Scheloribatid Mites as the Source of Pumiliotoxins in Dendrobatid Frogs. J. Chem. Ecol 31:2403

    CAS  Google Scholar 

  132. Raspotnig G, Norton RA, Heethoff M (2011) Oribatid Mites and Skin Alkaloids in Poison Frogs. Biol Lett 7:555

    Google Scholar 

  133. Saporito RA, Norton RA, Andriamaharavo NR, Garraffo HM, Spande TF (2011) Alkaloids in the Mite Scheloribates laevigatus: Further Alkaloids Common to Oribatid Mites and Poison Frogs. J Chem Ecol 37:213

    CAS  Google Scholar 

  134. Vences M, Schulz S, Poth D, Rodriguez A (2011) Defining Frontiers in Mite and Frog Alkaloid Research. Biol Lett 7:557

    Google Scholar 

  135. Daly JW, Garraffo HM, Spande TF, Clark VC, Ma J, Ziffer H, Cover JF Jr (2003) Evidence for an Enantioselective Pumiliotoxin 7-Hydroxylase in Dendrobatid Poison Frogs of the Dendrobates. Proc Natl Acad Sci USA 100:11092

    CAS  Google Scholar 

  136. Simmaco M, Mignogna G, Barra D (1998) Antimicrobial Peptides from Amphibian Skin: What Do They Tell Us? Pept Sci 47:435

    Google Scholar 

  137. Grant T, Colombo P, Verrastro L, Saporito RA (2012) The Occurrence of Defensive Alkaloids in Non-Integumentary Tissues of the Brazilian Red-Belly Toad Melanophryniscus simplex (Bufonidae). Chemoecology 22:169

    Google Scholar 

  138. Maan ME, Cummings ME (2012) Poison Frog Colors are Honest Signals of Toxicity, Particularly for Bird Predators. Am Nat 179:E1

    Google Scholar 

  139. Gray HM, Kaiser H, Green DM (2010) Does Alkaloid Sequestration Protect the Green Poison Frog, Dendrobates auratus, from Predator Attacks? Salamandra 46:235

    Google Scholar 

  140. Savitzky AH, Mori A, Hutchinson DA, Saporito RA, Burghardt GM, Lillywhite HB, Meinwald J (2012) Sequestered Defensive Toxins in Tetrapod Vertebrates: Principles, Patterns, and Prospects for Further Studies. Chemoecology 22:141

    CAS  Google Scholar 

  141. Daly JW, Wilham JM, Spande TF, Garraffo HM, Gil RR, Silva GL, Vaira M (2007) Alkaloids in Bufonid Toads (Melanophryniscus): Temporal and Geographic Determinants for Two Argentinian Species. J Chem Ecol 33:871

    CAS  Google Scholar 

  142. Saporito RA, Isola M, Maccachero VC, Condon K, Donnelly MA (2010) Ontogenetic Scaling of Poison Glands in a Dendrobatid Poison Frog. J Zool 282:238

    Google Scholar 

  143. Robinson B, Smith GF, Jackson AH, Shaw D, Frydman B, Deulofeu V (1961) Dehydrobufotenin. Proc Chem Soc:310

    Google Scholar 

  144. Stoffman EJL, Clive DLJ (2010) Synthesis of 4-Haloserotonin Derivatives and Synthesis of the Toad Alkaloid Dehydrobufotenine. Tetrahedron 66:4452

    CAS  Google Scholar 

  145. Maciel NM, Schwartz CA, Pires OR Jr, Sebben A, Castro MS, Sousa MV, Fontes W, Schwartz ENF (2003) Composition of Indolealkylamines of Bufo rubescens Cutaneous Secretions Compared to Six Other Brazilian Bufonids with Phylogenetic Implications. Comp Biochem Physiol B 134:641

    Google Scholar 

  146. Habermehl G (1969) Chemie und Biochemie von Amphibiengiften. Naturwissenschaften 56:615

    CAS  Google Scholar 

  147. Becker H (1984) Inhaltsstoffe der Erdkröte (Bufo bufo). Pharm Z 13:129

    Google Scholar 

  148. Phisalix, Bertrand (1893) Toxicité comparée du sang et du venin de chapaud commun considerée au point de vue de la sécrétion interne des glandes cutanées de cet animal. Compt Rend Hebd Séances Mém Soc Biol 45:477

    Google Scholar 

  149. Phisalix C, Bertrand G (1902) Sur les principes de venin de chapaud commun (Bufo vulgaris L.). Compt Rend Hebd Séances Mém Soc Biol 54:932

    Google Scholar 

  150. Jensen H, Chen KK (1932) Chemische Studien über Krötengifte, V. Mitteil.: Die basischen Bestandteile des Kröten-Sekrets. Ber Dtsch Chem Ges 65:1310

    Google Scholar 

  151. Wieland H, Konz W, Mittasch H (1934) Die Konstitution von Bufotenin und Bufotenidin. Über Kröten-Giftstoffe. VII. Liebigs Ann Chem 513:1

    CAS  Google Scholar 

  152. McClean S, Robinson RC, Shaw C, Smyth WF (2002) Characterisation and Determination of Indole Alkaloids in Frog-Skin Secretions by Electrospray Ionisation Ion Trap Mass Spectrometry. Rapid Commun Mass Spectrom 16:346

    CAS  Google Scholar 

  153. Karle IL, Karle J (1969) The Structural Formula and Crystal Structure of O-p-Bromobenzoate Derivative of Batrachotoxinine A, C31H38NO6Br, a Frog Venom and Steroidal Alkaloid. Acta Cryst B 25:428

    Google Scholar 

  154. Tokuyama T, Daly J, Witkop B (1969) The Structure of Batrachotoxin, a Steroidal Alkaloid from the Colombian Arrow Poison Frog, Phyllobates aurotaenia, and Partial Synthesis of Batrachotoxin and its Analogs and Homologs. J Am Chem Soc 91:3931

    CAS  Google Scholar 

  155. Kurosu M, Marcin LR, Grinsteiner TJ, Kishi Y (1998) Total Synthesis of (±)-Batrachotoxinin A. J Am Chem Soc 120:6627

    CAS  Google Scholar 

  156. Tokuyama T, Daly JW (1983) Steroidal Alkaloids (Batrachotoxins and 4β-Hydroxybatrachotoxins), “Indole Alkaloids” (Calycanthine and Chimonanthine) and a Piperidinyldipyridine Alkaloid (Noranabasamine) in Skin Extracts from the Colombian Poison-Dart Frog Phyllobates terribilis (Dendrobatidae). Tetrahedron 39:41

    CAS  Google Scholar 

  157. Clark VC, Harinantenaina L, Zeller M, Ronto W, Rocca J, Dossey AT, Rakotondravony D, Kingston DGI, Shaw C (2012) An Endogenous Bile Acid and Dietary Sucrose from Skin Secretions of Alkaloid-Sequestring Poison Frogs. J Nat Prod 75:473

    CAS  Google Scholar 

  158. Spiteller-Friedmann M, Spiteller G (1965) Schlüsselbruchstücke in den Massenspektren von Alkaloiden. 4. Mitt.: Piperidin-Alkaloide. Monatsh Chem 96:104

    Google Scholar 

  159. Daly JW, Karle I, Myers CW, Tokuyama T, Waters JA, Witkop B (1971) Histrionicotoxins: Roentgen-Ray Analysis of the Novel Allenic and Acetylenic Spiroalkaloids Isolated from a Colombian Frog, Dendrobates histrionicus. Proc Nat Acad Sci USA 68:1870

    CAS  Google Scholar 

  160. Adachi Y, Kamei N, Yokoshima S, Fukuyama T (2011) Total Synthesis of (–)-Histrionicotoxin. Org Lett 13:4446

    CAS  Google Scholar 

  161. Gärtner M, Qu J, Helmchen G (2012) Enantioselective Syntheses of the Alkaloids cis-195A (Pumiliotoxin C) and trans-195A Based on Multiple Application of Asymmetric Catalysis. J Org Chem 77:1186

    Google Scholar 

  162. Spande TF, Jain P, Garraffo HM, Pannell LK, Yeh HJC, Daly JW, Fukumoto S, Imamura K, Tokuyama T, Torres JA, Snelling RR, Jones TH (1999) Occurrence and Significance of Decahydroquinolines from Dendrobatid Poison Frogs and a Myrmicine Ant: Use of 1H and 13C NMR in Their Conformational Analysis. J Nat Prod 62:5

    CAS  Google Scholar 

  163. Jones TH, Gorman JST, Snelling RR, Delabie JHC, Blum MS, Garraffo HM, Jain P, Daly JW, Spande TF (1999) Further Alkaloids Common to Ants and Frogs: Decahydroquinolines and a Quinolizidine. J Chem Ecol 25:1999

    Google Scholar 

  164. Garraffo HM, Jain P, Spande TF, Daly JW, Jones TH, Smith LJ, Zottig VE (2001) Structure of Alkaloid 275A, a Novel 1-Azabicylo[5.3.0]decane from a Dendrobatid Frog, Dendrobates lehmanni: Synthesis of the Tetrahydrodiastereomers. J Nat Prod 64:421

    CAS  Google Scholar 

  165. Lesma G, Sacchetti A, Silvani A (2010) Total Synthesis of 275A Lehmizidine Frog Skin Alkaloid (or its Enantiomer). Tetrahedron: Asymmetry 21:2329

    CAS  Google Scholar 

  166. Saporito RA, Donnelly MA, Hoffman RL, Garraffo HM, Daly JW (2003) A Siphonotid Millipede (Rhinotus) as the Source of Spiropyrrolizidine Oximes of Dendrobatid Frogs. J Chem Ecol 29:2781

    CAS  Google Scholar 

  167. Meinwald J, Smolanoff J, McPhail AT, Miller RW, Eisner T, Hicks K (1975) Nitropolyzonamine: A Spirocyclic Nitro Compound from the Defensive Glands of a Millipede (Polyzonium rosalbum). Tetrahedron Lett 28:2367

    Google Scholar 

  168. Kobayashi S, Toyooka N, Zhou D, Tsuneki H, Wada T, Sasaoka T, Sakai H, Nemoto H, Garraffo HM, Spande TF, Daly JW (2007) Flexible Synthesis of Poison-Frog Alkaloids of the 5,8-Disubstituted Indolizidine-Class. II: Synthesis of (–)-209B, (–)-231C, (–)-233D, (–)-235B″, (–)-221I, and an Epimer of 193E and Pharmacological Effects at Neuronal Nicotinic Acetylcholine Receptors. Beilstein J Org Chem 3, No. 30

    Google Scholar 

  169. Zhou DJ, Toyooka N (2012) Synthesis of 5,8-Disubstituted Indolizidine Poison-Frog Alkaloids. Chem J Chin Univ 33:511

    CAS  Google Scholar 

  170. Daly JW, Witkop B, Tokuyama T, Nishikawa T, Karle IL (1977) Gephyrotoxins, Histrionicotoxins and Pumiliotoxins from the Neotropical Frog Dendrobates histrionicus. Helv Chim Acta 60:1128

    CAS  Google Scholar 

  171. Rodrígues A, Poth D, Schulz S, Vences M (2011) Discovery of Skin Alkaloids in Miniaturized Eleutherodactylid Frog from Cuba. Biol Lett 7:414

    Google Scholar 

  172. Adriamaharavo NR, Adriantsiferana M, Stevenson PA, O’Mahony G, Yeh HJC, Kaneko T, Garraffo HM, Spande TF, Daly JW (2005) A Revised Structure for Alkaloid 235C Isolated from Skin Extracts of Mantellid (Mantella) Frogs of Madagascar. J Nat Prod 68:1743

    Google Scholar 

  173. Tursch B, Daloze D, Dupont M, Pasteels JM, Tricot MC (1971) A Defense Alkaloid in a Carnivorous Beetle. Experientia 27:1380

    CAS  Google Scholar 

  174. Sloggett JJ, Obrycki JJ, Hayness KF (2009) Identification and Quantification of Predation: Novel Use of Gas Chromatography - Mass Spectrometric Analysis of Prey Alkaloid Markers. Funct Ecol 23:416

    Google Scholar 

  175. Tokuyama T, Nishimori N, Shimada A, Edwards MW, Daly JW (1987) New Classes of Amidine, Indolizidine and Qinolizidine Alkaloids from a Poison-Frog, Dendrobates pumilio (Dendrobatidae). Tetrahedron 43:643

    CAS  Google Scholar 

  176. Tsukanov SV, Comins DL (2011) Concise Total Synthesis of the Frog Alkaloid (–)-205B. Angew Chem 123:8785 (Int Ed 50:8626)

    Google Scholar 

  177. Spande TF, Garraffo HM, Yeh HJC, Pu QL, Pannell LK, Daly JW (1992) A New Class of Alkaloids from Dendrobatid Poison Frog: A Structure for Alkaloid 251F. J Nat Prod 55:707

    CAS  Google Scholar 

  178. Daly JW, Garraffo HM, Pannell LK, Spande TF, Severini C, Erspamer V (1990) Alkaloids from Australian Frogs (Myobatrachidae): Pseudophrynamines and Pumiliotoxins. J Nat Prod 53:407

    CAS  Google Scholar 

  179. Müller CE (1996) Epibatidin - ein nicotinartiges, analgetisch wirksames Alkaloid aus Pfeilgiftfröschen. Pharm Z 25:85

    Google Scholar 

  180. Spande TF, Garaffo HM, Edwards MW, Yeh HJC, Pannell L, Daly JW (1992) Epibatidine: A Novel (Chloropyridyl)azabicycloheptane with Potent Analgesic Activity from an Ecuadoran Poison Frog. J Am Chem Soc 114:3475

    CAS  Google Scholar 

  181. Fitch RW, Spande TF, Garraffo HM, Yeh HCJ, Daly JW (2010) Phantsmidine: An Epibatidine Congener from the Ecuadorian Poison Frog Epipedobates anthonyi. J Nat Prod 73:331

    CAS  Google Scholar 

  182. Fuhrman FA, Fuhrman GJ, Mosher HS (1969) Toxin from Skin of Frogs of the Genus Atelopus. Differentiation from Dendrobatid Toxins. Science 165:1376

    Google Scholar 

  183. Daly JW, Garraffo HM, Spande TF (1993) Amphibian Alkaloids. In: Cordell GA (ed) The Alkaloids. Chemistry and Pharmacology. Academic Press, San Diego, CA, USA, vol 43, p 185

    Google Scholar 

  184. Yotsu-Yamashita M, Kim YH, Dudley SC Jr, Choudhary G, Pfahnl A, Oshima Y, Daly JW (2004) The Structure of Zetekitoxin AB, a Saxitoxin Analog from the Panamanian Golden Frog Atelopus zeteki: A Potent Sodium-Channel Blocker. Proc Natl Acad Sci USA 101:4346

    CAS  Google Scholar 

  185. Tanino H, Nakata T, Kaneko T, Kishi Y (1977) A Stereospecific Total Synthesis of d,l-Saxotoxin. J Am Chem Soc 99:2818

    Google Scholar 

  186. Schantz EJ, Ghazarossian VE, Schnoes HK, Strong FM, Springer JP, Pezzanite JO, Clardy J (1975) The Structure of Saxitoxin. J Am Chem Soc 97:1238

    CAS  Google Scholar 

  187. Arakawa O, Noguchi T, Shida Y, Onoue Y (1994) Occurrence of Carbamoyl-N-hydroxy Derivatives of Saxitoxin and Neosaxitoxin in a Xanthid Crab Zosimus aeneus. Toxicon 32:175

    CAS  Google Scholar 

  188. Arakawa O, Nishio S, Noguchi T, Shida Y, Onoue Y (1995) A New Saxitoxin Analogue from Xanthid Crab Atergatis floridus. Toxicon 33:1577

    Google Scholar 

  189. Llewellyn LE (2006) Saxitoxin, a Toxic Marine Natural Product that Targets a Multitude of Receptors. Nat Prod Rep 23:200

    CAS  Google Scholar 

  190. Kodama M, Ogata T, Sakamoto S, Sato S, Honda T, Miwatani T (1990) Production of Paralytic Shellfish Toxins by a Bacterium Moraxella sp. Isolated from Protogonyaulax tamarensis. Toxicon 28:707

    CAS  Google Scholar 

  191. Sevcik C, Noriega J, D’Suze G (2003) Identification of Enterobacter Bacteria as Saxitoxin Producers in Cattle’s Rumen and Surface Water from Venzuelan Savannahs. Toxicon 42:359

    CAS  Google Scholar 

  192. Yotsu M, Yasumoto T, Kim YH, Naoki H, Kao CY (1990) The Structure of Chiriquitoxin from the Costa Rican Frog Atelopus chiriquiensis. Tetrahedron Lett 31:3187

    CAS  Google Scholar 

  193. Shoji Y, Yotsu-Yamashita M, Miyazawa T, Yasumoto T (2001) Electrospray Ionization Mass Spectrometry of Tetrodotoxin and its Analogs: Liquid Chromatography/Mass Spectrometry, Tandem Mass Spectrometry, and Liquid Chromatography/Tandem Mass Spectrometry. Anal Biochem 290:10

    Google Scholar 

  194. Hesse M, Bernhard HO (1975) Alkaloide außer Indol-,Triterpen- und Steroidalkaloide. In: Budzikiewicz H (ed) Progress in Mass Spectrometry. Verlag Chemie, Weinheim, Germany, vol 3, p 217

    Google Scholar 

  195. Zhang JW, Gao JM, Xu T, Zhang XC, Ma YT, Jarussophon S, Konishi Y (2009) Antifungal Activity of Alkaloids from the Seeds of Chimonanthus praecox. Chem Biodivers 6:838

    CAS  Google Scholar 

  196. Hesse M (1974) Indolalkaloide. In: Budzikiewicz H (ed) Progress in Mass Spectrometry. Verlag Chemie, Weinheim, Germany, vol 1 p 238

    Google Scholar 

  197. Oka K, Kantrowitz JD, Spector S (1985) Isolation of Morphine from Toad Skin. Proc Natl Acad Sci USA 82:1852

    CAS  Google Scholar 

  198. Wieland H, Alles R (1922) Über den Giftstoff der Kröte. Ber Deutsche Chem Ges 55: 1789

    Google Scholar 

  199. Urscheler HR, Tamm C, Reichstein T (1955) Die Giftstoffe der Europäischen Erdkröte. Über Krötengifte, 8. Mitt. Helv Chim Acta 4:883

    Google Scholar 

  200. Shimada K, Fujii Y, Yamashita E (née Mitsuishi), Niizaki Y, Sato Y, Nambara T(1977) Studies on Cardiotonic Steroids from the Skin of Japanese Toad. Chem Pharm Bull 25:714

    Google Scholar 

  201. Shimada K, Nambara T (1980) Isolation and Characterization of a New Type of Bufotoxin from the Skin of Bufo americanus. Chem Pharm Bull 28:1559

    CAS  Google Scholar 

  202. Shimada K, Ohishi K, Nambara T (1984) Isolation of Bufotalin 3-Suberoyl-histidine and -3-Methylhistidine esters from the Skin of Bufo melanostictus Schneider. Tetrahedron Lett 25:551

    CAS  Google Scholar 

  203. Shimada K, Miyashiro Y, Nishio T (2006) Characterization of in vitro Metabolites of Toad Venom Using High-Perfomance Liquid Chromatography and Liquid Chromatography-Mass Spectrometry. Biomed Chromatogr 20:1321

    CAS  Google Scholar 

  204. Buchwald HD, Durham L, Fischer HG, Harada R, Mosher HS, Kao CY, Fuhrman FA (1964) Identity of Tarichatoxin and Tetrodotoxin. Science 143:474

    CAS  Google Scholar 

  205. Lehman EM, Brodie ED Jr, Brodie ED III (2004) No Evidence for an Endosymbiotic Bacterial Origin of Tetrodotoxin in the Newt Taricha granulosa. Toxicon 44:243

    CAS  Google Scholar 

  206. Habermehl G, Haaf A (1968) Cholesterin als Vorstufe in der Biosynthese der Salamanderalkaloide. Chem Ber 101:198

    CAS  Google Scholar 

  207. Habermehl G, Spiteller G (1967) Massenspektren der Salamander-Alkaloide. Liebigs Ann Chem 706:213

    CAS  Google Scholar 

  208. Habermehl G, Göttlicher S (1965) Die Konstitution und Konfiguration des Cycloneosamandions. Chem Ber 98:1

    CAS  Google Scholar 

  209. Benn M, Shaw R (1974) A Salamander Alkaloid Synthesis. Can J Chem 52:2936

    CAS  Google Scholar 

  210. Hara S, Oka K (1967) A Total Synthesis of Samandarone. J Am Chem Soc 89:1041

    CAS  Google Scholar 

  211. Mebs D, Pogoda W (2005) Variability of Alkaloids in the Skin Secretion of the European Fire Salamander (Salamandra salamandra terrestris). Toxicon 45:603

    CAS  Google Scholar 

  212. Hara S, Oka M (1970) 3-Aza-A-homo-5β-androstan-17-β-ol-1α,4α-oxide. Japan Pat 7018,663 (Chem Abstr 73:56316)

    Google Scholar 

  213. Eng J, Kleinman WA, Singh L, Singh G, Raufman JP (1992). Isolation and Chatacterization of Exendin-4, an Exendin-3 Analogue, from Heloderma suspectum Venom. Further Evidence for an Exendin Receptor on Dispersed Acini from Guinea Pig Pancreas. J Biol Chem 267:7402

    Google Scholar 

  214. Eng J, Andrews PC, Kleinman WA, Singh L, Raufman JP (1990). Purification and Structure of Exendin-3, a New Pancreatic Secretagogue Isolated from Helioderma horridum Venom. J Biol Chem 265:20259

    CAS  Google Scholar 

  215. Hoshino M, Yanaihara C, Hong YM, Kishida S, Katsumaru Y, Vandermeers A, Vandermeers-Piret MC, Robberecht P, Christophe J, Yanaihara N (1984) Primary Structure of Helodermin, a VIP-Secretin-Like Peptide Isolated from Gila Monster Venom. FEBS Lett 178:233

    CAS  Google Scholar 

  216. Parker DS, Raufman JP, O’Donohue TL, Bledsoe M, Yoshida H, Pisano JJ (1984) Amino Acid Sequences of Helospectins, New Members of the Glucagon Superfamily, Found in Gila Monster Venom. J Biol Chem 259:11751

    CAS  Google Scholar 

  217. Mochea-Morales J, Martin BM, Possani LD (1990) Isolation and Characterization of Helothermine, a Novel Toxin from Heloderma horridum horridum (Mexican Beaded Lizard) Venom. Toxicon 28:299

    Google Scholar 

  218. Hesse M (2000) Alkaloide. Fluch oder Segen der Natur? Verlag Helvetica Chimica Acta, Zürich, p 73

    Google Scholar 

  219. Lyman JF (1908) A Note on the Chemistry of the Muscle and Liver of Reptiles. J Biol Chem 5:125

    Google Scholar 

  220. Standard Reference Data Program, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA

    Google Scholar 

  221. Spiteller G, Spiteller-Friedmann M (1962) Vergleichende massenspektrometrische Untersuchung einiger Purinderivate. Monatsh Chem 93:632

    CAS  Google Scholar 

  222. Pochelov II, Kluev MO, Petrenko VV (2002) Mass Spectrometry of the Purine Bases and their Derivatives. Фарм Ж (Київ) 45

    Google Scholar 

  223. Williams BL, Brodie ED Jr, Brodie ED III (2004) A Resistant Predator and its Toxic Prey: Persistence of Newt Toxin Leads to Poisonous (not Venomous) Snakes. J Chem Ecol 30:1901

    CAS  Google Scholar 

  224. Feldmann CR, Brodie ED Jr, Brodie ED III, Pfrender ME (2009) The Evolutionary Origins of Beneficial Alleles during the Repeated Adaptation of Garter Snakes to Deadly Prey. Proc Natl Acad Sci USA 106:13415

    Google Scholar 

  225. Hutchinson DA, Mori A, Savitzky AH, Burghardt GM, Meinwald J, Schroeder FC (2007) Dietary Sequestration of Defensive Steroids in Nuchal Glands of the Asian Snake Rhabdophis tigrinus. Proc Natl Acad Sci USA 104:2265

    CAS  Google Scholar 

  226. Hutchinson DA Savitzky AH, Mori A, Burghardt GM, Wu X, Meinwald J, Schroeder FC (20012) Chemical Investigations of the Defensive Steroid Sequestration by the Asian Snake Rhabdophis tigrinus. Chemoecology 22:199

    Google Scholar 

  227. Tsuda K (1966) Über Tetrodotoxin, Giftstoff der Bowlfische. Naturwissenschaften 53:171

    CAS  Google Scholar 

  228. Lee MJ, Jeong DY, Kim WS, Kim HD, Kim CH, Park WW, Park YH, Kim KS, Kim HM, Kim DS (2000) A Tetrodotoxin-Producing Vibrio Strain, LM-1, from the Puffer Fish Fugu vermicularis radiatus. Appl Environ Microbiol 66:1698

    CAS  Google Scholar 

  229. Noguchi T, Arakawa O (2008) Tetrodotoxin - Distribution and Accumulation in Aquatic Organisms, and Cases of Human Intoxication. Mar Drugs 6:220

    CAS  Google Scholar 

  230. Yotsu M, Yamazaki T, Meguro Y, Endo A, Murata M, Naoki H, Yasumoto T (1987) Production of Tetrodotoxin and its Derivatives by Pseudomonas sp. Isolated from the Skin of a Pufferfish. Toxicon 25:225

    CAS  Google Scholar 

  231. Yasumoto T, Yasumura D, Yotsu M, Michishita T, Endo A, Kotaki Y (1986) Bacterial Production of Tetrodotoxin and Anhydrotetrodotoxin. Agric Biol Chem 50:793

    CAS  Google Scholar 

  232. Wang J, Fan Y (2010) Isolation and Characterization of a Bacillus Species Capable of Producing Tetrodotoxin from the Puffer Fish Fugu obscurus. World J Microbiol Biotechnol 26:1755

    CAS  Google Scholar 

  233. Simidu U, Noguchi T, Hwang DF, Shida Y, Hashimoto K (1987) Marine Bacteria which Produce Tetrodotoxin. Appl Environ Microbiol 53:1714

    CAS  Google Scholar 

  234. Matsumura K (1995) Reexamination of Tetrodotoxin Production by Bacteria. Appl Environ Microbiol 61:3468

    CAS  Google Scholar 

  235. Matsumura K, Kim DS, Kim CH (2001) No Ability to Produce Tetrodotoxin in Bacteria. Appl Environ Microbiol 67:2393

    CAS  Google Scholar 

  236. Suenaga K, Kotoku S (1980) Detection of Tetrodotoxin in Autopsy Material by Gas Chromatography. Arch Toxicol 44:291

    CAS  Google Scholar 

  237. Narita H, Noguchi T, Maruyama J, Nara M, Hashimoto K (1984) Occurrence of a Tetrodotoxin-Associated Substance in a Gastropod, “Hanamushirogai” Zeuxis siquijorensis. Bull Japan Soc Sci Fish 50:85

    CAS  Google Scholar 

  238. Inaoka H, Shiomi K, Yamanaka H, Kikuchi T, Noguchi T, Hashimoto K, Shida Y (1985) Occurrence of a Tetrodotoxin-like Compound as a Minor Toxin in the Puffer Fish, Fugu flavidus. Agric Biol Chem 49:2287

    CAS  Google Scholar 

  239. Spiteller M, Spiteller G (1973) Massenspektrensammlung von Lösungsmitteln, Verunreinigungen, Säulenbelegmaterialien und einfachen aliphatischen Verbindungen. Springer-Verlag, Wien, Austria

    Google Scholar 

  240. Maruyama J, Noguchi T, Matsunaga S, Hashimoto K (1984) Fast Atom Bombardment- and Secondary Ion-Mass Spectrometry of Paralytic Shellfish Poisons and Tetrodotoxin. Agric Biol Chem 48:2783

    CAS  Google Scholar 

  241. Quilliam MA, Thomson BA, Scott GJ, Siu KWM (1989) Ion-Spray Mass Spectrometry of Marine Neurotoxins. Rapid Commun Mass Spectrom 3:145

    CAS  Google Scholar 

  242. Jang JH, Lee JS, Yotsu-Yamashita M (2010) LC/MS Analysis of Tetrodotoxin and its Deoxy Analogs in the Marine Puffer Fish Fugu niphobles from the Southern Coast of Korea, and in the Brackishwater Puffer Fishes Tetraodon nigroviridis and Tetraodon biocellatus from Southeast Asia. Mar Drugs 8:1049

    CAS  Google Scholar 

  243. Leung KSY, Fong BMW, Tsoi YK (2011) Analytical Challenges: Determination of Tetrodotoxin in Human Urine and Plasma by LC-MS/MS. Mar Drugs 9:2291

    CAS  Google Scholar 

  244. Moore KS, Wehrli S, Roder H, Rogers M, Forrest JN JR, McCrimmon D, Zasloff M (1993) Squalamine: An Aminosterol Antibiotic from the Shark. Proc Natl Acad Sci USA 90:1354

    Google Scholar 

  245. Wehrli SL, Moore KS, Roder H, Durell S, Zasloff M (1993) Structure of the Novel Steroidal Antibiotic Squalamine Determined by Two-Dimensional NMR Spectroscopy. Steroids 58:370

    CAS  Google Scholar 

  246. Zhang DH, Cai F, Zhou XD, Zhou WS (2003) A Concise and Stereolselective Synthesis of Squalamine. Org Lett 5:3257

    CAS  Google Scholar 

  247. Rao MN, Shinnar AE, Noecker LA, Chao TL, Feibush B, Snyder B, Sharkansky I, Sarkahian A, Zhang X, Jones SR, Kinney WA, Zasloff M (2000) Aminosterols from the Dogfish Shark Squalus acanthias. J Nat Prod 63:631

    CAS  Google Scholar 

  248. Hoye TR, Dvornikovs V, Fine JM, Anderson KR, Jeffrey CS, Muddiman DC, Shao F, Sorensen PW, Wang J (2007) Details of the Structure Determination of the Sulfated Steroids PSDS and PADS: New Components of the Sea Lamprey (Petromyzon marinus) Migratory Pheromone. J Org Chem 72:7544

    CAS  Google Scholar 

  249. Shi SDH, Hendrickson CL, Marshall AG (1998) Counting Individual Sulfur Atoms in a Protein by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Experimental Resolution of Isotopic Fine Structure in Proteins. Proc Natl Acad Sci USA 95:11532

    CAS  Google Scholar 

  250. Dumbacher JP, Beehler BM, Spande TF, Garraffo HM, Daly JW (1992) Homobatrachotoxin in the Genus Pitohui: Chemical Defense in Birds? Science 258:799

    CAS  Google Scholar 

  251. Dumbacher JP, Spande TF, Daly JW (2000) Batrachotoxin Alkaloids from Passerine Birds: A Second Toxic Bird Genus (Ifrita kowaldi) from New Guinea. Proc Natl Acad Sci USA 97:12970

    CAS  Google Scholar 

  252. Dumbacher JP, Wako A, Derrickson SR, Samuelson A, Spande TF, Daly JW (2004) Melyrid Beetles (Choresine): A Putative Source for the Batrachotoxin Alkaloids Found in Poison-Dart Frogs and Toxic Passerine Birds. Proc Natl Acad Sci USA 101:15857

    CAS  Google Scholar 

  253. Stammel W, Thomas H (2007) Endogene Alkaloide in Säugetieren. Naturw Rundsch 60:117

    CAS  Google Scholar 

  254. Brossi A (1993) Mammalian Alkaloids II. In: Cordell GA (ed) The Alkaloids. Chemistry and Pharmacology. Academic Press, San Diego, vol 43, p 119

    Google Scholar 

  255. Hesse M, Bernhard HO (1975) Alkaloide außer Indol-,Triterpen- und Steroidalkaloide. In: Budzikiewicz H (ed) Progress in Mass Spectrometry. Verlag Chemie, Weinheim, Germany, vol 3, pp 59 and 149

    Google Scholar 

  256. Weitz CJ, Lowney LI, Faull KF. Feistner G (1986) Morphine and Codeine from Mammalian Brain. Proc Nat Acad Sci USA 83:9784

    Google Scholar 

  257. Wachowiak R (2003) The Chemical Structure of Endogenous Compounds of the Biological Background and their Significance in Identification Analysis of Xenobiotics. Problems Forensic Sci 54:60

    CAS  Google Scholar 

  258. Bonte W, Theusner J (1979) Nachweis und thanatologische Bedeutung von δ-Aminovaleriansäure. Z Rechtsmed. 83:139

    CAS  Google Scholar 

  259. Walbaum H (1900) Ueber Zibeth, Jasmin und Rosen. Ber Dtsch Chem Ges 33:1903

    CAS  Google Scholar 

  260. Mohammed N, Onodera N, Or-Raschid MM (2003) Degradation of Tryptophane and Related Indolic Compounds by Ruminal Bacteria, Protozoa and their Mixture in vitro. Amino Acids 24:73

    CAS  Google Scholar 

  261. Schreurs NM, Tavendale MH, Lane GA, Barry TN, Marotti DM, McNabb WC (2003) Postprandial Indole and Skatole Formation in the Rumen when Feeding White Clover, Perennial Ryegrass and Lotus corniculatus. Proc NZ Soc Anim Prod 63:14

    Google Scholar 

  262. Powers JC (1968) The Mass Spectrometry of Simple Indoles. J Org Chem 33:2044

    CAS  Google Scholar 

  263. Biemann K, Büchi G, Walker BH (1957) The Structure and Synthesis of Muscopyridine. J Am Chem Soc 79:5558

    CAS  Google Scholar 

  264. Hadj-Abo F, Hesse M (1992) Synthese von (±)-Muscopyridin über eine C-ZIP-Ringerweiterungsreaktion. Helv Chim Acta 75:1834

    CAS  Google Scholar 

  265. Yu D-Q, Das BC (1983) Structure of Hydroxymuscopyridine A and Hydroxymuscopyridine B, Two New Constituents of Musk. Planta Med 49:183

    Google Scholar 

  266. Oh SR, Lee JP, Chang SY, Shin DH, Ahn KS, Min BS, Lee HK (2002) Androstane Alkaloids from Musk of Moschus moschiferus. Chem Pharm Bull 50:663

    CAS  Google Scholar 

  267. Valenta Z, Khaleque A (1959) The Structure of Castoramine. Tetrahedron Lett 1(12):1

    Google Scholar 

  268. Maurer B, Ohloff G (1976) Zur Kenntnis der Stickstoffhaltigen Inhaltsstoffe von Castoreum. Helv Chim Acta 59:1169

    CAS  Google Scholar 

  269. LaLonde RT, Wong CF, Woolever JT, Auer E, Das KC, Tsai AIM (1974) Electron-Impact Mass Spectrometry of Nuphar Alkaloids. Org Mass Spectrom 9:714

    CAS  Google Scholar 

  270. Wrobel JT, Iwanow A, Braekman-Danheux C, Martin TI, MacLean DB (1972) the Structure of Nupharolutine, an Alkaloid of Nuphar luteum. Can J Chem 50:1831

    Google Scholar 

  271. Wood WF (1990) New Components in Defensive Secretion of the Striped Skunk, Mephitis mephitis. J Chem Ecol 16:2057

    CAS  Google Scholar 

  272. Odham G, Stenhagen E (1972) Fatty Acids. In: Waller GR (ed) Biochemical Applications of Mass Spectrometry. Wiley-Interscience, New York, p 211

    Google Scholar 

  273. Odham G, Stenhagen E (1972) Complex Lipids. In: Waller GR (ed) Biochemical Applications of Mass Spectrometry. Wiley-Interscience, New York, p 229

    Google Scholar 

  274. Odham G (1980) Fatty Acids. In: Waller GR, Dermer OC (eds) Biochemical Applications of Mass Spectrometry. First Supplementary Volume. Wiley-Interscience, New York, p 153

    Google Scholar 

  275. Wood GW (1980) Complex Lipids. In: Waller GR, Dermer OC (eds) Biochemical Applications of Mass Spectrometry. First Supplementary Volume. Wiley-Interscience, New York, p 173

    Google Scholar 

  276. Murphy RC, Axelsen PH (2011) Mass Spectrometric Analysis of Long-Chain Lipids. Mass Spectrom Rev 30:579

    CAS  Google Scholar 

  277. Ryhage R, Stenhagen E (1959) Mass Spectrometric Studies. II. Saturated Normal Long-Chain Esters of Ethanol and Higher Alcohols. Arkiv Kemi 14:483

    Google Scholar 

  278. Ryhage R, Stenhagen E (1963) Mass Spectrometry of Long-Chain Esters. In: McLafferty FW (ed) Mass Spectrometry of Organic Ions. Academic Press, New York, p 399

    Google Scholar 

  279. Budzikiewicz H (1985) Massenspektrometrische Analyse ungesättigter Fettsäuren. In: Fresenius W, Günzler H, Huber W, Lüderwald I, Tölg G, Wisser H (eds) Analytiker-Taschenbuch. Springer, Berlin, vol 5, p 135

    Google Scholar 

  280. Rohwedder WK, Mabrouk AF, Selke E (1965) Mass Spectrometric Studies of Unsaturated Methyl Esters. J Phys Chem 69:1711

    CAS  Google Scholar 

  281. Lauwers W, Serum JW, Vandewalle M (1973) Studies in Organic Mass Spectrometry XIII: Investigation of Electron-Impact-Induced Isomerisation of α,β- and β,γ-Unsaturated Esters. Org Mass Spectrom 7:1027

    Google Scholar 

  282. Ryhage R, Ställberg-Stenhagen S, Stenhagen E (1961) Mass Spectrometric Studies. VII. Methyl Esters of α,β-Unsaturated Long-Chain Acids. On the Structure of C27-Phthienoic Acid. Arkiv Kemi 18:179

    Google Scholar 

  283. Andersson BÅ, Holan RT (1974) Pyrrolidides for Mass Spectrometric Determination of the Position of the Double Bond in Monounsaturated Fatty Acids. Lipids 9:185

    CAS  Google Scholar 

  284. Borchers F, Levsen K, Schwarz H, Wesdemiotis C, Winkler HU (1977) Isomerization of Linear Octene Cations in the Gas Phase. J Am Chem Soc 99:6359

    CAS  Google Scholar 

  285. Zaikin V, Halket J (2009) A Handbook of Derivatives for Mass Spectrometry. IM Publications, Chichester, UK

    Google Scholar 

  286. Minnikin DE (1978) Location of Double Bonds and Cyclopropane Rings in Fatty Acids by Mass Spectrometry. Chem Phys Lipids 21:313

    CAS  Google Scholar 

  287. Chai R, Harrison AG (1981) Location of Double Bonds by Chemical Ionization Mass Spectrometry. Anal Chem 53:34

    CAS  Google Scholar 

  288. Schmitz B, Klein RA (1986) Mass Spectrometric Localization of Carbon-Carbon Double Bonds: a Critical Review of Recent Methods. Chem Phys Lipids 39:285

    CAS  Google Scholar 

  289. Kwon Y, Lee S, Oh DC, Kim S (2011) Simple Determination of Double-Bond Positions in Long-Chain Olefins by Cross-Metathesis. Angew Chem 123: 8425; Int Ed 50:8275

    Google Scholar 

  290. Hussain MG, Gunstone FD (1979) Polyunsaturated Acids. Part IV. Mass Spectral Fragmentation Pattern of Long-Chain Polyunsaturated Fatty Acid Methyl Esters and Thiol Esters. Bangladesh J Sci Ind Res 14:105

    Google Scholar 

  291. Araki E, Ariga T, Murata T (1976) Chemical Ionization Mass Spectrometry of Polyunsaturated Fatty Acids of Human Serum. Biomed Mass Spectrom 3:261

    CAS  Google Scholar 

  292. Lankelma J, Ayanoglu E, Djerassi C (1983) Double-bond Location in Long-Chain Polyunsaturated FattyAcids by Chemical Ionization-Mass Spectrometry. Lipids 18:853

    CAS  Google Scholar 

  293. Schmitz B, Egge H (1979) Determination of Double Bond Position in Tri- to Hexaenoic Fatty Acids by Mass Spectrometry. Chem Phys Lipids 25:287

    CAS  Google Scholar 

  294. Suzuki M, Ariga T, Sekine M, Araki E, Miyatake T (1981) Identification of Double Bond Positions in Polyunsaturated Fatty Acids by Chemical Ionization Mass Spectrometry. Anal Chem 53:985

    CAS  Google Scholar 

  295. Dommes V, Wirtz-Peitz F, Kunau WH (1976) Structure Determination of Polyunsaturated Fatty Acids by Gas Chromatography-Mass Spectrometry - a Comparison of Fragmentation Patterns of Various Derivatives. J Chromatogr Sci 14:360

    CAS  Google Scholar 

  296. Budzikiewicz H (1984) Chemoionisationsmassenspektrometrie - Eine neue Methode zur Fettsäureanalytik? GIT Fachz Lab 28:406

    CAS  Google Scholar 

  297. Budzikiewicz H (1985) Structure Elucidation by Ion-Molecule Reactions in the Gas Phase: The Location of C,C-Double and Triple Bonds. Fresenius Z Anal Chem 321:150

    Google Scholar 

  298. Brauner A, Budzikiewicz H, Francke W (1985) Chemical Ionization (NO) Spectra of n-Alkenoic Acids and their Esters. Org Mass Spectrom 20:578

    Google Scholar 

  299. Budzikiewicz H, Schneider B, Busker E, Boland W, Francke W (1987) Studies in Chemical Ionization Mass Spectrometry Part XVI: Are the Reactions of Aliphatic C = C Double Bonds with NO+ Governed by Remote Functional Groups? Org Mass Spectrom 22:458

    CAS  Google Scholar 

  300. Brauner A, Budzikiewicz H, Boland W (1982) Studies in Chemical Ionization Mass Spectrometry V – Localization of Homoconjugated Triene and Tetraene Units in Alphatic Compounds. Org Mass Spectrom 17:161

    CAS  Google Scholar 

  301. Schneider B, Budzikiewicz H (1991) Experiments on the Formation of Acylium Ions from Alkenic Compounds Following Chemical Ionization with NO+. Org Mass Spectrom 26:498

    CAS  Google Scholar 

  302. Einhorn J, Malosse C (1990) Optimized Production of the Acylium Diagnostic Ions in Chemical Ionization NO+ Mass Spectra of Long-Chain Monoolefins. Org Mass Spectrom 25:49

    CAS  Google Scholar 

  303. Malosse C, Einhorn J (1990) Nitric Oxide Chemical Ionization Mass Spectrometry of Long-Chain Unsaturated Alcohols, Acetates, and Aldehydes. Anal Chem 62:287

    CAS  Google Scholar 

  304. Schneider B, Breuer M, Hartmann H, Budzikiewicz H (1989) Chemical Ionization with Aggressive Gases - a Simple Glow Discharge Source for Sector Field Instruments. Org Mass Spectrom 24:216

    CAS  Google Scholar 

  305. Cheng C, Gross ML (2000) Applications and Mechanisms of Charge-Remote Fragmentation. Mass Spectrom Rev 19:398

    CAS  Google Scholar 

  306. Bambagiotti A M, Coran SA, Vincieri FF, Petrucciani, Traldi P (1986) High Energy Collisional Spectroscopy of [RCOO]- Anions from Negative Ion Chemical Ionization of Fatty Acid Methyl Esters. Org Mass Spectrom 21:485

    Google Scholar 

  307. Deterding LJ, Gross ML (1988) Tandem Mass Spectrometry for Identifying Fatty Acid Derivatives that Undergo Charge-Remote Fragmentations. Org Mass Spectrom 23:169

    CAS  Google Scholar 

  308. Adams J, Gros ML (1988) Structural Determination of Modified Fatty Acids by Collision Activation of Cationized Molecules. Org Mass Spectrom 23:307

    CAS  Google Scholar 

  309. Divito EB, Davic AP, Johnson ME, Cascio M (2012) Electrospray Ionization and Collision Induced Dissociation Mass Spectrometry of Primary Fatty Acid Amides. Anal Chem 84:2388

    CAS  Google Scholar 

  310. Zehethofer N, Pinto DM (2008) Recent Developments in Tandem Mass Spectrometry for Lipidomic Analysis. Anal Chim Acta 627:62

    CAS  Google Scholar 

  311. Hsu FF, Turk J (2010) Electrospray Ionization Multiple-Stage Linear Ion-Trap Mass Spectrometry for Structural Elucidation of Triacylglycerols: Assignment of Fatty Acyl Groups on the Glycerol Backbone and Location of Double Bonds. J Am Soc Mass Spectrom 21:657

    CAS  Google Scholar 

  312. Regert M (2011) Analytical Strategies for Discriminating Archeological Fatty Substances from Animal Origin. Mass Spectrom Rev 30:177

    CAS  Google Scholar 

  313. De Rosa M, Gambacorta A (1988) The Lipids of Archaebacteria. Prog Lipid Res 27:153

    Google Scholar 

  314. De Rosa M, Gambacorta A, Nicolaus B, Chappe B, Albrecht P (1983) Isoprenoid Ethers; Backbone of Complex Lipids of the Archaebacterium Sulfolobus solfataricus. Biochim Biophys Acta 753:249

    Google Scholar 

  315. Schouten S, Hoefs MJL, Koopmans MP, Bosch HJ, Sinninghe Damsté JS (1998) Structural Characterization, Occurrence and Fate of Archaeal Ether-Bound Acyclic and Cyclic Biphytanes and Corresponding Diols in Sediments. Org Geochem 29:1305

    CAS  Google Scholar 

  316. Hallgren B, Larsson S (1962) The Glyceryl Ethers in the Liver Oils of Elasmobranch Fish. J Lipid Res 3:31

    CAS  Google Scholar 

  317. Lauer WM, Aasen AJ, Graff G, Holman RT (1970) Mass Spectrometry of Triglycerides: I. Structural Effects. Lipids 5:861

    CAS  Google Scholar 

  318. Aasen AJ, Lauer WM, Holman RT (1970) Mass Spectrometry of Triglycerides: II. Specifically Deuterated Triglycerides and Elucidation of Fragmentation Mechanisms. Lipids 5:869

    CAS  Google Scholar 

  319. Budzikiewicz H, Schäfer M (2005) Massenspektrometrie. Eine Einführung. 5. Aufl. Wiley-VCH, Weinheim, Germany, p 27

    Google Scholar 

  320. Cheng C, Gross ML, Pittenauer E (1998) Complete Structural Elucidation of Triacylglycerols by Tandem Sector Mass Spectrometry. Anal Chem 70:4417

    CAS  Google Scholar 

  321. Jensen NJ, Gross ML (1988) A Comparison of Mass Spectrometry Methods for Structural Determination and Analysis of Phospholipids. Mass Spectrom Rev 7:41

    CAS  Google Scholar 

  322. Klein RA (1971) Mass Spectrometry of the Phosphatidylchinolines: Fragmentation Processes for Dioleoyl and Stearoyl-Oleoyl Glycerylphosphorylcholine. J Lipid Res 12:628

    CAS  Google Scholar 

  323. Crawford CG, Plattner RD (1983) Ammonia Chemical Ionization Mass Spectrometry of Intact Diacyl Phosphatitylcholine. J Lipid Res 24:456

    CAS  Google Scholar 

  324. Wood GW, Lau PY, Rao GNS (1976) Field Desorption Mass Spectrometry of Phospholipids. II - Fragmentation of Dipalmitoylphosphatidyl Choline from Comparison of d o, d 4 and d 9 Species. Biomed Mass Spectrom 3:172

    CAS  Google Scholar 

  325. Fenwick GR, Eagles J, Self R (1983) Fast Atom Bombardment Mass Spectrometry of Intact Phospholipids and Related Compounds. Biomed Mass Spectrom 10:382

    CAS  Google Scholar 

  326. Murphy RC, Harrison KA (1994) Fast Atom Bombardment Mass Spectrometry of Phospholipids. Mass Spectrom Rev 13:57

    CAS  Google Scholar 

  327. Münster H, Stein J, Budzikiewicz H (1986) Structure Analysis of Underivatized Phospholipids by Negative Fast Atom Bombardment Mass Spectrometry. Biomed Environ Mass Spectrometry 13:423

    Google Scholar 

  328. Münster H, Budzikiewicz H (1987) Structural Analysis of Phospholipids by Fast Atom Bombardment/Collisional Activation with a Tandem Mass Spectrometer. Rapid Commun Mass Spectrom 1:126

    Google Scholar 

  329. Münster H (1988) Anwendung der Fast Atom Bombardment- und Tandem-Massenspektrometrie für die Strukuraufklärung von Phospholipiden und Triglyceriden. Dissertation, Universität zu Köln, Germany

    Google Scholar 

  330. Hsu FF, Turk J (2003) Electrospray Ionization/Tandem Quadrupole Mass Spectrometric Studies on Phosphatidylcholines: The Fragmentation Processes. J Am Soc Mass Spectrom 14:352

    CAS  Google Scholar 

  331. Haroldsen PE, Gaskell SJ (1989) Quantitative Analysis of Paletelet-Activating Factor Using Fast Atom Bombardment/Tandem Mass Spectrometry. Biomed Environ Mass Spectrom 18:439

    CAS  Google Scholar 

  332. Ohashi Y (1984) Structure Determination of Phospholipids by Secondary Ion Mass Spectrometric Techniques: Differentiation of Isomeric Esters. Biomed Mass Spectrom 11:383

    CAS  Google Scholar 

  333. Han X, Gross RW (1994) Electrospray Ionization Mass Spectroscopic Analysis of Human Erythrocyte Plasma Membrane Phospholipids. Proc Natl Acad Sci USA 91:10635

    CAS  Google Scholar 

  334. Lehmann WD, Koester M, Erben G, Keppler D (1997) Characterization and Quantification of Rat Bile Phosphatidylcholine by Electrospray-Tandem Mass Spectrometry. Anal Biochem 246:102

    CAS  Google Scholar 

  335. Zehethofer N, Pinto DM (2008) Recent Developments in Tandem Mass Spectrometry for Lipodimic Analysis. Anal Chim Acta 627:62

    CAS  Google Scholar 

  336. Thomas MC, Mitchell TW, Blanksby SJ (2006) Ozonolysis of Phospholipid Double Bonds during Electrospray Ionization: a New Tool for Structure Determination. J Am Chem Soc 128:58

    CAS  Google Scholar 

  337. Thomas MC, Mitchell TW, Harman DG, Deeley JM, Murphy RC, Blanksby SJ (2007) Elucidation of Double Bond Position in Unsaturated Lipids by Ozone Electrospray Ionization Mass Spectrometry. Anal Chem 79:5013

    CAS  Google Scholar 

  338. Schiller J, Süß R, Fuchs B, Müller M, Zschörnik O, Arnold K (2007) MALDI-TOF MS in Lipidomics. Front Biosci 12:2568

    CAS  Google Scholar 

  339. Schiller J, Süß R, Arnhold J, Fuchs B, Leßig J, Müller M, Petković M, Spalteholz H, Zschörnik O, Arnold K (2004) Marix-Assisted Laser Desorption and Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry in Lipid and Phospholipid Research. Progr Lipid Res 43:449

    CAS  Google Scholar 

  340. Milne S, Ivanova P, Forrester J, Brown HA (2006) Lipidomics: An Analysis of Cellular Lipids by ESI-MS. Methods 39:92

    CAS  Google Scholar 

  341. Pulfer M, Murphy RC (2003) Electrospray Mass Spectrometry of Phospholipids. Mass Spectrom Rev 22:332

    CAS  Google Scholar 

  342. Domingues MRM, Reis A, Domingues P (2008) Mass Spectrometry Analysis of Oxidized Phospholipids. Chem Phys Lipids 156:1

    CAS  Google Scholar 

  343. Song H, Ladenson J, Turk J (2009) Algorithms for Automatic Processing of Data from Mass Spectrometric Analyses of Lipids. J Chromatogr B 877:2847

    CAS  Google Scholar 

  344. Khalil MB, Hou W, Zhou H, Elisma F, Swayne LA, Blanchard AP, Yao Z, Bennett SAL, Figeys D (2010) Lipidomics Era: Accomplishments and Challenges. Mass Spectrom Rev 29:877

    CAS  Google Scholar 

  345. Finan PA, Reed RI, Snedden W, Wilson JM (1963) Electron Impact and Molecular Dissociation. Part X. Some Studies of Glycosides. J Chem Soc:5945

    Google Scholar 

  346. Kochetkov NK, Wulfson NS, Chizhov OS, Zolotarev BM (1963) Mass Spectrometry of Carbohydrate Derivatives. Tetrahedron 19:2209

    CAS  Google Scholar 

  347. Biemann K, Schnoes HK, McCloskey JA (1963) Application of Mass Spectrometry to Structure Problems. Carbohydrates and their Derivatives. Chem Ind:448

    Google Scholar 

  348. Radford T, DeJongh DC (1972) Carbohydrates. In: Waller GR (ed) Biochemical Applications of Mass Spectrometry. Wiley-Interscience, New York, p 313

    Google Scholar 

  349. Radford T, DeJongh DC (1980) Carbohydrates. In: Waller GR, Dermer OC (eds) Biochemical Applications of Mass Spectrometry. First Supplementary Volume. Wiley-Interscience, New York, p 255

    Google Scholar 

  350. Heyns K, Grützmacher HF, Scharmann H, Müller D (1966) Massenspektrometrische Strukturanalysen von Kohlenhydraten. Fortschr Chem Forsch 5:448

    CAS  Google Scholar 

  351. Kochetkov NK, Chizhov OS (1972) Mass Spectrometry of Carbohydrates. In: Whistler RL, Bemiller JN (eds) Methods in Carbohydrate Chemistry, Academic Press, New York, vol 6, p 540

    Google Scholar 

  352. Budzikiewicz H, Djerasssi C, Williams DH (1964) Carbohydrates. In: Structure Eleucidation of Natural Products by Mass Spectrometry, Holden-Day, San Francisco, vol 2, p 203

    Google Scholar 

  353. Rodrigues JA, Taylor AM, Sumpton DP, Reynolds JC, Pickford R, Thomas-Oates J (2008) Mass Spectrometry of Carbohydrates: Newer Aspects. In: Horton D (ed) Advances in Carbohydrate Chemistry and Biochemistry, Elsevier, Amsterdam, vol 61, p 59

    Google Scholar 

  354. Hogg AM, Nagabhushan TL (1972) Chemical Ionization Mass Spectra of Sugars. Tetrahedron Lett 13:4827

    Google Scholar 

  355. Dougherty RC, Roberts JD, Binkley WW, Chizhov OS, Kadentsev VI, Solov’yov AA (1974) Ammonia-Isobutane Chemical Ionization Mass Spectra of Oligosaccharide Peracetates. J Org Chem 39:451

    CAS  Google Scholar 

  356. Biemann K, DeJongh DC, Schnoes HK (1963) Application of Mass Spectrometry to Structure Problems. XIII. Acetates of Pentoses and Hexoses. J Am Chem Soc 85:1763

    CAS  Google Scholar 

  357. Heyns K, Müller D (1966) Massenspektroskopische Untersuchungen XV. Umlagerungsreaktionen bei der durch Elektronenstoss induzierten Fragmentierung peracetylierter Pento- und Hexo-Pyranosen. Tetrahedron Lett 7:6061

    Google Scholar 

  358. Budzikiewicz H, Grotjahn L (1972) Massenspektroskopische Fragmentierungsreaktionen - III. Das scheinbar anomale Verhalten von 3-Hydroxytetrahydroypyransystemen. Tetrahedron 28:1881

    CAS  Google Scholar 

  359. Das KG, Thayumanavan B (1975) EI amd IKE Spectra of Some Aldosyl Disaccharide Peracetates. Org Mass Spectrom 10:455

    CAS  Google Scholar 

  360. Binkley WW, Dougherty RC, Horton D, Wander JD (1971) Physical Studies on Oligosaccharides Related to Sucrose. Part II. Mass-Spectral Identification of d-Fructofuranosyl Residues. Carbohydrate Res 17:127

    Google Scholar 

  361. Kochetkov NK, Chizhov OS (1965) Mass Spectrometry of Methylated Methyl Glycosides. Principles and Analytical Application. Tetrahedron 21:2029

    CAS  Google Scholar 

  362. Kochetkov NK, Chizhov OS (1964) Application of Mass Spectrometry to Methylated Monosaccharides Identification. Biochim Biophys Acta 83:134

    CAS  Google Scholar 

  363. Heyns K, Müller D (1965) Massenspektrometrische Untersuchungen - VI. Massenspektrometrische Untersuchung deuteriummarkierter Methyl-2,3,4-O-methyl-β-arabopyranoside. Tetrahedron 21:55

    CAS  Google Scholar 

  364. Ott AYa, Zolotarev BM, Chizhov OS (1978) New Results on the Fragmentation of Methylhexopyranosides Methyl Ethers upon Electron Impact. Изв Акад Наук, Сер Хим 377 (Russian Chem Bull 27:325)

    Google Scholar 

  365. Ott AYa, Zolotarev BM, Chizhov OS (1979) Synthesis and Mass Spectra of Selectively Deuterated β-Methyl-2,3,4-tri-O-methyl-l-arabinopyoranosides. Изв Акад Наук, Сер Хим 1915 (Russian Chem Bull 28:178)

    Google Scholar 

  366. De Jongh DC, Biemann K (1963) Application of Mass Spectrometry to Structure Problems. XIV. Acetates of Partially Methylated Pentoses and Hexoses. J Am Chem Soc 85:2289

    Google Scholar 

  367. Petersson G, Samuelson O (1968) Determination of the Number and Position of Methoxyl Groups in Methylated Aldopentoses by Mass Spectrometry of their Trimethylsilyl Derivatives. Svensk Papperstidning 71:77

    CAS  Google Scholar 

  368. Petersson G, Samuelson O (1968) Determination of the Number and Position of Methoxyl Groups in Methylated Aldohexoses by Mass Spectrometry of their Trimethylsilyl Derivatives. Svensk Papperstidning 71:731

    CAS  Google Scholar 

  369. König WA, Bauer H, Voelter W, Bayer E (1973) Gaschromatographie und Massenspektrometrie trifluoracetylierter Kohlenhydrate. Chem Ber 106:1905

    Google Scholar 

  370. Chizhov OS, Molodtsov NV, Kochetkov NK (1967) Mass Spectrometry of Trimethylsilyl Ethers of Carbohydrates. Carbohyd Res 4:273

    CAS  Google Scholar 

  371. DeJongh DC, Radford T, Hribar JD, Hanessian S, Bieber M, Dawson G, Sweeley CC (1969) Analysis of Trimethylsilyl Derivatives of Carbohydrates by Gas Chromatography and Mass Spectrometry: J Am Chem Soc 91:1728

    Google Scholar 

  372. Karady S, Pines SH (1970) Mass Spectrometry of the Trimethylsilyl Ethers of 2-Ketohexoses. Tetrahedron 26:4527

    CAS  Google Scholar 

  373. Reinhold VN, Wirtz-Peiz F, Biemann K (1974) Synthesis, Gas-liquid Chromatography, and Mass Spectrometry of Per-O-trimethylsilyl Carbohydrate Boronates. Carbohyd Res 37:203

    CAS  Google Scholar 

  374. Robinson DS, Eagles J, Self R (1973) The Mass Spectra of Benzeneboronate Derivatives of some Hexopyranosides. Carbohyd Res 26:204

    CAS  Google Scholar 

  375. De Jongh DC, Biemann K (1964) Mass Spectra of O-Isopropylidene Derivatives of Pentoses and Hexoses. J Am Chem Soc 86:67

    Google Scholar 

  376. DeJongh DC (1965) Mass Spectrometry in Carbohydrate Chemistry. Dithioacetals of Common Monosaccharides. J Org Chem 30:1563

    CAS  Google Scholar 

  377. Zaia J (2004) Mass Spectrometry of Oligosaccharides. Mass Spectrom Rev 23:161

    CAS  Google Scholar 

  378. An HJ, Lebrilla CB (2011) Structure Elucidation of Native N- and O-linked Glycans by Tandem Mass Spectrometry (Tutorial). Mass Spectrom Rev 30:560

    CAS  Google Scholar 

  379. Moor J, Waight ES (1975) The Mass Spectra of Permethylated Oligosaccharides. Biomed Mass Spectrom 2:36

    CAS  Google Scholar 

  380. Kamerling JP, Vliegenthart JFG, Vink J, de Ridder JJ (1972) Mass Spectrometry of Pertrimethylsilyl Oligosaccharides Containing Fructose Units. Tetrahedron 28:4375

    CAS  Google Scholar 

  381. Kotchetkov NK, Chizhov OS, Molodtsov NV (1968) Mass Spectrometry of Oligosaccharides. Tetrahedron 24:5587

    Google Scholar 

  382. Domon B, Costello CE (1988) A Systematic Nomenclature for Carbohydrate Fragmentations in FAB-MS/MS Spectra of Glycoconjugates. Glycoconjugate J 5:397

    CAS  Google Scholar 

  383. Moor J, Waight ES (1974) The Field Desorption Mass Spectra of Some Oligosaccharides and Their Permethylates and Peracetylates. J Mass Spectrom 9:903

    CAS  Google Scholar 

  384. Dell A, Morris HR, Egge H, von Nicolai H, Strecker G (1983) Fast-Atom-Bombardment Mass-Spectrometry for Carbohydrate-Structure Determination. Carbohydr Res 115:41

    CAS  Google Scholar 

  385. Egge H, Peter-Katalinć J (1987) Fast Atom Bombardment Mass Spectrometry for Structural Elucidation of Glycoconjugates. Mass Spectrom Rev 6:331

    CAS  Google Scholar 

  386. Carr SA, Reinhold VN, Green BN, Hass JR (1985) Enhancement of Structural Information in FAB Ionized Carbohydrate Samples by Neutral Gas Collision. Biomed Mass Spectrom 12:288

    CAS  Google Scholar 

  387. Reinhold VN, Reinhold BB, Costello CE (1995) Carbohydrate Molecular Weight Profiling, Sequence, Linkage, and Branching Data: ES-MS and CID. Anal Chem 67:1772

    CAS  Google Scholar 

  388. Harvey DJ (2006) Analysis of Carbohydrates and Glycoconjugates by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: an Update Covering the Period 1999-2000. Mass Spectrom Rev 25:595

    CAS  Google Scholar 

  389. Harvey DJ (1999) Matrix-assisted Laser Desorption/Ionization Mass Spectrometry of Carbohydrates. Mass Spectrom Rev 18:349

    CAS  Google Scholar 

  390. Park Y, Lebrilla CB (2005) Application of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry to Oligosaccharides. Mass Spectrom Rev 24:232

    Google Scholar 

  391. Asam MR, Glish GR (1997) Tandem Mass Spectrometry of Alkali Cationized Polysaccharides in a Quadrupole Ion Trap. J Am Soc Mass Spectrom 8:987

    CAS  Google Scholar 

  392. Domon B, Müller DR, Richter WJ (1990) High Performance TandemMass Spectrometry for Sequence, Branching and Interglycosidic Linkage Analysis of Peracetylated Oligosaccharides. Biomed Mass Spectrom 19:390

    CAS  Google Scholar 

  393. Viseux N, de Hoffmann E, Domon B (1997) Structural Analysis of Permethylated Oligosaccharides by Electrospray Tandem Mass Spectrometry. Anal Chem 69:3193

    CAS  Google Scholar 

  394. König S, Leary JA (1998) Evidence for Linkage Position Determination in Cobalt Coordinated Pentasaccharides Using Ion Trap Mass Spectrometry. J Am Soc Mass Spectrom 9:1125

    Google Scholar 

  395. Gaucher SP, Morrow J, Leary JA (2000) STAT: A Saccharide Topology Analysis Tool Used in Combination with Tandem Mass Spectrometry. Anal Chem 72:2331

    CAS  Google Scholar 

  396. Chizhov AO, Dell A, Morris HR, Reason AJ, Haslam SM, McDowell RA, Chizhov OS, Usov AI (1998) Structural Analysis of Laminarans by MALDI and FAB Mass Spectrometry. Carbohydr Res 310:203

    CAS  Google Scholar 

  397. Yamagaki T, Ishizuka Y, Kawabata SI, Nakanishi H (1996) Post-Source Decay Fragment Spectra of Cyclomalto-Octaose and Branched Cyclomalto-Hexaose by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Rapid Commun Mass Spectrom 10:1887

    CAS  Google Scholar 

  398. Ralet MC, Lerouge P, Quéméner B (2009) Mass Spectrometry for Pectin Structure Analysis. Carbohydr Res 344:1798

    CAS  Google Scholar 

  399. Nemeth JF, Hochensang GP Jr, Marnett LJ, Caprioli RM (2001) Characterization of the Glycosylation Sites in Cyclooxygenase-2 Using Mass Spectrometry. Biochemistry 40:3109

    CAS  Google Scholar 

  400. Banoub JH, El Aneed A, Cohen AM, Joly N (2010) Structural Investigation of Bacterial Lipopolysaccharides by Mass Spectrometry and Tandem Mass Spectrometry. Mass Spectrom Rev 29:606

    CAS  Google Scholar 

  401. Vukics V, Guttman A (2010) Structural Characterization of Flavonoid Glycosides by Multi-Stage Mass Spectrometry. Mass Spectrom Rev 29:1

    CAS  Google Scholar 

  402. Wuhrer M, Deelder AM, Hokke CH (2005) Protein Glycosylation Analysis by Liquid Chromatography-Mass Spectrometry. J Chromatogr B 825:124

    CAS  Google Scholar 

  403. Morelle W, Michalski JC (2005) The Mass Spectrometric Analysis of Glycoproteins and Their Glycan Structures. Curr Anal Chem 1:29

    CAS  Google Scholar 

  404. Goletz S, Thiede B, Hanisch FG, Schultz M, Peter-Katalinic J, Müller S, Seitz O, Karsten U (1997) A Sequencing Strategy for the Localization of O-Glycosylation Sites of MUC1 Tandem Repeats by PSD-MALDI Mass Spectrometry. Glycobiology 7:881

    CAS  Google Scholar 

  405. Sheeley DM, Reinhold VN (1998) Structural Characterization of the Carbohydrate Sequence, Linkage, and Branching in a Quadrupole Ion Trap Mass Spectrometer: Neutral Oligosaccharides and N-Linked Glycans. Anal Chem 70:3053

    CAS  Google Scholar 

  406. Mirgorodskaya E, Roepstorff P, Zubarev RA (1999) Localization of O-Glycosylation Sites in Peptides by Electron Capture Dissociation in a Fourier Transform Mass Spectrometer. Anal Chem 71:4431

    CAS  Google Scholar 

  407. O’Neill MA, Roberts K (1981) Methylation Analysis of the Cell Wall Glycoproteins and Glycopeptides from Chlamydomonas reinhardii. Phytochemistry 20:25

    Google Scholar 

  408. Kilz S, Waffenschmidt S, Budzikiewicz H (2000) Mass Spectrometric Analysis of Hydroxyproline Glycans. J Mass Spectrom 35:689

    CAS  Google Scholar 

  409. Bollig K, Lamshöft M, Schweimer K, Marner FJ, Budzikiewicz H, Waffensschmidt S (2007) Structural Analysis of Linear Hydroxyproline-Bound O-Glycans of Chlamydomonas reinhardtii - Conservation of the Inner Core in Chlamydomonas and Land Plants. Carbohydr Res 342:2557

    CAS  Google Scholar 

  410. Budzikiewicz H, Schäfer M (2005) Massenspektrometrie. Eine Einführung. 5. Aufl. Wiley-VCH, Weinheim, Germany, p 151

    Google Scholar 

  411. Küster B, Mann M (1999) 18O-Labeling of N-Glycosylation Sites to Improve the Identification of Gel-Separated Glycoproteins Using Peptide Mass Mapping and Database Searching. Anal Chem 71:1431

    Google Scholar 

  412. Patwa T, Li C, Simeone DM, Lubman DM (2010) Glycoprotein Analysis Using Protein Microarrays and Mass Spectrometry. Mass Spectrom Rev 29:830

    CAS  Google Scholar 

  413. Andersson CO (1958) Mass Spectrometric Studies on Amino Acids and Peptide Derivatives. Acta Chem Scand 12:1353

    CAS  Google Scholar 

  414. Biemann K, Seibl J, Gapp F (1961) Mass Spectra of Organic Molecules. I. Ethyl Esters of Amino Acids. J Am Chem Soc 83:3795

    CAS  Google Scholar 

  415. Andersson CO, Ryhage R, Ställberg-Stenhagen S, Stenhagen E (1962) Mass Spectrometric Studies IX. Methyl and Ethyl Esters of some Aliphatic α-Amino Acids. Arkiv Kemi 19:405

    Google Scholar 

  416. Budzikiewicz H, Djerassi C, Williams DH (1967) Mass Spectrometry of Organic Compounds. Holden-Day, San Francisco, p 297

    Google Scholar 

  417. Barbier M, Bogdanovsky D, Vetter W, Lederer E (1963) Synthese und Eigenschaften des Lycomarasmins und der Aspergillomarasmine. Liebigs Ann Chem 668:132

    CAS  Google Scholar 

  418. Heyns K, Grützmacher HF (1961) Die Massenspektren der N-Formyl-α-aminosäure-methylester. Z Naturforsch 16b:293

    Google Scholar 

  419. Manusadzhyan VG, Varshavskii YaM (1964) Application of the Mass-Spectrometric Method to the Study of Derivatives of Amino Acids and Short Peptides. I. Study of Possibilities of Identifying of Amino Acids from the Characteristic Peaks in the Mass Spectra of the Esters of their N-Acyl Derivatives. Извест Акад Наук Армян ССР 17:137

    Google Scholar 

  420. Heyns K, Grützmacher HF (1963) Massenspektrometrische Untersuchungen, III. Massenspektren von freien und N-acetylierten Aminosäuren. Liebigs Ann Chem 667:194

    Google Scholar 

  421. Andersson CO, Ryhage R, Stenhagen E (1962) Mass Spectrometric Studies X. Methyl and Ethyl Esters of N-Acetylamino Acids. Arkiv Kemi 19:417

    Google Scholar 

  422. Biemann K, Lioret C, Asselineau J, Lederer E, Polonsky J (1960) On the Structure of Lysopine, a New Amino Acid Isolated from Crown Gall Tissue. Biochim Biophys Acta 40:369

    CAS  Google Scholar 

  423. Milne GWA, Axenrod T, Fales HM (1970) Chemical Ionization Mass Spectrometry of Complex Molecules. IV. Amino Acids. J Am Chem Soc 92:5170

    CAS  Google Scholar 

  424. Hušek P, Macek K (1975) Gas Chromatography of Amino Acids. J Chromatogr 113:139

    Google Scholar 

  425. Baker KM, Shaw MA, Williams DH (1969) Mass Spectra of Trimethylsilyl Derivatives of Some Amino-Acids and Peptides. Chem Commun:1108

    Google Scholar 

  426. Biermann CJ, Kinoshita CM, Marlett JA, Steele RD (1986) Analysis of Amino Acids as tert.-Butyldimethylsilyl Derivatives by Gas Chromatography. J Chromatogr A 357:330

    CAS  Google Scholar 

  427. Huang ZH, Wang J, Gage DA, Watson JT, Sweeley CC, Hušek P (1993) Characterization of N-Ethoxycarbonyl Ethyl Esters of Amino Acids by Mass Spectrometry. J Chromatogr 635:271

    CAS  Google Scholar 

  428. Dallakian P, Budzikiewicz H (1997) Gas Chromatography-Chemical Ionization Mass Spectrometry in Amino Acid Analysis of Pyoverdins. J Chromatogr 787:195

    CAS  Google Scholar 

  429. Leimer KR, Rice RH, Gehrke CW (1977) Complete Mass Spectra of N-Trifluoroacetyl-n-butyl Esters of Amino Acids. J Chromatogr 141:121

    Google Scholar 

  430. Demange P, Abdallah MA, Frank H (1988) Assignment of the Configurations of the Amino Acids in Peptidic Siderophores. J Chromatogr 438:291

    CAS  Google Scholar 

  431. Metges CC, Petzke KJ, Henning U (1996) Gas Chromatography/Combustion/Isotope Ratio Mass Spectrometric Comparison of N-Acetyl- and N-Pivaloyl Amino Acid Esters to Measure 15N Isotopic Abundances in Physiological Samples: A Pilot Study of Amino Acid Synthesis in the Upper Gastro-intestinal Tract of Minipigs. J Mass Spectrom 31:367

    CAS  Google Scholar 

  432. Low GKC, Duffield AM (1984) Positive and Negative Ion Chemical Ionization Mass Spectra of Amino Acid Carboxy-n-butyl Ester N-Pentafluoropropionate Derivatives. Biomed Mass Spectrom 11:223

    CAS  Google Scholar 

  433. Dallakian P, Voss J, Budzikiewicz H (1999) Assignment of the Absolute Configuration of the Amino Acids of Pyoverdins by GC/MS. Chirality 11:381

    CAS  Google Scholar 

  434. Roepstorff P, Fohlman J (1984) Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides. Biomed Mass Spectrom 11:601

    CAS  Google Scholar 

  435. Biemann K, Vetter W (1960) Separation of Peptide Derivatives by Gas Chromatography Combined with the Mass Spectrometric Determination of the Amino Acid Sequence. Biochem Biophys Res Commun 3:578

    CAS  Google Scholar 

  436. Biemann K, Gapp F, Seibl J (1959) Application of Mass Spectrometry to Structure Problems. I. Amino Acid Sequence in Peptides. J Am Chem Soc 81:2274

    CAS  Google Scholar 

  437. Chesnov S, Bigler L, Hesse M (2000) The Spider Paracoelotes birulai: Detection and Structure Elucidation of New Acylpolyamines by On-line Coupled HPLC-APCI-MS and HPLC-APCI-MS/MS. Helv Chim Acta 83:3295

    CAS  Google Scholar 

  438. Chesnov S, Bigler L, Hesse M (2001) The Acylpolyamines from the Venom of the Spider Aglenopsis aperta. Helv Chim Acta 84:2178

    CAS  Google Scholar 

  439. Stenhagen E (1961) Massenspektrometrie als Hilfsmittel bei der Strukturbestimmung organischer Verbindungen, besonders bei Lipiden und Peptiden. Fresenius Z Anal Chem 181:462

    CAS  Google Scholar 

  440. Weygand F, Prox A, Fessel HH, Sun KK (1965) Massenspektrometrische Sequenzanalyse von Peptiden als N-Trifluoracetyl-peptid-ester. Z Naturforsch B 20:1169

    CAS  Google Scholar 

  441. Shemyakin MM (1968) Primary Structure Determination of Peptides and Proteins by Mass Spectrometry. Pure Appl Chem 17:313

    CAS  Google Scholar 

  442. Barber M, Jollès P, Vilkas E, Lederer E (1965) Determination of Amino Acid Sequences in Oligopeptides by Mass Spectrometry. I. The Structure of Fortuitine, an Acylnonapeptide Methyl Ester. Biochem Biophys Res Commun 18:469

    CAS  Google Scholar 

  443. Bricas E, van Heijenoort J, Barber M, Wolstenholme WA, Das BC, Lederer E (1965) Determination of Amino Acid Sequences in Oligopeptides by Mass Spectrometry. IV. Synthetic N-Acyl Oligopeptide Methyl Esters. Biochemistry 4:2254

    CAS  Google Scholar 

  444. van Heijenoort J, Bricas E, Das BC, Lederer E, Wolstenholme WA (1967) Détermination de sequences d’acides aminés dans des oligopeptides par la spectrometrie de masse - IX. (A) Acylation avec de nouveaux radicaux mixtes; (B) peptides contenant des acides aminés trifonctionels. Tetrahedron 23:3403

    Google Scholar 

  445. Das BP, Gero SD, Lederer E (1967) N-Methylation of N-Acyl Amino Acids. Biochem Biophys Res Commun 29:211

    CAS  Google Scholar 

  446. Thomas DW, Das BC, Géro SD, Lederer E (1968) Advantages and Limitations of the Mass Spectrometric Sequence Determination of Permethylated Oligopeptide Derivatives. Biochem Biophys Res Commun 32:199

    CAS  Google Scholar 

  447. Biemann K, Cone C, Webster BR (1966) Computer-Aided Interpretation of High-Resolution Mass Spectra. II. Amino Acid Sequence of Peptides. J Am Chem Soc 88:2597

    CAS  Google Scholar 

  448. Senn M, Venkataraghavan R, McLafferty FW (1966) Mass Spectrometric Studies of Peptides. III. Automated Determination of Amino Acid Sequences. J Am Chem Soc 88:5593

    CAS  Google Scholar 

  449. Winkler HU, Beckey HD (1972) Field Desorption Mass Spectrometry of Amino Acids. Org Mass Spectrom 6:655

    CAS  Google Scholar 

  450. Winkler HU, Beckey HD (1972) Field Desorption Mass Spectrometry of Peptides. Biochem Biophys Res Commun 46:391

    CAS  Google Scholar 

  451. Asante-Poku S, Wood GW, Schmidt DE Jr (1975) Field Desorption Mass Spectra of the Peptides Pro-Leu-Gly-NH2, Cbz-Gly-Pro-Leu-Gly-Pro and Bradykinin. Biol Mass Spectrom 2:121

    Google Scholar 

  452. Barber M, Bordoli RS, Garner GV, Gordon DB, Sedgwick RD, Tetler LW, Tyler AN (1981) Fast-Atom Bombardment Mass Spectra of Enkephalins. Biochem J 197:401

    CAS  Google Scholar 

  453. Ziegler R, Eckart K, Schwarz H, Keller R (1985) Amino Acid Sequence of Manduca sexta Adipokinetic Hormone Elucidated by Combined Fast Atom Bombardment (FAB)/Tandem Mass Spectrometry. Biochem Biophys Res Commun 133:337

    CAS  Google Scholar 

  454. Pettit GR, Kamano Y, Herald CL, Tuinman AA, Boettner FE, Kizu H, Schmidt JM, Baczynskyj L, Tomer KB, Bontems RJ (1987) The Isolation and Structure of a Remarkable Marine Animal Antineoplastic Constituent: Dolastatin 10. J Am Chem Soc 109:6883

    CAS  Google Scholar 

  455. Barber M, Bordoli RS, Sedgwick RD, Tyler AN, Garner GV, Gordon DB, Tetler LW, Hider RC (1982) Fast Atom Bombardment Mass Spectrometry of the Large Oligopeptides Melittin, Glucagon and the B-Chain of Bovine Insulin. Biol Mass Spectrom 9:265

    CAS  Google Scholar 

  456. Harrison AG, Yalcin T (1997) Proton Mobility in Protonated Amino Acids and Peptides. Int J Mass Spectrom Ion Proc 165:339

    Google Scholar 

  457. Boyd R, Somogyi Á (2010) The Mobile Proton Hypothesis in Fragmentation of Protonated Peptides: a Perspective. J Am Soc Mass Spectrom 21:1275 and Contributions Following in the “Focus: Mobile Proton Model” Series

    Google Scholar 

  458. Dunbar RC, Polfer NC, Berden G, Oomens J (2012) Metal Ion Binding to Peptides: Oxygen or Nitrogen Sites? Int J Mass Spectrom 330-332:71

    CAS  Google Scholar 

  459. Buzikiewicz H (2004) Siderophores of the Pseudomonadaceae sensu stricto (Fluoresccent and Non-fluorescent Pseudomonas spp.). In: Herz W, Falk H, Kirby GW (eds) Progress in the Chemistry of Organic Natural Products. Springer-Verlag, Wien, Austria, vol 87, p 81

    Google Scholar 

  460. Fuchs R, Budzikiewicz H (2001) Structural Studies of Pyoverdins by Mass Spectrometry. Curr Org Chem 5:265

    CAS  Google Scholar 

  461. Fuchs R, Budzikiewicz H (2001) Rerrangement Reactions in the Electrospray Ionization Mass Spectra of Pyoverdins. Int J Mass Spectrom 210/211:603

    Google Scholar 

  462. Harrison AG (2009) To b or not to b: the Ongoing Saga of Peptide b Ions. Mass Spectrom Rev 28:640

    CAS  Google Scholar 

  463. Pauwelyn E, Huang CJ, Ongena M, Leclère V, Jacques P, Bleyaert P, Budzikiewicz H, Schäfer M, Höfte M. 2013. New Linear Lipopeptides Produced by Pseudomonas cichorii SF1-54 are Involved in Virulence, Swarming Motility, and Biofilm Formation. Mol Plant-Microbe Interact 26:585

    CAS  Google Scholar 

  464. Meyer JM, Gruffaz C, Raharinosy V, Bezverbnaya I, Schäfer M, Budzikiewicz H (2008) Siderotyping of Fluorescent Pseudomonas: Molecular Mass Determination by Mass Spectrometry as a Powerful Pyoverdine Siderotyping Method. Biometals 21:259

    CAS  Google Scholar 

  465. Behrendt U, Ulrich A, Schumann P, Meyer JM, Spröer C (2007) Pseudomonas lurida sp. nov., a Fluorescent Species Associated with the Phyllosphere of Grasses. Int J Syst Evol Microbiol 57:979

    CAS  Google Scholar 

  466. Buckley M, Kansa SW, Howard S, Campbell S, Thomas-Oates J, Collins M (2010) Distinguishing between Archeological Sheep and Goat Bones Using a Single Collagen Peptide. J Archaeolog Sci 37:13

    Google Scholar 

  467. Hurtado PP, O’Connor PB (2012) Differentiation of Isomeric Amino Acid Residues in Proteins and Peptides using Mass Spectrometry. Mass Spectrom Rev 31:609

    CAS  Google Scholar 

  468. Svec H, Junk GA (1964) The Mass Spectra of Dipeptides. J Am Chem Soc 86:2278

    CAS  Google Scholar 

  469. Belič I, Cimerman A, Sočič H (1972) Cyclo (Proline-Leucine) - a Metabolite of Nocardia restricta. Mikrobiologija 9:251

    Google Scholar 

  470. Ginz M, Engelhardt UH (2000) Identification of Proline-Based Diketopiperazines in Roasted Coffee. J Agric Food Chem 48:3528

    CAS  Google Scholar 

  471. Ginz M, Engelhardt UH (2001) Identification of New Diketopiperazines in Roasted Coffee. Eur Food Res Technol 213:8

    CAS  Google Scholar 

  472. Tomer KB, Crow FW, Gross ML, Kopple KD (1984) Fast Atom Bombardment Combined with Tandem Mass Spectrometry for the Determination of Cyclic Peptides. Anal Chem 56:880

    CAS  Google Scholar 

  473. Havliček V, Jegorov A, Sedmera P, Ryska M (1993) Sequencing of Cyclosporins by Fast Atom Bombardment and Linked-scan Mass Spectrometry. Org Mass Spectrom 28:1440

    Google Scholar 

  474. Kuzma M, Jegorov A, Hesso A, Tornaeus J, Sedmera P, Havliček V (2002) Role of Amino Acid N-Methylation in Cyclosporins on Ring Opening and Fragmentation Mechanisms During Collisionally Induced Dissociation in an Ion Trap. J Mass Spectrom 37:292

    CAS  Google Scholar 

  475. Havliček V, Jegorov A, Sedmera P, Wagner-Redeker W, Ryska M (1995) Distinguishing Isobaric Amino Acids in Sequence Analysis of Cyclosporins by Fast Atom Bombardment and Linked-Scan Mass Spectrometry. J Mass Spectrom 30:940

    Google Scholar 

  476. Eckart K, Schwarz H, Tomer KB, Gross ML (1985) Tandem Mass Spectrometry Methodology for the Sequence Determination of Cyclic Peptides J Am Chem Soc 107:6765

    CAS  Google Scholar 

  477. Voßen W, Fuchs R, Taraz K, Budzikiewicz H (2000) Can a Peptide Chain of a Pyoverdin Be Bound by an Ester Bond to the Chromophore? - The Old Problem of Pseudobactin 7SR1. Z Naturforsch 55c:153

    Google Scholar 

  478. Nakamura T, Nagaki H, Kinoshita T (1986) Amino Acid Sequence Determination of Cyclic Peptides by Tandem Mass Spectrometry Coupled with Fast Atom Bombardment Ionization. Mass Spectrosc 34:307

    Google Scholar 

  479. Fehlhaber HW (1968) Massenspektrometrische Strukturermittlung von Peptid-Alkaloiden. Fresenius Z Anal Chem 235:91

    CAS  Google Scholar 

  480. Giacomelli SR, Maldaner G, Gonzaga WA, Garcia CM, da Silva UF, Dalcol II, Morel AF (2004) Cyclic Peptide Alkaloids from the Bark of Discaria americana. Phytochemistry 65:933

    CAS  Google Scholar 

  481. Garcia BA (2010) What Does the Future Hold for Top Down Mass Spectrometry? J Am Soc Mass Spectrom 21:193

    CAS  Google Scholar 

  482. Wiśniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal Sample Preparation Method for Proteome Analysis. Nat Methods 6:359

    Google Scholar 

  483. Kelleher NL (2004) Top-Down Proteomics. Anal Chem 76:196A

    CAS  Google Scholar 

  484. Zhang J, Dong X, Hacker TA, Ge Y (2010) Deciphering Modifications in Swine Cardiac Troponin I by Top-Down High-Resolution Tandem Mass Spectrometry. J Am Soc Mass Spectrom 21:940

    CAS  Google Scholar 

  485. Lubec G, Afjehi-Sadat L (2007) Limitations and Pitfalls in Protein Identification by Mass Spectrometry. Chem Rev 107:3568

    CAS  Google Scholar 

  486. Hernandez P, Gras R, Frey J, Appel RD (2003) Popitam: Towards New Heuristic Strategies to Improve Protein Identification from Tandem Mass Spectrometry Data. Proteomics 3:870

    CAS  Google Scholar 

  487. Bradshaw RA, Medzihradszky KF; Chalkley RJ (2010) Protein PTMs: Post-Translational Modifications or Pesky Trouble Makers? J Mass Spectrom 45:1095

    CAS  Google Scholar 

  488. Gibson BW, Biemann K (1984) Strategy for the Mass Spectrometric Verification and Correction of the Primary Structures of Proteins Deduced from their DNA Sequences. Proc Natl Acad Sci USA 81:1956

    CAS  Google Scholar 

  489. Bienvenut WV, Müller M, Palagi PM, Gasteiger E, Heller M, Jung E, Giron M, Gras R, Gay S, Binz PA, Hughes GJ, Sanchez JC, Appel RD, Hochstrasser DF (2001) Proteomics and Mass Spectrometry: Some Aspects and Recent Developments. In: Housby JN (ed) Mass Spectrometry and Genomic Analysis, Kluwer Academic Publishers, Dordrecht, The Netherlands, p 93

    Google Scholar 

  490. Giron P, Dayon L, Sanchez JC (2011) Cysteine Tagging of MS-Based Proteomics. Mass Spectrom Rev 30:366

    CAS  Google Scholar 

  491. Wang Z, Zhang Y, Zhang H, Harrington PB, Chen H (2012) Fast and Selective Modification of Thiol Proteins/Peptides by N-(Phenylseleno)phtalimide. J Am Soc Mass Spectrom 23:520

    CAS  Google Scholar 

  492. Boersema PJ, Mohammed S, Heck AJR (2009) Phosphopeptide Fragmentation and Analysis by Mass Spectrometry. J Mass Spectrom 44:861

    CAS  Google Scholar 

  493. Wind M, Edler M, Jakubowski N, Linscheid M, Wesch H, Lehmann WD (2001) Analysis of Protein Phosphorylation by Capillary Liquid Chromatography Coupled to Element Mass Spectrometry with 31P Detection and to Electrospray Mass Spectrometry. Anal Chem 73:29

    CAS  Google Scholar 

  494. Wind M, Wesch H, Lehmann WD (2001) Protein Phosphorylation Degree: Determination by Capillary Liquid Chromatography and Inductively Coupled Plasma Mass Spectrometry. Anal Chem 73:3006

    CAS  Google Scholar 

  495. Palumbo AM, Smith SA, Kalcic CL, Dantus M, Stemmer PM, Reid GE (2011) Tandem Mass Spectrometry Strategies for Phosphoproteome Analysis. Mass Spectrom Rev 30:600

    CAS  Google Scholar 

  496. Rožman M (2011) Modelling of the Gas-Phase Phosphate Group Loss and Rearrangement in Phosphorylated Peptides. J Mass Spectrom 46:949

    Google Scholar 

  497. Sharon M (2010) How Far Can We Go with Structural Mass Spectrometry of Protein Complexes? J Am Soc Mass Spectrom 21:487

    CAS  Google Scholar 

  498. Ruotolo BT, Benesch JLP, Sandercock AM, Hyung SJ, Robinson CV (2008) Ion Mobility-Mass Spectrometry Analysis of Large Protein Complexes. Nat Prot 3:1139

    CAS  Google Scholar 

  499. Uetrecht C, Versluis C, Watts NR, Wingfield PT, Steven AC, Heck AJR (2008) Stability and Shape of Hepatitis B Virus Capsids in Vacuo. Angew Chem 120:6343

    Google Scholar 

  500. Loo JA, Berhane B, Kaddis CS, Wooding KM, Xie Y, Kaufman SL, Chernushevich IV (2005) Electrospray Ionization Mass Spectrometry and Ion Mobility Analysis of the 20S Proteasome Complex. J Am Soc Mass Spectrom 16:998

    CAS  Google Scholar 

  501. Serpa JJ, Parker CE, Petrochenko EV, Han J, Pan J, Borchers CA (2012) Mass Spectrometry-Based Structural Proteomics. Eur J Mass Spectrom 18:251

    CAS  Google Scholar 

  502. Hall Z, Robinson CV (2012) Do Charge State Signatures Guarantee Protein Conformations? J Am Soc Mass Spectrom 23:1161

    CAS  Google Scholar 

  503. Konermann L, Douglas DJ (1998) Unfolding of Proteins Monitored by Electrospray Ionization Mass Spectrometry: A Comparison of Positive and Negative Ion Modes. J Am Soc Mass Spectrom 9:1248

    CAS  Google Scholar 

  504. Sterling HJ, Daly MP, Feld GK, Thoren KL, Kintzer AF, Krantz BA, Williams ER (2010) Effects of Supercharging Reagents on Noncovalent Complex Structure in Electrospray Ionization from Aqueous Solutions. J Am Soc Mass Spectrom 21:1762

    CAS  Google Scholar 

  505. Englander SW (2000) Protein Folding Intermediates and Pathways Studied by Hydrogen Exchange. Annu Rev Biophys Biomol Struct 29:213

    CAS  Google Scholar 

  506. Rob T, Wilson DJ (2012) Time-Resolved Mass Spectrometry for Monitoring Milisecond Time-Scale Solution-Phase Processes. Eur J Mass Spectrom 18:205

    CAS  Google Scholar 

  507. Wales TE, Engen JR (2006) Hydrogen Exchange Mass Spectrometry for the Analysis of Protein Dynamics. Mass Spectrom Rev 25:158

    CAS  Google Scholar 

  508. Marcisin SR, Engen JR (2010) Hydrogen Exchange Mass Spectrometry: What It Is and What It Can Tell Us. Anal Bioanal Chem 397:967

    Google Scholar 

  509. Iacob RE, Engen JR (2012) Hydrogen Exchange Mass Spectrometry: Are We Out of the Quicksand? J Am Soc Mass Spectrom 23:1003

    CAS  Google Scholar 

  510. Kiselar JG, Chance MR (2010) Future Directions of Structural Mass Spectrometry Using Hydroxyl Radical Footprinting. J Mass Spectrom 45:1373

    CAS  Google Scholar 

  511. Goshe MB, Chen YH, Anderson VE (2000) Identification of Sites of Hydroxyl Radical Reaction with Peptides by Hydrogen/Deuterium Exchange: Prevalence of Reactions with Side Chains. Biochemistry 39:1761

    CAS  Google Scholar 

  512. Liu Z, Cheng S, Gallie DR, Julian RR (2008) Exploring the Mechanism of Selective Noncovalent Adduct Protein Probing Mass Spectrometry Utilizing Site-Directed Mutagenesis to Examine Ubiquitin. Anal Chem 80:3846

    CAS  Google Scholar 

  513. Sinz A (2006) Chemical Cross-Linking and Mass Spectrometry to Map Three-Dimensional Protein Structures and Protein-Protein Interactions. Mass Spectrom Rev 25:663

    CAS  Google Scholar 

  514. Petrotchenko EV, Borchers CH (2010) Crosslinking Combined with Mass Spectrometry for Structural Proteomics. Mass Spectrom Rev 29:862

    CAS  Google Scholar 

  515. Müller MQ, Dreiocker F, Ihling CH, Schäfer M, Sinz A (2010) Cleavable Cross-Linker for Protein Structure Analysis: Reliable Identification of Cross-linking Products by Tandem MS. Anal Chem 82:6958

    Google Scholar 

  516. Clifford-Nunn B, Showalter HDH, Andrews PC (2012) Quaternary Diamines as Mass Spectrometry Cleavable Crosslinkers for Protein Interactions. J Am Soc Mass Spectrom 23:201

    CAS  Google Scholar 

  517. Falvo F, Fiebig L, Dreiocker F, Wang R, Armentrout PB, Schäfer M (2012) Fragmentation Reactions of Thiourea- and Urea-Compounds Examined by Tandem MS-, Energy-Resolved CID Experiments, and Theory. Int J Mass Spectrom 330-332:124

    CAS  Google Scholar 

  518. Kaltashov IA, Eyles SJ (2002) Studies of Biomolecular Conformations and Conformational Dynamics by Mass Spectrometry. Mass Spectrom Rev 21:37

    CAS  Google Scholar 

  519. Fabris D, Yu ET (2010) Elucidating the Higher-Order Structure of Biopolymers by Structural Probing and Mass Spectrometry: MS3D. J Mass Spectrom 45:841

    CAS  Google Scholar 

  520. Kitova EN, El-Haviet A, Schnier PD, Klassen JS (2012) Reliable Determinations od Protein-Ligands Interactions by Direct ESI-MS Measurements. Are We There Yet? J Am Soc Mass Spectrom 23:431

    CAS  Google Scholar 

  521. Brand GD, Salbo R, Jørgensen TJD, Bloch C Jr, Erba BE, Robinson CV, Tanjoni I, Moura-da-Silva AM, Roepstorff P, Domont GB, Perales J, Valente RH, Neves-Ferreira AGC (2012). The Interaction of the Antitoxin DM43 with a Snake Venom Metalloproteinase Analyzed by Mass Spectrometry and Surface Plasmon Resonance. J Mass Spectrom 47:567

    CAS  Google Scholar 

  522. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI Imaging Mass Spectrometry: Molecular Snapshots of Biochemical Systems. Nat Methods 4:828

    CAS  Google Scholar 

  523. Rauser S, Marquardt C, Balluff B, Deininger SO, Albers C, Belau E, Hartmer R, Suckau D, Specht K, Ebert MP, Schmitt M, Aubele M, Höfler H, Walch A (2010) Classsification of HER2 Receptor Status in Breast Cancer Tissues by MALDI Imaging Mass Spectrometry. J Proteome Res 9:1854

    CAS  Google Scholar 

  524. McDonnell LA, Heeren RMA (2007) Imaging Mass Spectrometry. Mass Spectrom Rev 26:606

    CAS  Google Scholar 

  525. van Duijn E (2010) Current Limitations in Native Mass Spectrometry Based Structural Biology. J Am Soc Mass Spectrom 21:971

    Google Scholar 

  526. Crain PF (1990) Mass Spectrometric Techniques in Nucleic Acid Research. Mass Spectrom Rev 9:505

    CAS  Google Scholar 

  527. Koomen JM, Russell WK, Tichy SE, Russell DH (2002) Accurate Mass Measurement of DNA Oligonucleotide Ions Using High-Resolution Time-of-Flight Mass Spectrometry. J Mass Spectrom 37:357

    CAS  Google Scholar 

  528. Huber CG, Oberacher H (2001) Analysis of Nucleic Acids by On-line Liquid Chromatography-Mass Spectrometry. Mass Spectrom Rev 20:310

    CAS  Google Scholar 

  529. Nordhoff E, Kirpekar F, Roepstorff P (1996) Mass Spectrometry of Nucleic Acids. Mass Spectrom Rev 15:67

    Google Scholar 

  530. Limbach PA (1996) Indirect Mass Spectrometric Methods for Characterizing and Sequencing Oligonucleotides. Mass Spectrom Rev 15:297

    CAS  Google Scholar 

  531. Hofstadler SA, Sannes-Lowery KA, Hannis JC (2005) Analysis of Nucleic Acids by FTICR MS. Mass Spectrom Rev 24:265

    CAS  Google Scholar 

  532. Slowikowski DL, Schram KH (1985) Fast Atom Bombardment Mass Spectrometry of Nucleosides, Nucleotides and Oligonucleotides. Nucleosides Nucleotides 4:309

    CAS  Google Scholar 

  533. Rice JM, Dudek GO, Barber M (1965) Mass Spectra of Nucleic Acid Derivatives. Pyrimidines. J Am Chem Soc 87:4569

    CAS  Google Scholar 

  534. Rice JM, Dudek GO (1967) Mass Spectra of Nucleic Acid Derivatives. II. Guanine, Adenine, and Related Compounds. J Am Chem Soc 89:2719

    CAS  Google Scholar 

  535. McCloskey JA (1974) Mass Spectrometry. In: Ts’o POP (ed) Basic Principles in Nucleic Acid Chemistry, vol 1. Academic Press, New York, p 209

    Google Scholar 

  536. Hignite C (1970) Nucleic Acids and Derivatives. In: Waller GR (ed) Biochemical Applications of Mass Spectrometry. Wiley-Interscience, New York, p 429

    Google Scholar 

  537. Biemann K, McCloskey JA (1962) Application of Mass Spectrometry to Structure Problems. VI. Nucleosides. J Am Chem Soc 84:2005

    CAS  Google Scholar 

  538. von Minden DL, McCloskey JA (1973) Mass Spectrometry of Nucleic Acid Components. N,O-Permethyl Derivatives of Nucleosides. J Am Chem Soc 95:7480

    Google Scholar 

  539. Hunt DF, Shabanowitz J, Botz FK (1977) Chemical Ionization Mass Spectrometry of Salts and Thermally Labile Organics with Field Desorption Emitters as Solids Probes. Anal Chem 49:1160

    CAS  Google Scholar 

  540. Schulten RH, Beckey HD (1973) High Resolution Field Desorption Mass Spectrometry - I: Nucleosides and Nucleotides. Org Mass Spectrom 7:861

    CAS  Google Scholar 

  541. Crow FW, Tomer KB, Gross ML, McCloskey JA, Bergstrom DE (1984) Fast Atom Bombardment Combined with Tandem Mass Spectrometry for the Determination of Nucleosides. Anal Biochem 139:243

    CAS  Google Scholar 

  542. Fukushima K, Arai T (1978) Field Desorption Mass Spectrometry of Nucleoside Antibiotics. J Antibiot 31:377

    CAS  Google Scholar 

  543. Hignite C (1980) Nucleic Acids and Derivatives. In: Waller GR, Dermer OC (eds) Biochemical Applications of Mass Spectrometry. First Supplementary Volume. Wiley-Interscience, New York, p 527

    Google Scholar 

  544. Budzikiewicz H (1974) Biochemical Applications of Mass Spectrometry. Adv Mass Spectrom 6:163

    CAS  Google Scholar 

  545. Lawson AM, Stillwell RN, Tacker MM, Tsuboyama K, McCloskey JA (1971) Mass Spectrometry of Nucleic Acid Components. Trimethylsilyl Derivatives of Nucleotides. J Am Chem Soc 93:1014

