Skip to main content

Activation of TRPV4 Channels Does Not Mediate Inversion of Neurovascular Coupling After SAH

  • Chapter
  • First Online:
Neurovascular Events After Subarachnoid Hemorrhage

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 120))

Abstract

Neurovascular coupling (NVC) allows increased blood flow to metabolically active neurons and involves the Ca2+-dependent release of vasodilator influences by astrocyte endfeet that encase parenchymal arterioles. We previously reported inversion of NVC from dilation to constriction in brain slices from subarachnoid hemorrhage (SAH) model rats. Corresponding to NVC inversion, there was a marked increase in the amplitude of spontaneous Ca2+ oscillations in astrocyte endfeet. Calcium-permeable transient receptor potential vanilloid (TRPV)-4 channels have been reported in astrocyte endfeet, and activators of these channels enhance Ca2+ oscillations in healthy animals. Here, we examined the role of TRPV4 channels in the development of high-amplitude spontaneous Ca2+ oscillations in astrocyte endfeet and the inversion of neurovascular coupling after SAH. Treatment of brain slices with the TRPV4 channel antagonist, HC-067047 (10 μM), did not alter the amplitude of spontaneous Ca2+ oscillations after SAH. In addition, HC-067047 did not inhibit or change SAH-induced inversion of neurovascular coupling. In summary, TRPV4 channels do not appear to be involved in the inversion of neurovascular coupling after SAH. Further studies examining the impact of SAH on additional Ca2+ signaling pathways in astrocytes are likely to reveal valuable insights into new therapeutic strategies to advance SAH treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agulhon C, Sun MY, Murphy T, Myers T, Lauderdale K, Fiacco TA (2012) Calcium signaling and gliotransmission in normal vs. reactive astrocytes. Front Pharmacol 3:139

    Article  PubMed  PubMed Central  Google Scholar 

  2. Balazsi G, Cornell-Bell AH, Moss F (2003) Increased phase synchronization of spontaneous calcium oscillations in epileptic human versus normal rat astrocyte cultures. Chaos 13:515–518

    Article  PubMed  CAS  Google Scholar 

  3. Benfenati V, Amiry-Moghaddam M, Caprini M, Mylonakou MN, Rapisarda C, Ottersen OP, Ferroni S (2007) Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes. Neuroscience 148:876–892

    Article  PubMed  CAS  Google Scholar 

  4. Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, Ferroni S, Anderova M (2012) The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS One 7:e39959

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Ding S, Wang T, Cui W, Haydon PG (2009) Photothrombosis ischemia stimulates a sustained astrocytic Ca2+ signaling in vivo. Glia 57:767–776

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dunn KM, Hill-Eubanks DC, Liedtke WB, Nelson MT (2013) TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc Natl Acad Sci U S A 110:6157–6162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Fiacco TA, McCarthy KD (2006) Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 54:676–690

    Article  PubMed  Google Scholar 

  8. Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK, Aldrich RW, Nelson MT (2006) Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9:1397–1403

    Article  PubMed  CAS  Google Scholar 

  9. Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Girouard H, Bonev AD, Hannah RM, Meredith A, Aldrich RW, Nelson MT (2010) Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proc Natl Acad Sci U S A 107:3811–3816

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100:328–335

    Article  PubMed  CAS  Google Scholar 

  12. Koide M, Bonev AD, Nelson MT, Wellman GC (2012) Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2+-activated K+ (BK) channels. Proc Natl Acad Sci U S A 109:E1387–E1395

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Koide M, Bonev AD, Nelson MT, Wellman GC (2013) Subarachnoid blood converts neurally evoked vasodilation to vasoconstriction in rat brain cortex. Acta Neurochir Suppl 115:167–171

    PubMed  PubMed Central  Google Scholar 

  14. Koide M, Sukhotinsky I, Ayata C, Wellman GC (2013) Subarachnoid hemorrhage, spreading depolarizations and impaired neurovascular coupling. Stroke Res Treat 2013:819340

    PubMed  PubMed Central  Google Scholar 

  15. Maravall M, Mainen ZF, Sabatini BL, Svoboda K (2000) Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys J 78:2655–2667

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Murakami K, Koide M, Dumont TM, Russell SR, Tranmer BI, Wellman GC (2011) Subarachnoid hemorrhage induces gliosis and increased expression of the pro-inflammatory cytokine high mobility group box 1 protein. Transl Stroke Res 2:72–79

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Nett WJ, Oloff SH, McCarthy KD (2002) Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 87:528–537

    PubMed  Google Scholar 

  18. Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286:C195–C205

    Article  PubMed  CAS  Google Scholar 

  19. Nystoriak MA, O’Connor KP, Sonkusare SK, Brayden JE, Nelson MT, Wellman GC (2011) Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization. Am J Physiol Heart Circ Physiol 300:H803–H812

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Parri HR, Crunelli V (2003) The role of Ca2+ in the generation of spontaneous astrocytic Ca2+ oscillations. Neuroscience 120:979–992

    Article  PubMed  CAS  Google Scholar 

  21. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Article  PubMed  Google Scholar 

  22. Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725

    Article  PubMed  PubMed Central  Google Scholar 

  23. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267

    Article  PubMed  CAS  Google Scholar 

  24. Vergouwen MD, Vermeulen M, van Gijn J, Rinkel GJ, Wijdicks EF, Muizelaar JP, Mendelow AD, Juvela S, Yonas H, Terbrugge KG, Macdonald RL, Diringer MN, Broderick JP, Dreier JP, Roos YB (2010) Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke 41:2391–2395

    Article  PubMed  Google Scholar 

  25. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Totman Trust for Medical Research, the Peter Martin Brain Aneurysm Endowment, and the NIH (P01 HL095488, R01 HL078983 and R01 HL078983-05S1). The authors also acknowledge the use and assistance of the University of Vermont Neuroscience COBRE imaging core facility (NIH P30 GM103498 and S10 OD 010583) and input from Drs. Mark T. Nelson and Kathryn M. Dunn.

Conflict of Interest Statement

 We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayo Koide PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koide, M., Wellman, G.C. (2015). Activation of TRPV4 Channels Does Not Mediate Inversion of Neurovascular Coupling After SAH. In: Fandino, J., Marbacher, S., Fathi, AR., Muroi, C., Keller, E. (eds) Neurovascular Events After Subarachnoid Hemorrhage. Acta Neurochirurgica Supplement, vol 120. Springer, Cham. https://doi.org/10.1007/978-3-319-04981-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04981-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04980-9

  • Online ISBN: 978-3-319-04981-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics