Skip to main content

Petrov-Galerkin Crank-Nicolson Scheme for Parabolic Optimal Control Problems on Nonsmooth Domains

  • Chapter
  • First Online:
Trends in PDE Constrained Optimization

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 165))

  • 1777 Accesses

Abstract

In this paper we transfer the a priori error analysis for the discretization of parabolic optimal control problems on domains allowing for H 2 regularity (i.e. either with smooth boundary or polygonal and convex) to a large class of nonsmooth domains. We show that a combination of two ingredients for the optimal convergence rates with respect to the spatial and the temporal discretization is required. First we need a time discretization scheme which has the desired convergence rate in the smooth case. Secondly we need a method to treat the singularities due to non-smoothness of the domain for the corresponding elliptic state equation. In particular we demonstrate this philosophy with a Crank-Nicolson time discretization and finite elements on suitably graded meshes for the spatial discretization. A numerical example illustrates the predicted convergence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Alberty, C. Carstensen, S.A. Funken, Remarks around 50 lines of Matlab: short finite element implementation. Numer. Algorithms 20, 117–137 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Apel, Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics (Teubner, Stuttgart, 1999)

    Google Scholar 

  3. T. Apel, T.G. Flaig, Crank-Nicolson schemes for optimal control problems with evolution equations. SIAM J. Numer. Anal. 50, 1484–1512 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Apel, A.L. Lombardi, M. Winkler, Anisotropic mesh refinement in polyhedral domains: error estimates with data in \(L^{2}(\Omega )\), 2013. http://arxiv.org/abs/1303.2960

  5. T. Apel, J. Pfefferer, A. Rösch, Finite element error estimates for Neumann boundary control problems on graded meshes. Comput. Optim. Appl. 52, 3–28 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Apel, A. Rösch, D. Sirch, L -error estimates on graded meshes with application to optimal control. SIAM J. Control Optim. 48, 1771–1796 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Apel, A. Rösch, G. Winkler, Optimal control in non-convex domains: a priori discretization error estimates. Calcolo 44, 137–158 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Apel, A.-M. Sändig, J.R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19, 63–85 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Apel, D. Sirch, L 2-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes. Appl. Math. 56, 177–206 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. T. Apel, G. Winkler, Optimal control under reduced regularity. Appl. Numer. Math. 59, 2050–2064 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. I. Babuška, R. Kellogg, J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements. Numerische Mathematik 33, 447–471 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. L. Chen, C.-S. Zhang, AFEM@MATLAB: A MATLAB package of adaptive finite element methods. Technical report, University of Maryland, 2006. www.math.umd.edu/~zhangcs/paper/AFEM@matlab.pdf.gz

  13. P.G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1979)

    Google Scholar 

  14. L.C. Evans, Partial Differential Equations. Volume 19 of Graduate Studies in Mathematics (AMS, Providence, 2002)

    Google Scholar 

  15. S. Funken, D. Praetorius, P. Wissgott, Efficient implementation of adaptive P1-FEM in Matlab. Comput. Methods Appl. Math. 11, 460–490 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. The finite element toolkit GASCOIGNE. http://www.gascoigne.de

  17. W. Gong, M. Hinze, Error estimates for parabolic optimal control problems with control and state constraints. Comput. Optim. Appl. 56, 131–151 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. W. Gong, M. Hinze, Z.J. Zhou, Space-time finite element approximation of parabolic optimal control problems. J. Numer. Math. 20, 111–145 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Grisvard, Singularities in Boundary Value Problems. Volume 22 of Research Notes in Applied Mathematics (Springer, New York, 1992)

    Google Scholar 

  20. M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30, 45–61 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Kufner, A.-M. Sändig, Some Applications of Weighted Sobolev Spaces (Teubner, Leipzig, 1987)

    MATH  Google Scholar 

  22. J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Volume 170 of Grundlehren der mathematischen Wissenschaften (Springer, Berlin, 1971)

    Google Scholar 

  23. D. Meidner, R. Rannacher, B. Vexler, A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time. SIAM J. Control Optim. 49, 1961–1997 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. D. Meidner, B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: problems without control constraints. SIAM J. Control Optim. 47, 1150–1177 (2008)

    MATH  MathSciNet  Google Scholar 

  25. D. Meidner, B. Vexler A priori error estimates for space-time finite element approximation of parabolic optimal control problems. Part II: problems with control constraints. SIAM J. Control Optim. 47, 1301–1329 (2008)

    MATH  MathSciNet  Google Scholar 

  26. D. Meidner, B. Vexler, A priori error analysis of the Petrov-Galerkin Crank-Nicolson scheme for parabolic optimal control problems. SIAM J. Control Optim. 49, 2183–2211 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. I. Neitzel, B. Vexler, A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer. Math. 120, 345–386 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. L.A. Oganesyan, L.A. Rukhovets, Variational-difference schemes for linear second-order elliptic equations in a two-dimensional region with piecewise smooth boundary. Zh. Vychisl. Mat. Mat. Fiz. 8, 97–114 (1968). In Russian. English translation in USSR Comput. Math. and Math. Phys. 8, 129–152 (1968)

    Google Scholar 

  29. G. Raugel, Résolution numérique par une méthode d’éléments finis du problème de Dirichlet pour le laplacien dans un polygone. C. R. Acad. Sci. Paris, Sér. A 286, 791–794 (1978)

    Google Scholar 

  30. RODOBO. A C++ library for optimization with stationary and nonstationary PDEs with interface to GASCOIGNE [16]. http://www.rodobo.org.

  31. F. Schieweck, A-stable discontinuous Galerkin-Petrov time discretization of higher order. J. Numer. Math. 18, 25–57 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. D. Sirch, finite element error analysis for PDE-constrained optimal control problems: the control constrained case under reduced regularity. Ph.D. thesis, Technische Universität München, 2010

    Google Scholar 

Download references

Acknowledgements

The function u s for the numerical example in Sect. 6 was taken from a presentation by T. Apel and J. Pfefferer. The numerical experiments in Sect. 6 are carried out using both a MATLAB-FEM implementation based on [1, 12, 15] and the software packages RODOBO [30] and GASCOIGNE [16].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Meidner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Flaig, T.G., Meidner, D., Vexler, B. (2014). Petrov-Galerkin Crank-Nicolson Scheme for Parabolic Optimal Control Problems on Nonsmooth Domains. In: Leugering, G., et al. Trends in PDE Constrained Optimization. International Series of Numerical Mathematics, vol 165. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-05083-6_26

Download citation

Publish with us

Policies and ethics