    CAS  Google Scholar 

  546. Pettit GR, Einck JJ, Brown P (1978) Structural Biochemistry. 15 - Mass Spectrometry of Permethylated Nucleotides. Biomed Mass Spectrom 5:153

    CAS  Google Scholar 

  547. Budzikieiwicz H, Feistner G (1978) Mass Spectrosocopic Differentiation between 3′- and 5′-Nucleoside Monophosphoric Acids. Biomed Mass Spectrom 5:512

    Google Scholar 

  548. Budzikiewicz H, Linscheid M (1977) Field Ionization Mass Spectrometry I - Field Desorption Spectra of Nucleotides - Experimental Problems. Biomed Mass Spectrom 4:103

    CAS  Google Scholar 

  549. Bald I, Flosadóttir HD, Ómarsson B, Ingólfsson O (2012) Metastable Fragmentation of a Thymidine-Nucleotide and its Components. Int J Mass Spectrom 313:15

    CAS  Google Scholar 

  550. Hunt DF, Hignite CE, Biemann K (1968) Structure Elucidation of Dinucleotides by Mass Spectrometry. Biochem Biophys Res Commun 33:378

    CAS  Google Scholar 

  551. Schulten HR, Schiebel HM (1976) Sequence Specific Fragments in the Field Desorption Mass Spectra of Dinucleoside Phosphates. Nucleic Acids Res 3:2027

    CAS  Google Scholar 

  552. Linscheid M, Burlingame AL (1983) Collisionally Activated Dissociation of Field Desorbed Protonated Dinucleoside Phosphates. Org Mass Spectrom 18:245

    CAS  Google Scholar 

  553. Linscheid M, Feistner G, Budzikiewicz H (1978) Field Ionization Mass Spectrometry. II. FD Spectra of Nucleotides - Analysis of Methylation Products of Dinucleoside Phosphates. Isr J Chem 17:163

    CAS  Google Scholar 

  554. Grotjahn L, Frank R, Blöcker H (1982) Ultrafast Sequencing of Oligodesoxyribonucleotides by FAB-Mass Spectrometry. Nucleic Acids Res 10:4671

    CAS  Google Scholar 

  555. Grotjahn L, Blöcker H, Frank R (1985) Mass Spectroscopic Sequence Analysis of Oligonucleotides. Biomed Mass Spectrom 12:514

    CAS  Google Scholar 

  556. Cerny RL, Tomer KB, Gross ML, Grotjahn L (1987) Fast Atom Bombardment Combined with Tandem Mass Spectrometry for Determining Structures of Small Oligonucleotides. Anal Biochem 165:175

    CAS  Google Scholar 

  557. McLuckey SA, Van Berkel GJ, Glish GL (1992) Tandem Mass Spectrometry of Small, Multiply Charged Oligonucleotides. J Am Soc Mass Spectrom 3:60

    CAS  Google Scholar 

  558. Little DP, Chorush RA, Speir JP, Senko MW, Kelleher NL, McLafferty FW (1994) Rapid Sequencing of Oligonucleotides by High-Resolution Mass Spectrometry. J Am Chem Soc 116:4893

    CAS  Google Scholar 

  559. Fabris D (2010) A Role of the MS Analysis of Nucleic Acids in the Post-Genomics Age. J Am Soc Mass Spectrom 21:1

    CAS  Google Scholar 

  560. Nordhoff E, Kirpekar F, Roepstorff P (1996) Mass Spectrometry of Nucleic Acids. Mass Spectrom Rev 15:67

    Google Scholar 

  561. Senko MW, Beu SC, McLafferty FW (1995) Determination of Monoisotopic Masses and Ion Populations for Large Biomolecules from Resolved Isotopic Distributions. J Am Soc Mass Spectrom 6:229

    CAS  Google Scholar 

  562. Charnock GA, Loo JL (1970) Mass Spectral Studies of Deoxyribonucleic Acid. Anal Biochem 37:81

    CAS  Google Scholar 

  563. Gross ML, Lyon PA, Dasgupta A, Gupta NK (1978) Mass Spectral Studies of Probe Pyrolysis Products of Intact Oligoribonucleotides. Nucleic Acids Res 5:2695

    CAS  Google Scholar 

  564. Limbach PA, Crain PF, McCloskey JA (1995) Molecular Mass Measurement of Intact Ribonucleic Acids via Electrospray Ionization Quadrupole Mass Spectrometry. J Am Soc Mass Spectrom 6:27

    CAS  Google Scholar 

  565. Kowalak JA, Pomerantz SC, Crain PF, McCloskey JA (1993) A Novel Method for the Determination of Posttranscriptional Modification of RNA by Mass Spectrometry. Nucleic Acids Res 21:4577

    CAS  Google Scholar 

  566. Janning P, Schrader W, Linscheid M (1994) A New Mass Spectrometric Approach to Detect Modifications in DNA. Rapid Commun Mass Spectrom 8:1035

    CAS  Google Scholar 

  567. Pieles U, Zürcher W, Schär M, Moser HE (1993) Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry: A Powerful Tool for the Mass and Sequence Analysis of Natural and Modified Oligonucleotides. Nucleic Acids Res 21:3191

    CAS  Google Scholar 

  568. Sanger F, Nicklen S, Coulson AR (1977) DNA Sequencing with Chain-Terminating Inhibitors. Proc Natl Acad Sci USA 74:5463

    CAS  Google Scholar 

  569. Kwon YS, Tang K, Cantor CR, Köster H, Kang C (2001) DNA Sequencing and Genotyping by Transcriptional Synthesis of Chain-Terminated RNA Ladders and MALDI-TOF Mass Spectrometry. Nucleic Acids Res 29:e11

    CAS  Google Scholar 

  570. Spottke B, Gross J, Galla HJ, Hillenkamp F (2004) Reverse Sanger Sequencing of RNA by MALDI-TOF Mass Spectrometry after Solid Phase Purification. Nucleic Acids Res 32(12):e97

    Google Scholar 

  571. Mardis ER (2008) Next-Generation DNA Sequencing Methods. Ann Rev Genomics Hum Genet 9:387

    CAS  Google Scholar 

  572. Schuster SC (2008) Next-Generation Sequencing Transforms Today’s Biology. Nature Methods 5:16

    CAS  Google Scholar 

  573. Fabris D, Yu ET (2010) Elucidating the Higher-Order Structure of Biopolymers by Structural Probing and Mass Spectrometry: MS3D. J Mass Spectrom 45:841

    CAS  Google Scholar 

  574. Yu ET, Hawkins A, Eaton J, Fabris D (2008) MS3D Structural Elucidation of the HIV-1 Packaging Signal. Proc Natl Acad Sci USA 105:12248

    CAS  Google Scholar 

  575. Croy RG, Essigmann JM, Reinhold VN, Wogan GN (1978) Identification of the Principal Aflatoxin B1-DNA Adduct Formed in vivo in Rat Liver. Proc Natl Acad Sci USA 75:1745

    CAS  Google Scholar 

  576. McCloskey JA, Crain PF (1992) Progress in Mass Spectrometry of Nucleic Acid Constituents: Analysis of Xenobiotic Modifications and Measurements at High Mass. Int J Mass Spectrom Ion Proc 118/119:593

    Google Scholar 

  577. Sharma VK, Glick J, Liao Q, Shen C, Vouros P (2012) GenoMass Software: a Tool Based on Electrospray Ionization Tandem Mass Spectrometry for Characterization and Sequencing of Oligonucleotide Adducts. J Mass Spectrom 47:490

    CAS  Google Scholar 

  578. Ragoussis J, Elvidge GP, Kaur K, Colella S (2006) Matrix-Assisted Laser Desorption/Ionisation, Time-of-Flight Mass Spectrometry in Genomics Research. PLoS Genet 2:e100

    Google Scholar 

  579. Kessler BM (2010) Challenges Ahead for Mass Spectrometry and Proteomics Applications in Epigenetics. Epigenomics 2:163

    CAS  Google Scholar 

  580. Tost J, Schatz P, Schuster M, Berlin K, Gut IG (2003) Analysis and Accurate Quantification of CpG Methylation by MALDI Mass Spectrometry. Nucleic Acids Res 31(9):e50

    Google Scholar 

  581. Iannitti P, Sheil MM, Wickham G (1997) High Sensitivity and Fragmentation Specificity in the Analysis of Drug-DNA Adducts by Electrospray Tandem Mass Spectrometry. J Am Chem Soc 119:1490

    CAS  Google Scholar 

  582. Beck J, Colgrave ML, Ralph SF, Sheil MM (2001) Electrospray Ionization Mass Spectrometry of Oligonucleotide Complexes with Drugs, Metals, and Proteins. Mass Spectrom Rev 20:61

    CAS  Google Scholar 

  583. Iannitti-Tito P, Weimann A, Wickham G, Sheil MM (2000) Structural Analysis of Drug-DNA Adducts by Tandem Mass Spectrometry. Analyst 125:627

    CAS  Google Scholar 

  584. Kloster MBG, Hannis JC, Muddiman DC, Farrell N (1999) Consequences of Nucleic Acid Conformation on the Binding of a Trinuclear Platinum Drug. Biochemistry 38:14731

    CAS  Google Scholar 

  585. Anichina J, Bohme DK (2009) Mass-Spectrometric Studies of the Interaction of Selected Metalloantibiotics and Drugs with Deprotonated Hexadeoxynucleotide GCATGC. J Phys Chem 113:328

    CAS  Google Scholar 

  586. Krivos KL, Limbach PA (2010) Sequence Analysis of Peptide:Oligonucleotide Heteroconjugates by Electron Capture Dissociation and Electron Transfer Dissociation. J Am Soc Mass Spectrom 21:1387

    CAS  Google Scholar 

  587. Rusconi F, Guilloneau FPF, Praseuth D (2002) Contribution of Mass Spectrometry in the Study of Nucleic Acid-Binding Proteins and of Nucleic Acid-Protein Interactions. Mass Spectrom Rev 21:305

    CAS  Google Scholar 

  588. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi K, Ara T, Sakurai N, Suzuki H, Shibata T, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a Public Repository for Sharing Mass Spectral Data for Life Sciences. J Mass Spectrom 45:703

    CAS  Google Scholar 

  589. Kopka J, Schauer N, Krueger S, Birkermeyer C, Usadel B, Bergmüller E, Dörmann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635

    CAS  Google Scholar 

  590. Pace-Asciak CR (1989) Mass Spectra of Prostaglandins and Related Products. Adv Prostaglandin Thromboxane Leucotriene Res 18:1

    Google Scholar 

  591. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a Knowledgebase for the Human Metabolome. Nucleic Acid Res 37 (Suppl 1):D603

    CAS  Google Scholar 

  592. Damen H, Henneberg D, Weimann B (1978) Siscom - a New Library Search System for Mass Spectra. Anal Chim Acta 103:289

    CAS  Google Scholar 

  593. Stein SE, Scott DR (1994) Optimization and Testing of Mass Spectral Library Search Algorithms for Compound Identification. J Am Soc Mass Spectrom 5:859

    CAS  Google Scholar 

  594. Jacob J, Disnar JR, Boussafir M, Spadano Albuquerque AL, Sifeddine A, Turcq B (2005) Pentacyclic Triterpene Methyl Ethers in Recent Lacustrine Sediments (Lagoa do Caçó, Brazil). Org Geochem 36:449

    CAS  Google Scholar 

  595. Hegna RH, Saporito RA, Donnelly MA (2013) Not All Colors Are Equal: Predation and Color Polytypism in the Aposematic Poison Frog Oophaga pumilio. Evol Ecol 27:831

    Google Scholar 

  596. Apps P, Mmualefe L, McNutt JW (2012) Identification of Volatiles from the Secretions and Excretions of African Wild Dogs (Lycaon pictus). J Chem Ecol 38:1450

    CAS  Google Scholar 

  597. Corral RA, Orazi OO, Duffield AM, Djerassi C (1971) Mass Spectrometry in Structural and Stereochemical Problems - CCIV. Spectra of Hydantoins II. Electron Impact Induced Fragmentation of Some Substituted Hydantoins. Org Mass Spectrom 5:551

    Google Scholar 

  598. Cert A, Delgado-Cobos P, Trujillo Pérez-Lanzac M (1986) Mass Spectrometry of Imidazole-4(5)-carboxaldehyde and Some 1-Methyl and Nitro Derivatives. Org Mass Spectrom 21:499

    CAS  Google Scholar 

  599. Stewart M, Baker CF, Cooney T (2011) A Rapid, Sensitive, and Selective Method for Quantitation of Lamprey Migratory Pheromones in River Water. J Chem Ecol 37:1203

    CAS  Google Scholar 

  600. Thevis M, Schänzer W, Geyer H, Thieme D, Grosse J, Rautenberg C, Flenker U, Beuck S, Thomas A, Holland R, Dvorak J (2013) Traditional Chinese Medicine and Sport Drug Testing: Identification of Natural Steroid Administration in Doping Control Urine Samples Resulting from Musk (Pod) Extracts. Br J Sports Med 47:109

    Google Scholar 

  601. Fasciotti M, Sanvido GB, Santos VG, Lalli PM, McCullagh M, de Sá GF, Daroda RJ, Peter MG, Eberlin MN (2012) Separation of Isomeric Disaccharides by Travelling Wave Ion Mobility Mass Spectrometry using CO2 as Drift Gas. J Mass Spectrom 47:1643

    CAS  Google Scholar 

  602. Garraffo HM, Andriamaharavo NR, Varia M, Quiroga MF, Heit C, Spande TF (2012) Alkaloids from Single Skins of the Argentinian Toad Melanophryniscus rubriventris (ANURA, BUFONIDAE): an Unexpected Variability in Alkoid Profiles and a Profusion of New Structures. SpringerPlus 1:51

    Google Scholar 

  603. Qu T, Gao HM, Chen LM, Wang ZM, Zhang QW, Cheng YY (2012) Content of Indole Alkaloids and Bufadienolides Contained in Toad Medicines. Zhongguo Zhong Yao Za Zhi (China J Chinese Materia Medica) 37:3086

    CAS  Google Scholar 

  604. Honda K, Goto M, Kurahashi M, Akizawa T, Yoshioka M, Butler VP Jr (1991) Structure of Bufothionin. Acta Cryst C 47:1506

    Google Scholar 

  605. Yang LH, Zhang HZ, Zhang B, Chen F, Lai ZH, Xu LF, Jin XQ (1992) Studies on the Chemical Constituents from the Skin of Bufo bufo gargarizans Cantor. Yao Xue Xue Bao (Acta Pharm Sinica) 27:679

    CAS  Google Scholar 

  606. Dai LP, Gao HM, Wang ZM, Wang WH (2007) Isolation and Structure Identification of Chemical Constituents from the Skin of Bufo bufo gargarizans. Yao Xue Xue Bao (Acta Pharm Sinica) 42:858

    CAS  Google Scholar 

  607. Cao XT, Wang D, Wang N, Cui Zheng (2009) Water-Soluble Constituents from the Skin of Bufo bufo gargarizans Cantor. Chin J Nat Med 7:181

    CAS  Google Scholar 

  608. Wu FK, Qiu YK, Zhao HY, Wu Z, Li FM, Jiang YT, Chen JY (2011) Cytotoxic Constituents from the Skin of the Toad Bufo bufo gargarizans. J Asian Nat Prod Res 13:111

    CAS  Google Scholar 

  609. Wang DL, Qi FH, Tang W, Wang FS (2011) Chemical Constituents and Bioactivities of the Skin of Bufo bufo gargarizans Cantor. Chem Biodiversity 8:559

    CAS  Google Scholar 

  610. Zhang P, Cui Z, Liu Y, Wang D, Liu N, Yoshikawa M (2005) Qualitative Evaluation of Traditional Chinese Drug Toad Venom from Different Origins Through a Simultaneous Determination of Bufogenins and Indole Alkaloids by HPLC. Chem Pharm Bull 53:1582

    CAS  Google Scholar 

  611. Ueno A, Ikeya Y, Fukushima S, Tadataka N, Morinaga K, Kuwano H (1978) Studies on the Constituents of Desmodium caudatum DC. Chem Pharm Bull 26:2411

    CAS  Google Scholar 

  612. Dai LP (2004) Chemical Studies on the Water-Soluble Fraction Extracted from Skin of Bufo bufo gargarizans. Master’s Thesis, Henan College of Traditional Chinese Medicine (to be obtained under http://www.doc88.com/p-979163575236.html)

  613. Kamano Y, Morita H, Takano R, Kotake A, Nogawa T, Hashima H, Takeya K, Itokawa H, Pettit GR (1999) Bufobutanoic Acid and Bufopyramide, Two New Indole Alkaloids from the Chinese Traditional Drug Ch’ An Su. Heterocycles 50:499

    Google Scholar 

  614. Kurauchi T, Nagahama Y, Hasegawa M, Yamada K, Somei M (2000) The First Total Synthesis of Bufobutanoic Acid byTwo Routes Based on Nucleophilic Substitution Reaction on Indole Nucleus. Heterocycles 53:1017

    CAS  Google Scholar 

  615. Maciel NM, Schwartz CA, Pires OR Jr, Sebben A, Castro MS, Sousa MV, Fontes W, Ferroni Schwartz EN (2003) Composition of Indolealkylamines of Bufo rubescens Cutaneous Secretions Compared to Six other Brazilian Bufonids with Phylogenetic Implications. Comp Biochem Physiol B 134:641

    Google Scholar 

  616. Yuan G, Zhang Q, Zhou J, Li H (2011) Mass Spectrometry of G-Quadruplex DNA: Formation, Recognition, Property, Conversion, and Conformation. Mass Spectrom Rev 30:1121

    CAS  Google Scholar 

  617. Balthasart F, Plavec J, Gabelica V (2013) Ammonium Ion Binding to DNA Q-Quadruplexes: Do Electrospray Mass Spectra Faithfully Reflect the Solution-Phase Species? J Am Soc Mass Spectrom 24:1

    CAS  Google Scholar 

  618. Machnicka MA, Milanowska K, Oglou OO, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawitz S, Rother KM, Helm M, Bujnicki JM, Grosjean H (2013) MODOMICS: a Database of RNA Modification Pathsways - 2013 Update. Nucleic Acids Res 41:D262

    CAS  Google Scholar 

  619. Helm M, Kellner S. (2013) Massenspektrometrie von Modifizierten Nukleinsäuren. Nachr Chem 61:307

    CAS  Google Scholar 

  620. Gonzales AG, Mendoza JJ, Ravelo AG, Luis JG (1989) Δ18 Oleane Triterpenes from Schaefferia cuneifolia. J Nat Prod 52:567

    Google Scholar 

  621. Osorio AA, Muñóz A, Torres-Romero D, Bedoya LM, Perestelo NR, Jiménez IA, Alcamí J, Bazzocchi IL (2012) Olean-18-ene Triterpenoids from Celastraceae Species Inhibit HIV Replication Targeting NF-κB and Sp1 Dependent Transcription. Eur J Med Chem 52:295

    Google Scholar 

  622. Oyo-Ita OE, Ekpo BO, Oros DR, Simoneit BRT (2010) Occurrence and Sources of Triterpenoid Methyl Ethers and Acetates in Sediments of the Cross-River System, Southeast Nigeria. Int J Anal Chem, Article ID 502076

    Google Scholar 

  623. Thompson SA, Tachibana K, Nakanishi K, Kubota I (1986) Melittin-Like Peptides from the Shark-Repelling Defense Secretion of the Sole Pardachirus pavoninus. Science 233:341

    CAS  Google Scholar 

  624. Tachibana K, Gruber SH (1988) Shark Repellent Lipophilic Constituents in the Defense Secretion of the Moses Sole (Pardachirus marmoratus). Toxicon 26:839

    CAS  Google Scholar 

  625. Tachibana K, Sakaitanai M, Nakanishi K (1984) Pavoninins: Shark-Repelling Ichthyotoxins from the Defense Secretion of the Pacific Sole. Science 226:703

    CAS  Google Scholar 

  626. Tachibana K, Sakaitani M, Nakanishi K (1985) Pavoninins, Shark-Repelling and Ichthyotoxic Steroid N-Acetylglucosaminides from the Defense Secretion of the Sole Pardachirus pavoninus (Soleidae). Tetrahedron 41:1027

