Skip to main content

Mapping of Cell Wall Components in Lignified Biomass as a Tool to Understand Recalcitrance

  • Chapter
  • First Online:
Biofuels in Brazil

Abstract

Lignocelulosic biomass is recalcitrant to enzymatic digestion because terrestrial plants develop an efficient manner to grow upward and resist the microbial degradation of the polysaccharides contained in their cell walls. The complex cell ultrastructure, varied tissues, and the composite characteristic of the cell walls are among the several factors explaining the recalcitrance of lignified plants. Mapping the macromolecular components in the cell walls has proved to be useful to understand the varied recalcitrance of different biomass tissues. Available data indicate that lignin and hemicellulose greatly affect the final digestibility of the lignocellulosic materials. Removal of these components from the cell walls with varied pretreatments or even using lignin- and/or hemicellulose-depleted plants indicate that a critical characteristic of the cell wall to be digestible is to present most as possible available cellulose. This chapter revises some basic information on cell wall structure and advance in the knowledge compiling information on the mapping of cell wall components by several techniques and showing that the removal of cellulose encapsulating components is a key factor to increase cell wall porosity and digestibility by hydrolytic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal UP (2006) Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224:1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4(1):3

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bairros-Rios J, Santiago R, Malvara RA, Jung H-JG (2012) Chemical composition and cell wall polysaccharide degradability of pith and rind tissues from mature maize internodes. Anim Feed Sci Technol 172:226–236

    Article  CAS  Google Scholar 

  • Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, Saddler J (2005) Weak lignin-binding enzymes. Appl Biochem Biotechnol 121(24):163–170

    Article  PubMed  Google Scholar 

  • Browning B (1968) Methods of wood chemistry. Wiley, New York

    Google Scholar 

  • Brunecky R, Vinzant TB, Porter SE, Donohoe BS, Johnson DK, Himmel ME (2009) Redistribution of xylan in maize cell walls during dilute acid pretreatment. Biotechnol Bioeng 102(6):1537–1546

    Article  PubMed  CAS  Google Scholar 

  • Carpita N (1996) Structure and Biogenesis of the cell walls of grasses. Ann Rev Plant Physiol Plant Mol Biol 47:445–476

    Article  CAS  Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84(86):5–37

    Article  PubMed  Google Scholar 

  • Chang W-J, Chang M-J, Chang S-T, Yeh T-F (2013) Chemical composition and immunohistological variations of a growing bamboo shoot. J Wood Chem Technol 33(2):144–155

    Article  CAS  Google Scholar 

  • Cherglazov VM, Ermolova OV, Klyosov AA (1988) Adsorption of high-purity endo-1,4-glucanases from Trichoderma reesei on components of lignocellulosic materials: cellulose, lignin, and xylan. Enzym Microb Technol 10:503–507

    Article  Google Scholar 

  • Chum HL, Douglas LJ, Feinberg OA, Schroeder HA (1985) Evaluation of pretreatments of biomass for enzymatic hydrolysis of cellulose. Solar Energy Research Institute public reports, SERI/TR-231–2183

    Google Scholar 

  • Costa THF, Masarin F, Bonifácio TO, Milagres AMF, Ferraz A (2013) The enzymatic recalcitrance of internodes of sugar cane hybrids withcontrasting lignin contents. Ind Crops Prod 51:202–211

    Article  CAS  Google Scholar 

  • Daniel G (2009) Wood and fibre morphology. In: Ek M, Gellerstedt G, Henriksson G (eds) Wood chemistry and biotechnology. Walter de Gruyter, Berlin, pp 46–71

    Google Scholar 

  • Ding S-Y, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA (2013) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1060

    Article  CAS  Google Scholar 

  • Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101:913–925

    Article  PubMed  CAS  Google Scholar 

  • Eriksson T, Borjesson J, Tjerneld F (2002) Mechanism on surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microb Technol 31:353–364

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Fergus BJ, Procter AR, Scott JAN, Goring DAI (1969) The distribution of lignin in sprucewood as determined by ultraviolet microscopy. Wood Sci Technol 3:117–138

    Article  Google Scholar 

  • Filonova L, Gunnarsson LC, Daniel G, Ohlin M (2007) Synthetic xylan-binding modules for mapping of pulp fibres and wood sections. BMC Plant Biol 7:54

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gellerstedt G (2009) Chemistry of chemical pulping. In: Ek M, Gellerstedt G, Henriksson G (eds) Pulping chemistry and technology. Walter de Gruyter, Berlin, pp 92–120