    CAS  Google Scholar 

  627. Goldberg AS, Wasylyk J, Renna S, Reisman J, Nair MSR (1982) Isolation and Structural Elucidation of an Ichthyocrinotoxin from the Smooth Trunkfish (Lactophrys triqueter Linnaeus). Toxicon 20:1069

    CAS  Google Scholar 

  628. Boylan DB, Scheurer PJ (1967) Pahutoxin: a Fish Poison. Science 155:52

    CAS  Google Scholar 

  629. Yoshikawa M, Sugimura T, Tai A (1989) Pahutoxin: Synthesis and Determination of its Absolute Configuration. Agric Biol Chem 53:37

    CAS  Google Scholar 

  630. Onuki H, Tachibana T, Fusetani N (1993) Structure of Lipogrammistin-A, a Lipophilic Ichthyotoxin Secreted by the Soapfish Diploprion bifsciatum. Tetrahedron Lett 34:5609

    CAS  Google Scholar 

  631. Onuki H, Ito K, Kobayashi Y, Matsumori N, Tachibana K (1998) Absolute Structure and Total Synthesis of Lipogrammistin-A, a Lipophilic Ichthyotoxin of the Soapfish. J Org Chem 63:3925

    CAS  Google Scholar 

  632. Hatano M, Hashimoto Y (1974) Properties of a Toxic Phospholipid in the Northern Blenny Roe. Toxicon 12:231

    CAS  Google Scholar 

  633. Hatano M, Marumoto R, Hashimoto Y (1976) Structure of a Toxic Phospholipid in Northern Blenny Roe. In: Ohsaka A, Hayashi K, Sawai Y, Murata R, Funatsu M (eds) Animal, Plant, and Microbial Toxins. Plenum, New York, vol 2, p 145

    Google Scholar 

  634. Matsunaga S, Takahashi N, Fusetani N (2009) Dinogunnellins A-D: Putative Ichthyotoxic Phospholipids of Northern Blenny Stichaeus grigorjewi Eggs. Pure Appl Chem 81:1001

    CAS  Google Scholar 

  635. Xu Z, Shaw JB, Brodbelt JS (2013) Comparison of MS/MS Methods for Characterization of DNA/Cisplatin Adducts. J Am Soc Mass Spectrom 24:265

    CAS  Google Scholar 

  636. Hodyss R, Cox HA, Beauchamp JL (2005) Bioconjugates for Tunable Peptide Fragmentation: Free Radical Initiated Peptide Sequencing (FRIPS). J Am Chem Soc 127:12436

    CAS  Google Scholar 

  637. Falvo F, Fiebig L, Schäfer M (2013) Presentation of a Homobifunctional Azo-reagent for Protein Structure Analysis by Collision-Induced Dissociative Chemical Cross-Linking: Proof-of-Principle. Int J Mass Spectrom 354-355:26

    CAS  Google Scholar 

  638. Williams DM, Pukala DL (2013) Novel Insights into Protein Misfolding Diseases Revealed by Ion Mobility-Mass Spectrometry. Mass Spectrom Rev 32:169

    CAS  Google Scholar 

  639. Tzouros M, Chesnov S, Bigler L, Bienz S (2013) A Template Approach for the Characterization of Linear Polyamines and Derivatives in Spider Venom. Eur J Mass Spectrom 19:57

    CAS  Google Scholar 

  640. Liu RH, Lao H, Li YL, Yang M, Li HL, Shen YH, Zhang C, Su J, Zhang WD (2007) Three New Alkaloids from the Chinese Medicine Chan-Su. Helv Chim Acta 90:2427

    CAS  Google Scholar 

  641. Kurono S, Hattori H, Suzuki O, Yamada T, Seno H (2001) Sensitive Analysis of Tetrodotoxin in Human Plasma by Solid-Phase Extractions and Gas Chromatography/Mass Spectrometry. Anal Lett 34:2439

    CAS  Google Scholar 

  642. Oberacher H, Whitley G, Berger B, Weinmann W (2013) Testing an Alternative Search Algorithm for Compound Identification with the ‘Wiley Registry of Tandem Mass Spectral Data, MSforID’. J Mass Spectrom 48:497

    Google Scholar 

  643. Fellenberg AJ, Johnson DW, Poulos A; Sharp P (1987) Simple Mass Spectrometric Differentiation of the n-3, n-6 and n-9 Series of Methylene Interrupted Polyenoic Acids. Biomed Environm Mass Spectrom 14:127

    CAS  Google Scholar 

  644. Yamagishi T, Miyazaki T, Horii S, Kaneko S (1981) Identification of Musk Xylene and Musk Ketone in Freshwater Fish Collected from the Tama River, Tokyo. Bull Environm Contam Toxicol 26:656

    CAS  Google Scholar 

  645. Mottaleb MA, Osemwengie LI, Islam MR, Sovocool GW (2012) Identification of Bound Nitro Musk-Protein Adducts in Fish Liver by Gas Chromatography-Mass Spectrometry: Biotransformation, Dose-Response and Toxicokinetics of Nitro Musk Metabolites Protein Adducts in Trout Liver as Biomarkers of Exposure. Aquat Toxicol 106-107:164

    CAS  Google Scholar 

  646. Herren D, Berst JD (2000) Nitro Musk, Nitro Musk Amino Metabolites and Polycyclic Musks in Sewage Sludges. Quantitative Determination by HRGC-Ion Trap-MS/MS and Mass Spectral Characterization of the Amino Metabolites. Chemosphere 40:565

    CAS  Google Scholar 

  647. Asakawa M, Shida Y, Miyazawa K, Noguchi T (2012) Instrumental Analysis of Tetrodotoxin. In: Chromatography - The Most Versatile Method Of Chemical Analysis (de Azevedo Calderon L, ed) InTech: Rijeka, Croatia, Chapter 10

    Google Scholar 

  648. Chau R, Kalaitzis JA, Neilan BA (2011) On the Origin and Biosynthesis of Tetrodotoxin. Aquat Toxicol 104:61

    CAS  Google Scholar 

  649. Yotsu-Yamashita, M (2006) Spectroscopic Study of Zetekitoxin AB. In: Kiyota H, Gupta RR (eds) Marine Natural Products, Springer, Berlin, Heidelberg, New York. Top Heterocycl Chem, 5:53

    Google Scholar 

  650. Li CJ, Kari UP, Noecker LA, Jones SR, Sabo AM, McCormick TJ, Johnston SM (2003) Determination of Degradation Products of Squalamine Lactate Using LC/MS. J Pharm Biomed Anal 32:85

    Google Scholar 

  651. de Medina P, Paillasse MR, Segala G, Voisin M, Mhamdi L, Dalenc F, Lacroix-Triki M, Filleron T, Pont F, Saati TA, Morisseau C, Hammock BD, Silvente-Poirot S, Poirot M (2013) Dendrogenin A Arises from Cholesterol and Histamine Metabolism and Shows Cell Differentiation and Anti-Tumor Properties. Nature Commun 4:1840

    Google Scholar 

  652. Tian HY, Wang L, Zhang XQ, Wang Y, Zhang DM, Jiang RW, Liu Z, Liu JS, Li YL, Ye WC (2010) Bufogargarizins A and B: Novel 19-Norbufadienolides with Unprecedented Skeletons from the Venom of Bufo bufo gargarizans. Chem Eur J 16:10989

    CAS  Google Scholar 

  653. Zhao HY, Wu FK, Qiu YK, Wu Z, Jiang YT, Chen JY (2010) Studies on Cytotoxic Constituents from the Skin of the Toad Bufo bufo gargarizans. J Asian Nat Prod Res 12:793

    CAS  Google Scholar 

  654. Silvestri C, Brodbelt JS (2013) Tandem Mass Spectrometry for Characterization of Covalent Adducts of DNA with Anticancer Therapeutics. Mass Spectrom Rev 32:247

    CAS  Google Scholar 

  655. Fingolo CE, de S. Santos T, Vianna Filho MDM, Kaplan MAC (2013) Triterpene Esters: Natural Products from Dorstenia arifolia (Moraceae). Molecules 18:4247

    Google Scholar 

  656. Habermehl G, Vogel G (1969) Samandinine, a Minor Alkaloid from Salamandra maculosa Laur. Toxicon 7:163

    CAS  Google Scholar 

  657. Dufton MJ (1992) Venomous Mammals. Pharmacol Ther 53:199

    CAS  Google Scholar 

  658. Folinsbee KE (2013) Evolution of Venom Across Extant and Extinct Eulipotyphlans. C R Palevol 12:531

    Google Scholar 

  659. Kita M, Nakamura Y, Okumura Y, Ohdachi SD, Oba Y, Yoshikuni M, Kido H, Uemura D (2004) Blarina Toxin, a Mammalian Lethal Venom from the Short-Tailed Shrew Blarina brevicauda: Isolation and Characterization. Proc Natl Acad Sci USA 101:7542

    CAS  Google Scholar 

  660. Aminetzach YT, Srouji JR, Kong CY, Hoekstra HE (2009) Convergent Evolution of Novel Protein Function in Shrew and Lizard Venom. Curr Biol 19:1925

    CAS  Google Scholar 

  661. Römer JJ, Schinz HR (1809) Naturgeschichte der in der Schweiz einheimischen Säugethiere. Ein Handbuch für Kenner und Liebhaber. H. Geßner, Zürich, p 139

    Google Scholar 

  662. Gesner (1606) Thierbuch. A. Cambler, Heidelberg, p 113

    Google Scholar 

  663. Kiss G, Michl H (1962) Über das Giftsekret der Gelbbauchunke, Bombina variegata L. Toxicon 1:33

    Google Scholar 

  664. Anastasi A, Erspamer V, Bucci M (1972) Isolation and Amino Acid Sequences of Alytesin and Bombesin, Two Analogous Active Tetradecapeptides from the Skin of European Discoclossid Frogs. Arch Biochem Biophys 148:443

    CAS  Google Scholar 

  665. Lai R, Zheng YT, Shen JH, Liu GJ, Liu H, Lee WH, Tang SZ, Zhang Y (2002) Antimicrobial Peptides from Skin Secretions of Chinese Red Belly Toad Bombina maxima. Peptides 23:427

    CAS  Google Scholar 

  666. Marenah L, Flatt PR, Orr DF, McLean S, Shaw C, Abdel-Wahab YHA (2004) Skin Secretion of the Toad Bombina variegata Contains Multiple Insulin-Releasing Peptides Including Bombesin and Entirely Novel Insulinotropic Structures. Biol Chem 385:315

    CAS  Google Scholar 

  667. Csordás A, Michl H (1970) Isolierung und Strukturaufklärung eines hämolytisch wirkenden Poypeptides aus dem Abwehrsekret europäischer Unken. Monatsh Chem 101:182

    Google Scholar 

  668. Gibson BW, Tangt D, Mandrell R, Kelly M, Spindel ER (1991) Bombinin-like Peptides with Antimicrobial Activity from Skin Secretions of the Asian Toad, Bombina orientalis. J Biol Chem 266:23103

    CAS  Google Scholar 

  669. Ligon WV Jr, Dorn SB (1986) Understanding the Glycerol Surface as it Relates to the Secondary Ion Mass Spectrometry Experiment. A Review. Int J Mass Spectrom Ion Proc 78:99

    Google Scholar 

  670. Sciani JM, Angeli CB, Antoniazzi MM, Jared C, Pimenta DC (2013) Differences and Similarities among Parotoid Macrogland Secretions in South American Toads: A Preliminary Biochemical Delineation. Sci World J Article ID 937407

    Google Scholar 

  671. Weldon PJ, Flachsbarth B, Schulz S (2008) Natural Products from the Integument of Nonavian Reptiles. Nat Prod Rep 25:738

    CAS  Google Scholar 

  672. Wood WF, Parker JM, Weldon PF (1995) Volatile Compounds in the Scent Gland Secretions of Garter Snakes (Thamnophis spp.). J Chem Ecol 21:213

    CAS  Google Scholar 

  673. Simpson JT, Weldon PJ, Sharp TR (1988) Identification of Major Lipids from the Scent Gland Secretions of Dumaril’s Ground Boa (Acrantophis dumerili Jan) by Gas Chromatography-Mass Spectrometry. Z Naturforsch 43c:914

    Google Scholar 

  674. Simpson JT, Sharp TR, Wood WF, Weldon PJ (1993) Further Analysis of Lipids from the Scent Gland Secretions of Dumaril’s Ground Boa (Acrantophis dumerili Jan). Z Naturforsch 48c:953

    Google Scholar 

  675. Stavenhagen K, Hinneburg H, Thaysen-Andersen M, Hartmann L, Silva DV, Fuchser J, Kaspar S, Rapp E, Seeberger PH, Kolarich (2013) Quantitative Mapping of Glycoprotein Micro-heterogeneity and Macro-heterogeneity: an Evaluation of Mass Spectrometry Signal Strengths Using Synthetic Peptides and Glycopeptides. J Mass Spectrom 48:627

    Google Scholar 

  676. Weldon PJ, Lloyd HA, Blum MS (1990) Glycerol Monoethers in the Scent Gland Secretions of the Western Diamond Back Rattlesnake (Crotalus atrox; Serpentes Crotalinae). Experientia 46:774

    CAS  Google Scholar 

  677. Myher JJ, Marai L, Kuksis A (1974) Identification of Monoacyl- and Monoalkylglycerols by Gas-liquid Chromatography-Mass Spectrometry Using Polar Siloxane Liquid Phases. J Lipid Res 15:586

    CAS  Google Scholar 

  678. Hallgren B, Ställberg G (1967) Methoxy-substituted Glycerol Ethers Isolated from Greenland Shark Liver Oil. Acta Chem Scand 21:1519

    CAS  Google Scholar 

  679. Torres AM, Wang X, Fletcher JI, Alewood D, Alewood PF, Smith R, Simpsons RJ, Nicholson GM, Sutherland SK, Gallagher CH, King GF, Kuchel PW (1999) Solution Structure of a Defensin-like Peptide from Platypus Venom. Biochem J 341:785

    CAS  Google Scholar 

  680. Torres AM, de Plater GM, Doverskog M, Birinyi-Strachans LC, Nicholson GM, Gallagher CH, Kuchel PW (2000) Defensin-like Peptide-2 from Platypus Venom: Member of a Class of Peptides with a Distinct Structural Fold. Biochem J 348:649

    CAS  Google Scholar 

  681. Koh JMS, Haynes L, Belov K, Kuchel PW (2100) l-to-d-Peptide Isomerase in Male Echidna Venom. Aust J Zool 58:284

    Google Scholar 

  682. Whittington CM, Papenfuss AT, Bansal P, Torres AM, Wong ESW, Deakin JE, Graves T, Alsop A, Schatzkamer K, Kremitzki C, Ponting CP, Temple-Smith P, Warren WC, Kuchel PW, Belov K (2008) Defensins and the Convergent Evolution of Platypus and Reptile Venom Genes. Genome Res 18:986

    CAS  Google Scholar 

  683. Harris RL, Davies NW, Nicol SC (2012) Chemical Composition of the Odorous Secretions in the Tasmanian Short-Beaked Echidna (Tachyglossus aculeatus setosus). Chem Senses 37:819

    CAS  Google Scholar 

  684. Burger BV (2005) Mammalian Semiochemicals. Topics Curr Chem 240:231

    CAS  Google Scholar 

  685. Smith TE, Tomlinson AJ, Mlotkiewicz JA, Abbott DH (2001) Female Marmoset Monkeys (Callithrix jacchus) Can Be Identified from the Chemical Composition of Their Scent Marks. Chem Senses 26:449

    CAS  Google Scholar 

  686. Kavan D, Kuzma M, Lemr K, Schug KA, Havlicek V (2013) CYCLONE - a Utility for de Novo Sequencing of Microbial Cyclic Peptides. J Am Soc Mass Spectrom 24:1177

    CAS  Google Scholar 

  687. Lattová E, Perreault H (2013) The Usefulness of Hydrazine Derivatives for Mass Spectrometric Analysis of Carbohydrates. Mass Spectrom Rev 32:366

    Google Scholar 

  688. Matsumura K (2001) No Ability to Produce Tetrodotoxin in Bacteria. Appl. Environ Microbiol 67:2393

    CAS  Google Scholar 

  689. Yotsu-Yamashita M, Abe Y, Kudo Y, Ritson-Williams R, Paul VJ, Konoki K, Cho Y, Adachi M, Imazu T, Nishikawa T, Isobe M (2013) First Identification of 5,11-Dideoxytetrodotoxin in Marine Animals, and Characterization of Major Fragment Ions of Tetrodotoxin and its Analogs by High Resolution ESI-MS/MS. Mar Drugs 11:2799

    Google Scholar 

  690. Pires OR Jr, Sebben A, Schwartz EF, Morales RAV, Bloch C Jr, Schwartz CA (2005) Further Report of the Occurrence of Tetrodotoxin and New Analogs in the Anuran Family Brachycephalidae. Toxicon 45:73

    Google Scholar 

  691. Spiteller G (2005) Furan Fatty Acids: Occurrence, Synthesis, and Reactions. Are Furan Fatty Acids Responsible for the Cardioprotective Effects of a Fish Diet? Lipids 40:755

    CAS  Google Scholar 

  692. Glass RL, Krick TP, Sand DM, Rahn CH, Schlenk H (1975) Furanoid Fatty Acids from Fish Lipids. Lipids 10:695

    CAS  Google Scholar 

  693. Hasma H, Subramaniam A (1978) The Occurrence of a Furanoid Fatty Acid in Hevea brasiliensis Latex. Lipids 13:905

    Google Scholar 

  694. Guth H, Grosch W (1991) Detection of Furanoid Fatty Acids in Soya-Bean Oil - Cause for the Light-Induced Off-Flavor. Fat Sci Technol 93:249

    CAS  Google Scholar 

  695. Spiteller M, Spiteller G, Hoyer GA (1980) Urofuransäuren - eine bisher unbekannte Klasse von Stoffwechselprodukten. Chem Ber 113:699

    CAS  Google Scholar 

  696. Pfordt J, Thoma H, Spiteller G (1981) Identifizierung, Strukturableitung und Synthese bisher unbekannter Uroforansäuren im menschlichen Blut. Liebigs Ann Chem:2298

    Google Scholar 

  697. Guth H, Grosch W (1992) Furan Fatty Acids in Butter and Butter Oil. Z Lebensm Unters Forsch 194:360

    CAS  Google Scholar 

  698. Wahl HG, Chrzanowski A, Liebich HM, Hoffmann A (1994) Identification of Furan Fatty Acids in Nutritional Oils and Fats by Multidimensional GC-MSD. Gerstl ApplNote 6/1994, Gerstl GmbH & CoKG, Mülheim/R, Germany

    Google Scholar 

  699. Ishii K, Okajima H, Koyamatsu T, Okada Y, Watanabe H (1988) The Composition of Furan Fatty Acids in the Crayfish. Lipids 23:694

    CAS  Google Scholar 

  700. Roselli E, Grob K, Lercker G (2000) Determination of Furan Fatty Acids in Extra Virgin Olive Oil. J Agric Food Chem 48:2868

    Google Scholar 

  701. Glass RL, Krick TP, Eckhardt AE (1974) New Series of Fatty Acids in Northern Pike (Esox lucius). Lipids 9:1004

    CAS  Google Scholar 

  702. Sand DM, Schlenk H, Thoma H, Spiteller G (1983) Catabolism of Fish Furan Fatty Acids to Urofuran Acids in the Rat. Biochim Biophys Acta 751:455

    CAS  Google Scholar 

  703. Bauer S, Spiteller G (1985) Furancarbonsäuren aus Rinderharn. Helv Chim Acta 68:1635

    CAS  Google Scholar 

  704. Groweiss A, Kashman Y (1978) A New Furanoid Fatty Acid from the Soft Corals Sarcophyton glaucum and gemmatum. Experientia 34:299