    Google Scholar 

  • Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140:1246–1254

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goring DAI (1981) Some aspects of the topochemistry of lignin in softwoods and hardwoods. In: 1st ISWPC Stockholm 1:I1–I10

    Google Scholar 

  • Grabber JH, Panciera MT, Hatfield RD (2002) Chemical composition and enzymatic degradability of xylem and nonxylem walls isolated from alfalfa internodes. J Agric Food Chem 50:2595–2600

    Article  PubMed  CAS  Google Scholar 

  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity-a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Kaida R (2011) Functions of xyloglucan in plant cells. Mol Plant 4(1):17–24

    Article  PubMed  CAS  Google Scholar 

  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2011) Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Bioresour Technol 102(3):2910–2915

    Article  PubMed  CAS  Google Scholar 

  • He L, Terashima N (1990) Formation and structure of lignin in monocotyledons. III. Heterogeneity of sugarcane (Saccharurn officinarurn L.) lignin with respect to the composition of structural units in different morphological regions. J Wood Chem Technol 10:435–459

    Article  CAS  Google Scholar 

  • He L, Terashima N (1991) Formation and structure of lignin in Monocotyledons IV. Deposition process and structural diversity of the lignin in the cell wall of sugar cane and rice plant studied by ultraviolet microscopic spectrometry. Holzforschung 45:191–198

    Article  CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  PubMed  CAS  Google Scholar 

  • Henriksson G (2009) Lignin. In: Ek M, Gellerstedt G, Henriksson G (eds) Wood chemistry and biotechnology. Walter de Gruyter, Berlin, pp 121–147

    Google Scholar 

  • Herve C, Ragowski A, Gilbert HJ, Knox JP (2009) Enzymatic treatments reveal differential capacities for xylan recognition and degradation in primary and secondary plant cell walls. Plant J 58:413–422

    Article  PubMed  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann P, Parameswaran N (1976) On the ultrastructural localization of hemicelluloses within delignified tracheids of spruce. Holzforschung 36:62–70

    Google Scholar 

  • Jayme G, Torgersen HF (1967) Topochemistry of delignification in sulfite and sulfate pulping of Spruce wood. I. Ultraviolet-microscopy studies on partly delignified Spruce wood. Holzforschung 21:110–116

    Article  CAS  Google Scholar 

  • Ju X, Engelhard M, Zhang X (2013) An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Bioresour Technol 132:137–145

    Article  PubMed  CAS  Google Scholar 

  • Jung HG, Casler MD (2006) Maize stem tissues: impact of development on cell wall degradability. Crop Sci 46:1801–1809

    Article  CAS  Google Scholar 

  • Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97:583–591

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Awano T, Yoshinaga A, Takabe K (2010) Immunolocalization and structural variations of xylan in differentiating early wood tracheid cell walls of Cryptomeria japonica. Planta 232:817–824

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Daniel G (2012a) Immunolocalization of hemicelluloses in Arabidopsis thaliana stem. Part I: temporal and spatial distribution of xylans. Planta (2012) 236:1275–1288

    Google Scholar 

  • Kim JS, Daniel G (2012b) Immunolocalization of hemicelluloses in Arabidopsis thaliana stem. Part II: Mannan deposition is regulated by phase of development and its patterns of temporal and spatial distribution differ between cell types. Planta 236:1367–1379

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Sandquist D, Sundberg B, Daniel G (2012) Spatial and temporal variability of xylan distribution in differentiating secondary xylem of hybrid aspen. Planta 235:1315–1330

    Article  PubMed  CAS  Google Scholar 

  • Koch G, Kleist G (2001) Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55:563–567

    Article  CAS  Google Scholar 

  • Koch G, Rose B, Patt R, Kordsachia O (2003) Topochemical Investigations on Delignification of Picea abies [L.] Karst. During Alkaline Sulfite (ASA) and Bisulfite Pulping by Scanning UV Microspectrophotometry. Holzforschung 57:611–618

    CAS  Google Scholar 

  • Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 103:201–208

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Hu F, Hubbell CA, Ragauskas AJ, Wyman CE (2013) Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresour Technol 130:372–381

    Article  PubMed  CAS  Google Scholar 

  • Lam TBT, Iiyama K, Stone BA (1994) Determination of etherified hydroxycinnamic acids in cell walls of grasses. Phytochemistry 36:773–775

    Article  CAS  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  PubMed  CAS  Google Scholar 

  • Liao W, Wen Z, Hurley S, Liu Y, Liu C, Chen S (2005) Effects of hemicellulose and lignin on enzymatic hydrolysis of cellulose from dairy manure. Appl Biochem Biotechnol 121–124:1017–1030

    Google Scholar 

  • Linder M, Mattinen M, Kontteli M, Lindeberg G, Stahlberg J, Drakenberg T, Reinikainen T, Pettersson G, Annila A (1995) Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Sci 4:1056–1064

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu H, Zhu JY (2010) Eliminating inhibition of enzymatic hydrolysis by lignosulfonate in unwashed sulfite-pretreated aspen using metal salts. Bioresour Technol 101:9120–9127

    Article  PubMed  CAS  Google Scholar 

  • Lou H, Zhu JY, Lan TQ, Lai H, Qiu X (2013) pH-induced lignin surface modification to reduce nonspecific cellulose binding and enhance enzymatic saccharification of lignocellulosics. ChemSusChem 6:919–927

    Article  PubMed  CAS  Google Scholar 

  • Lybeer B, Koch G, Acker JV, Goetghebeur P (2006) Lignification and cell wall thickening in nodes of Phyllostachys viridiglaucescens and Phyllostachys nigra. Ann Bot 97:529–539

    Article  PubMed Central  PubMed  Google Scholar 

  • Masarin F, Gurpilhares DB, Baffa DCF, Barbosa MHP, Carvalho W, Ferraz A, Milagres AMF (2011) Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin contents. Biotechnol Biofuels 4:55

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McCartney L, Marcus SE, Knox JP (2005) Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J Histochem Cytochem 53:543–546

    Article  PubMed  CAS  Google Scholar 

  • Mendes FM, Siqueira G, Carvalho W, Ferraz A, Milagres AMF (2011) Enzymatic hydrolysis ofchemithermomecanically pretreated sugarcane bagasse and two experimental samples with reduced initial lignin. Biotechnol Prog 27(2):395–401

    Article  PubMed  CAS  Google Scholar 

  • Mendes FM, Laurito DF, Bazzeggio M, Ferraz A, Milagres AMF (2013) Enzymatic digestion of alkaline-sulfite pretreated sugar cane bagasse and its correlation with the chemical and structural changes occurring during the pretreatment step. Biotechnol Prog. doi:10.1002/btpr.1746

    Google Scholar 

  • Mendonça R, Ferraz A, Kordsachia O, Koch G (2004) Cellular UV-microspectrophotometric investigations on pine wood (Pinus taeda and Pinus elliottii) delignification during biopulping with Ceriporiopsis subvermispora (Pilat) Gilbn. & Ryv. and alkaline sulfite/anthraquinone treatment. Wood Sci Technol (2004) 38: 567–575

    Google Scholar 

  • Michalowicz G, Toussaint B, Vignon MR (1991) Ultrastructural-changes in poplar cell-wall during steam explosion treatment. Holzforschung 45:175–179

    Article  CAS  Google Scholar 

  • Moore PH (1987) Anatomy and morphology. In: Heinz DJ (ed) Sugar cane improvement through breeding. Elsevier, Amsterdam, pp 85–142

    Chapter  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  PubMed  CAS  Google Scholar 

  • Mussatto SI, Fernandes M, Milagres AMF, Roberto IC (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzym Microb Technol 43:124–129

    Article  CAS  Google Scholar 

  • Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011a) The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Bioresour Technol 102:4507–4517

    Article  PubMed  CAS  Google Scholar 

  • Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011b) Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol Bioeng 108:538–548

    Article  PubMed  CAS  Google Scholar 

  • Nakagame S, Chandra RP, Saddler JN (2010) The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnol Bioeng 105:871–879

    PubMed  CAS  Google Scholar 

  • Nilsson T (2009) Biological wood degradation. In: Ek M, Gellerstedt G, Henriksson G (eds) Wood Chemistry and Biotechnology. Walter de Gruyter, Berlin, pp 219–244

    Google Scholar 

  • Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reseei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Xie D, Gilkes N, Gregg DJ, Saddler JN (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 1069:121–124

    Google Scholar 

  • Petersen PD, Lau J, Ebert B, Yang F, Verhertbruggen Y, Kim JS, Varanasi P, Suttangkakul A, Auer M, Loqué D, Scheller HV (2012) Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants. Biotechnol Biofuels 5:84