    CAS  Google Scholar 

  705. Schödel R, Dietel P, Spiteller G (1986) F-Säuren als Vorstufen der Urofuransäuren. Liebigs Ann Chem:127

    Google Scholar 

  706. Ellamar JB, Song KS, Kim HR (2011) One-Step Production of a Biologically Active Novel Furan Fatty Acid from 7,10-Dihydroxy-8(E)-octadecenoic Acid. J Agric Food Chem 59:8175

    CAS  Google Scholar 

  707. Vetter W, Wendlinger C (2013) Furan Fatty Acids - Valuable Minor Fatty Acids in Food. Lipid Technol 25:7

    CAS  Google Scholar 

  708. Vetter W, Laure S, Wendlinger C, Mattes A, Smith AWT, Knight DW (2012) Determination of Furan Fatty Acids in Food Samples. J Am Oil Chem Soc 89:1501

    CAS  Google Scholar 

  709. Wynne P, Jenkinson L, Marrow G, Lahoutifard N, Hodges L, Macrides T. GCMS Based Structure Assignment for Furan Fatty Acids Isolated from European Carp (Cyprinus carpio). SGE Analytical Science TP-0181-C

    Google Scholar 

  710. Göckler S (2009) Metabolismus und genetische Toxizität von Furanfettsäuren, sowie deren Einfluss auf Zellmembranen in vitro. Dissertation, University of Karlsruhe

    Google Scholar 

  711. Pompizzi R (1999) Furanfettsäuren als Vorläufer von Aromastoffen. Dissertation, ETH Zürich

    Google Scholar 

  712. Shiojima K, Masuda K, Suzuki H, Lin T, Ooishi Y, Ageta H (1995) Composite Constituents: Forty-Two Triterpenoids Including Eight Novel Compounds Isolated from Picris hieracioides subsp. japonica. Chem Pharm Bull 43:1634

    CAS  Google Scholar 

  713. Hooper SN, Chandler RF, Lewis E, Jamieson WD (1982) Simultaneous Determination of Sonchus arvensis L. Triterpenes by Gas Chromatography-Mass Spectrometry. Lipids 17:60

    CAS  Google Scholar 

  714. Lee HD, Eichmeier LS, Piatak DM (1985) Mass Spectral Study of Ring E of Taraxasterol and Compounds with Similar Ring Substitution. Org Mass Spectrom 20:247

    CAS  Google Scholar 

  715. Pfordt J, Thoma H, Spiteller G (1981) Identifizierung, Strukturableitung und Synthese Bisher Unbekannter Urofuransäuren im Menschlichen Blut. Liebigs Ann Chem:2298

    Google Scholar 

  716. Bauer S, Spiteller G (1985) Strukturaufklärung und Synthese bisher unbekannter Furancarbonsäuren im Humanurin. Liebigs Ann Chem:813

    Google Scholar 

  717. Dietel P, Spiteller G (1988) Inkubation von 2,5-disubstituierten F-Säuren mit Rinderleberhomogenisat. Liebigs Ann Chem:397

    Google Scholar 

  718. Baltes W, Bochmann G (1987) Model Reactions on Roast Aroma Formation. II. Mass Spectrometric Identification of Furans and Furanones from the Reaction of Serine and Threonine with Sucrose under the Conditions of Coffee Roasting. Z Lebensm Unters Forsch 184:179

    CAS  Google Scholar 

  719. Knechtle P, Diefenbacher M, Greve KBV, Brianza F, Folly C, Heider H, Lone MA, Long L, Meyer JP, Roussel P, Ghannoum MA, Schneiter R, Sorensen AS (2013) The Natural Diyne-Furan Fatty Acid EV-086 is an Inhibitor of Fungal Delta-9 Fatty Acid Desaturation with Efficacy in a Model of Skin Dermatophytosis. Antimicrob Agents Chemother 58:455

    Google Scholar 

  720. Nekaris KAI, Moore RS, Rode EJ, Fry BG (2013) Mad, Bad and Dangerous to Know: the Biochemistry, Ecology and Evolution of Slow Loris Venom. J Venom Anim Toxins Incl Trop Dis 19:21

    Google Scholar 

  721. Jing J, Ren WC, Li C, Bose U, Parekh HS, Wei MQ (2013) Rapid Identification of Primary Constituents in Parotoid Gland Secretions of the Australian Cane Toad Using HPLC/MS-Q-TOF. Biomed Chromatogr 27:685

    CAS  Google Scholar 

  722. Gao H, Zehl M, Leitner A, Wu X, Wang Z, Kopp B (2010) Comparison of Toad Venoms from Different Bufo species by HPLC and LC-DAD-MS/MS. J Ethnopharmacol 131:368

    CAS  Google Scholar 

  723. Yoshika M, Komiyama Y, Konishi M, Akizawa T, Kobayashi T, Date M, Kobatake S, Masuda M, Masaki H, Takahashi H (2007) Novel Digitalis-like Factor, Marinobufotoxin, Isolated from Cultured Y-1 Cells, and its Hypertensive Effect in Rats. Hypertension 49:209

    CAS  Google Scholar 

  724. Ye M, Guo DA (2005) Analysis of Bufadienolides in the Chinese Drug ChanSu by High-Performance Liquid Chromatography with Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry. Rapid Commun Mass Spectrom 19:1881

    CAS  Google Scholar 

  725. Hu Y, Yu Z, Yang ZJ, Zhu G, Fong W (2011) Comprehensive Chemical Analysis of Venenum Bufonis by Using Liquid Chromatography/Eletrospray Ionization Tandem Mass Spectrometry. J Pharm Biomed Anal 56:210

    CAS  Google Scholar 

  726. Eglinton G, Hamilton RJ, Martin-Smith M, Smith SJ, Subramanian G (1964) Arundoin - a Naturally Occurring D:C-friedo-Oleana-9(11)-ene. Tetrahedron Lett 5:2323

    Google Scholar 

  727. Nakanishi K, Lin YY, Kakisawa H, Hsü HY, Hsiu HC (1963) Davallic Acid, a Triterpene with a Novel Skeleton. Tetrahedron Lett 4:1451

    Google Scholar 

  728. Allard S, Ourisson G (1957) Remarques sur la nomenclature des triterpènes. Tetrahedron 1:277

    CAS  Google Scholar 

  729. Brahim B, Alves S, Cole RB, Tabet JC (2013) Charge Enhancement of Single-Stranded DNA in Negative Electrospray Ionization Using the Supercharging Reagent meta-Nitrobenzyl Alcohol. J Am Soc Mass Spectrom 24:1988

    CAS  Google Scholar 

  730. Lehane L, Olley J (2000) Histamine Fish Poisoning Revisited. Int J Food Microbiol 58:1

    CAS  Google Scholar 

  731. Safer D, Brenes M, Dunipace S, Schad G (2007) Urocanic Acid is a Major Chemoattractant for the Skin-Penetrating Parasitic Nematode Strongyloides stercoralis. Proc Natl Acad Sci USA 104:1627

    CAS  Google Scholar 

  732. Ienaga K, Yamamoto A, Yamada T, Joh Y (1988) A Novel Urocanic Acid Derivative from Skin Tissue Extracts: (E)-3-[1-(1,1-Dimethyl-3-oxobutyl)imidazo-4-yl]-4-propenoic Acid. J Heterocycl Chem 25:1037

    CAS  Google Scholar 

  733. Ienaga K, Nakamura K, Goto T (1987) Bioactive Compounds Produced in Animal Tissues (I); Two Diketopiperadine Plant Growth Regulators Containing Hydroxyproline Isolated from Rabbit Skin Tissue Extract. Tetrahedron Lett 28:1285

    CAS  Google Scholar 

  734. Ienaga K, Nakamura K, Goto T, Konishi J (1987) Ienaga K, Nakamura K, Goto T (1987) Bioactive Compounds Produced in Animal Tissues (II); Two Hydantoin Plant Growth Regulators Isolated from Inflamed Rabbit Skin Tissue. Tetrahedron Lett 28:4587

    CAS  Google Scholar 

  735. Locock RA, Coutts RT (1970) The Mass Spectra of Succinimides, Hydantoins, Oxazolidinediones and other Medicinal Anti-Epileptic Agents. Org Mass Spectrom 3:735

    CAS  Google Scholar 

  736. Ishikawa Y, Suzuki O, Hattori H, Kumazawa T, Takahashi T (1988) Positive and Negative Ion Mass Spectrometry of Antiepileptik Hydantoins and their Analogs. Z Rechtsmed 99:253

    CAS  Google Scholar 

  737. Hantak MM, Grant T, Reinsch S, Meginnity D, Loring M, Toyooka N, Saporito RA (2013) Dietary Alkaloid Sequestration in a Poison Frog: An Experimental Test of Alkaloid Uptake in Melanophryniscus stelzneri (Bufonidae). J Chem Ecol 39:1400

    CAS  Google Scholar 

  738. Naldi M, Giannone FA, Baldassarre M, Domenicali M, Caraceni P, Bernardi M, Bertucci C (2013) A Fast and Validated Mass Spectrometry Method for the Evaluation of Human Serum Albumin Structural Modifications in the Clinical Field. Eur J Mass Spectrom 19:491

    CAS  Google Scholar 

  739. Ibraheim ZZ (2002)Triterpenes from Rubia cordifolia L. Bull Pharm Sci, Assiut Univ 25:155

    CAS  Google Scholar 

  740. Tanaka R, Msatsunaga S (1988) Triterpene Dienols and other Constituents from the Bark of Phyllanthus flexuosus. Phytochemistry 27:2273

    CAS  Google Scholar 

  741. Zeng L, Zhang RY, Wang D, Zhang ZL, Lou ZC (1991) Glyyunnansapogenins G and H: Two New Pentacyclic Triterpenoids of the 18αH-Oleano-9(11),12-diene Type from Glycyrrhiza yunnanensis Roots. Planta Med 57:165

    Google Scholar 

  742. Ikuta A, Kamiya K, Satake T, Saiki Y (1995) Triterpenoids from Callus Tissue Cultures of Paeonia Species. Phytochemistry 38:1203

    CAS  Google Scholar 

  743. Rödel MO, Brede C, Hirschfeld M, Schmitt T, Favreau P, Stöcklin R, Wunder C, Mebs D (2013) Chemical Camouflage - A Frogs Strategy to Co-Exist with Aggressive Ants. PLoS ONE 8(12) e81950.

    Google Scholar 

  744. Guttérrez RMP (2005) Pentacyclic Triterpenes from Cirsium pascuarense. J Chil Chem Soc 50:587

    Google Scholar 

  745. Cui L, Yapici I, Borthan B, Reid GE (2014) Quantification of Competing H3PO4 versus HPO3 + H2O Neutral Losses from Regioselective 18O-Labeled Phosphopeptides. J Am Soc Mass Spectrom 25:141

    CAS  Google Scholar 

  746. Reis A, Domingues P, Domingues RM (2013) Structural Motifs in Primary Oxidation Products of Palmitoyl-arachidonoyl-phosphatidylcholines by LC-MS/MS. J Mass Spectrom 48:1207

    CAS  Google Scholar 

  747. Mebs D, Alvarez JV, Pogoda W, Toennes SW, Köhler G (2014) Poor Alkaloid Sequestration by Arrow Poison Frogs of the Genus Phyllobates from Costa Rica. Toxicon 80:73

    CAS  Google Scholar 

  748. McNabb P, Selwood AI, Mundy R, Wood SA, Taylor DI, MacKenzie LA, van Ginkel R, Rhodes LL, Cornelisen C, Heasman K, Holland PT, King C (2010) Detection of Tetrodotoxin from the Grey Side-gilled Sea Slug - Pleurobranchea maculata, and Associated Dog Neurodoxicosis on Beaches Adjacent to the Hauraki Gulf, New Zealand. Toxicon 56:466

    CAS  Google Scholar 

  749. Khor S, Wood SA, Salvitti L, Taylor DI, Adamson J, McNabb P, Cary C (2014 ) Investigating Diet as the Source of Tetrodotoxin in Pleurobranchea maculata. Mar Drugs 12:1

    CAS  Google Scholar 

  750. Oka K, Hara S (1977) Denial of the Proposed Structure of Salamander Alkaloid, Cycloneosamandaridine. Total Synthesis of Cycloneosamandione and Supposed Cycloneosamandaridine. J Am Chem Soc 99:3859

    CAS  Google Scholar 

  751. Oka K, Hara S (1978) Synthesis of γ-Lactone Ring Fused to Steroidal Ring D of Salamander Alkaloids. J Org Chem 43:4408

    Google Scholar 

  752. Habermehl G, Haaf G (1965) Cycloneosamandaridin, ein neues Nebenalkaloid aus Salamandra maculosa. Chem Ber 98:3001

    CAS  Google Scholar 

  753. Cristofoli WA, Benn M (1991) Synthesis of Samanine. J Chem Soc Perkin Trans 1:1825

    Google Scholar 

  754. Wang X, Tsuneki H, Urata N, Tezuka Y, Wada T, Sasaoka T, Sakai H, Saporito RA, Toyooka N (2012) Synthesis and Biological Activities of the 3,5-Disubstituted Indolizidine Poison Frog Alkaloid 239Q and its Congeners. Eur J Org Chem:7082

    Google Scholar 

  755. Brown AM (1887) A Treatase on the Animal Alkaloids, Cadaveric and Vital; or, The Ptomaïnes and Leukomaïnes: Chemically, Physiologically, and Pathologically Considered in Relation to Scientific Medicine. Baillière, Tindall, and Cox: London. Brown AM (1889) The Animal Alkaloids, Cadaveric and Vital; or, The Ptomaines and Leukomaines. Chemically, Physiologically, and Pathologically Considered in Relation to Scientific Medicine. Second Edn. Hirschfeld Brothers: London

    Google Scholar 

  756. Zhu C, Meador TB, Dummann W, Hinrichs KU (2014) Identification of Unusual Butanetriol Dialkyl Glycerol Tetraether and Pentanetriol Dialkyl Glycerol Tetraether Lipids in Marine Sediments. Rapid Commun Mass Spectrom 28:332

    CAS  Google Scholar 

  757. Dudley E, Bond L (2013) Mass Spectrometry Analysis of Nucleosides and Nucleotides. Mass Spectrom Rev. Published online in Wiley Online Library 27. 11. 2013, 33:302

    Google Scholar 

  758. Bane V, Lehane M, Dikshit M, O’Riordan, Furey A (2014) Tetrodotoxin: Chemistry, Toxicity, Source, Distribution and Detection. Toxins 6:693

    CAS  Google Scholar 

  759. Sabareesh V, Manikandan K, Sinha KM (2014) Understanding Dissociation of Cyclic Dinucleotide Ions by Electrospray Mass Spectrometry. Int J Mass Spectrom 364:9

    CAS  Google Scholar 

  760. Schirmer T, Jenal U (2009) Structural and Mechanistic Determinants of c-di-GMP Signalling. Nature Rev Microbiol 7:724

    CAS  Google Scholar 

  761. Chai YF, Pan YJ (2014) The Effect of Cation Size (H+, Li+, Na+, and K+) on McLafferty-Type Rearrangement of Even-Electron Ions in Mass Spectrometry. Science China, Chemistry 57:662

    CAS  Google Scholar 

  762. Hsu FF, Turk J (2007) Differentiation of 1-O-Alk-1′-enyl-2-acyl and 1-O-2-Acylalkyl Glycerophospholipids by Multiple-Stage Linear Ion-Trap Mass Spectrometry with Electrospray Ionization. J Am Soc Mass Spectrom 18:2065

    Google Scholar 

  763. Hsu FF, Lodhi IJ, Turk J, Semenkovich CF (2014) Structural Distinction of Diacyl-, Alkylacyl, and Alk-1-enylacyl Glycerophosphocholins as [M - 15]- Ions by Multiple-Stage Linear Ion-Trap Mass Spectrometry with Electrospray Ionization. J Am Soc Mass Spectrom. Published online 30.4.2014. DOI : 10.1007/s13361-014-0908-x

    Google Scholar 

  764. Vences M, Sanchez E, Hauswaldt JS, Eikelmann D, Rodríguez A, Carranza S, Donaire D, Gehara M, Helfer V, Lötters S, Werner P, Schulz S, Steinfart S (2014) Nuclear and Mitochondrial Multilocus Phylogeny and Survey of Alkaloid Content in True Salamanders of the Genus Salmandra (Salmandridae). Mol Phylogen Evol 73:208

    CAS  Google Scholar 

  765. Melo T, Santos N, Lopes D, Alves E, Maciel E, Faustino MAF, Tomé JPC, Neves MGPMS, Almeida A, Domingues P, Segundo MA, Domingues MRM (2013) Photosensitized Oxidation of Phosphatidylethanolamines Monitored by Electrospray Tandem Mass Spectrometry. J Mass Spectrom 48:1357

    CAS  Google Scholar 

  766. Cappellini E, Collins MJ, Gilbert MTP (2014) Unlocking Ancient Protein Palimpsests. Science 343:1320

    CAS  Google Scholar 

  767. Voráč A, Šedo O, Havliš J, Zdráhal Z (2014) A Simplified Method for Peptide de novo Sequencing Using 18O Labeling. Eur J Mass Spectrom 20:255

    Google Scholar 

  768. Chingin K, Xu N, Chen H (2014) Soft Supercharging of Biomolecular Ions in Electrospray Ionization Mass Spectrometry. J Am Soc Mass Spectrom 25:928

    Google Scholar 

  769. Poad BLJ, Pham HT, Thomas MC, Nealon JR, Campbell JL, Mitchell TW, Blsanksby SJ (2010) Ozone-Induced Dissociation on a Modified Tandem Linear Ion-Trap: Observation of Different Reactivity for Isomeric Lipids. J Am Soc Mass Spectrom 21:1989

    Google Scholar 

  770. Duran FY, Duran Ö (2014) Weever Fish Sting: an Unusual Problem. J Acad Emerg Med 13:42

    Google Scholar 

  771. Carlisle DB (1962) The Venom of the Lesser Weeverfish, Trachinus vipera. J Mar Biol Assoc UK 42:155

    Google Scholar 

  772. Dehaan A, Ben-Meir P, Sagi A (1991) A “Scorpion Fish” (Trachinus vipera) Sting: Fishermen’s Hazard. Br J Ind Med 48:718

    Google Scholar 

  773. Haavaldsen R, Fonnum F(1963) Weever Venom. Nature 199:286

    Google Scholar 

  774. Chhatwal I, Dreyer F (1992) Isolation and Characterization of Dracotoxin from the Venom of the Greater Weeverfish Trachinus draco. Toxicon 30:87

    Google Scholar 

  775. Lemke RAS, Peterson AC, Ziegelhoffer EC, Westphall MS, Tjellström H, Coon JJ, Donohue TJ (2014) Synthesis and Scavenging Role of Furan Fatty Acids. Proc Natl Acad Sci USA 111:E3457

    Google Scholar 

  776. Robinson MR, Moore KL, Brodbelt S (2014) Direct Identification of Tyrosin Sulfation by Using Ultraviolet Photodissociation Mass Spectrometry. J Am Soc Mass Spectrom 25:1461

    Google Scholar 

  777. Li X, Huang R, Liu Y, Jin H, Wan H, Zhao J, Zhao W, Liang X (2014) Efficient Purification of Low Molecular Weight Nitrogen Polar Compounds from the Skin of Bufo bufo gargarizans Cantor by Reversed Phase High Performance Liquid Chromatography with a Polar-Copolymerized C18 Stationary Phase. Anal Methods 6:5183

    Google Scholar 

Download references

Acknowledgments

I wish to thank Mag. W. Dollhäubl and his team at Springer Verlag Wien for their competent help in preparing the figures in this contribution, as well as Prof. Dr. Sabira Begum, Karachi, Pakistan, Dr. H.M. Garaffo, Bethesda, MD, USA, Dr. P. Knechtle, Reinach, Switzerland, Dr. H. Münster, Bremen, Germany, and Dr. M. Schäfer, Köln Germany for spectral material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Budzikiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Budzikiewicz, H. (2015). Mass Spectrometry in Natural Product Structure Elucidation. In: Kinghorn, A., Falk, H., Kobayashi, J. (eds) Progress in the Chemistry of Organic Natural Products 100. Progress in the Chemistry of Organic Natural Products, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-05275-5_2

Download citation

Publish with us

Policies and ethics