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Procter AR, Yean WQ, Goring DAI (1967) The topochemistry of delignification in kraft sulfite pulping of spruce wood. Pulp Pap Mag 68:445–460

    Google Scholar 

  • Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6:15

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rahikainen J, Lappas A, Mikander S, Viikari L, Marjamaa K, Kruus K, Tamminen T (2011) Inhibition of enzymatic hydrolysis by residual lignins from softwood—study of enzyme binding and inactivation on lignin-rich surface. Biotechnol Bioeng 108:2823–2834

    Article  PubMed  CAS  Google Scholar 

  • Rahikainen JL, Martin-Sampedro R, Heikkinen H, Rovio S, Marjamaa K, Tamminen T, Rojas OJ, Kruus K (2013) Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresour Technol 133:270–278

    Article  PubMed  CAS  Google Scholar 

  • Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26(6):863–871

    Article  CAS  Google Scholar 

  • Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang YHP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based Lignocellulose fractionation and soaking in aqueous Ammonia. Biotechnol Bioeng 108:22–30

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  PubMed  CAS  Google Scholar 

  • SanJuan R, Anzaldo J, Vargas J, Turrado J, Patt R (2001) Morphological and chemical composition of pith and fibers from mexican sugar cane bagasse. HolzAlsRoh-Und Werkstoffholz 59:447–450

    CAS  Google Scholar 

  • Santi Jr C (2011) Distribuição do tamanho de poros e sacarificação enzimática de amostras de bagaço de cana-de-açúcar submetidas à deslignificação e secagem. Industrial Biotechnology dissertation, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, pp 104

    Google Scholar 

  • Sewalt VJH, Glasser WG, Beauchemin KA (1997) Lignin impact on fiber degradation. 3. Reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives. J Agric Food Chem 45:1823–1828

    Article  CAS  Google Scholar 

  • Siqueira GA, Várnai A, Ferraz A, Milagres AMF (2013) Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite. Appl Energy 102:399–402

    Article  CAS  Google Scholar 

  • Siqueira GA, Milagres AMF, Carvalho W, Koch G, Ferraz A (2011) Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides. Biotechnol Biofuels 4:1–9

    Article  CAS  Google Scholar 

  • Teleman A (2009) Hemicelluloses and Pectins. In: Ek M, Gellerstedt G, Henriksson G (eds) Wood Chemistry and Biotechnology. Walter de Gruyter, Berlin, pp 102–120

    Google Scholar 

  • Thomas RJ (1991) Wood: formation and Morphology. In: Lewin M, Goldstein IS (eds) Wood structure and composition. Marcel Dekker Inc., New York, pp 7–48

    Google Scholar 

  • Tu M, Pan X, Saddler JN (2009) Adsorption of cellulose on cellulolytic enzyme lignin from lodgepole pine. J Agric Food Chem 57:7771–7778

    Article  PubMed  CAS  Google Scholar 

  • Varnái A, Siika-Aho M, Viikari L (2010) Restriction of the enzymatic hydrolysis of steam pretreated spruce by lignin and hemicellulose. Enzym Microb Technol 46:185–193

    Article  CAS  Google Scholar 

  • Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307

    Article  PubMed  CAS  Google Scholar 

  • Wiedenhoeft AC, Miller RB (2005) Structure and function of wood. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 9–34

    Google Scholar 

  • Xu N, Zhang W, Ren S, Liu F, Zhao C, Liao H, Xu Z, Huang J, Li Q, Tu Y, Yu B, Wang Y, Jiang J, Qin J, Peng L (2012) Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4. Biotechnol Biofuels 5:58

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611–617

    Article  PubMed  CAS  Google Scholar 

  • Zeng MJ, Ximenes E, Ladisch MR, Mosier NS, Vermerris W, Huang CP, Sherman DM (2012) Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: Enzymatic hydrolysis (part 1). Biotechnol Bioeng 109:390–397

    Article  PubMed  CAS  Google Scholar 

  • Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100(8):2411–2418

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors received financial support for research on the subject of this chapter from Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (contract number 08/56256-5 and 11/50535-2) and from Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Ferraz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferraz, A., Costa, T.H.F., Siqueira, G., Milagres, A.M.F. (2014). Mapping of Cell Wall Components in Lignified Biomass as a Tool to Understand Recalcitrance. In: da Silva, S., Chandel, A. (eds) Biofuels in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-05020-1_9

Download citation

Publish with us

Policies and ethics