Skip to main content

Towards a “Brain-Guided” Cognitive Architecture

  • Chapter
  • First Online:
Bioinspired Approaches for Human-Centric Technologies

Abstract

Motor control and motor cognition have been under intensive scrutiny for over a century with a growing number of experimental and theoretical tools of increasing complexity. Still we are far away from a real understanding which can allow us, for example, to integrate what we know in large-scale projects like VPH (Virtual Physiological Human). In a sense, the abundance of new behavioral, neurophysiological, and computational approaches may worsen the situation, by “flooding” researchers with frequently incompatible evidence, losing view of the overall picture. An aspect of this tendency is to quickly dismiss earlier “old-fashioned” ideas on the basis of specific but narrow new evidence. This chapter argues in the opposite direction, revisiting old-fashioned notions, like synergy formation, equilibrium point hypothesis (EPH), and body schema, in order to reuse them in a larger context, focused on whole-body actions: this context, typical of humanoid robotics, stresses the need of efficient computational architectures, capable to defeat the curse of dimensionality determined by the frightening “trinity”: complex body + complex brain + complex (partly unknown) environment. The idea is to organize the computational process in a local to global manner, grounding it on emerging studies in different areas of neuroscience, while keeping in mind that motor cognition and motor control are inseparable twins, linked through a common body/body schema. The long-term goal is to make a humanoid robot like iCub capable of “cumulative learning.” A humanoid robot should mirror both the complexity of the human form and the brain that drives it to exhibit equally complex and often creative behaviors! This requires to emulate the gradual process of infant “cognitive development” in order to investigate the underlying interplay among multiple sensory, motor, and cognitive processes in the framework of an integrated system: a coherent, purposive system that emerges from a persistent flux of fragmented, partially inconsistent episodes in which the human/humanoid perceives, acts, learns, remembers, forgets, reasons, makes mistakes, introspects, etc. We aim at linking such a model building approach with emerging trends in neuroscience, taking into account that one of the fundamental challenges today is to “causally and computationally” correlate the incredibly complex behavior of animals to the equally complex activity in their brains. This requires to build a shared computational/neural basis for “execution, imagination, and understanding” of action, while taking into account recent findings from the field of “connectomics,” which addresses the large-scale organization of the cerebral cortex, and the discovery of the “default mode network” of the brain. We will particularly focus, in the near future, on the organization of memory instead of “learning” per se because this helps understanding development from a more “holistic” viewpoint that is not restricted to “isolated tasks” or “experiments.” Computationally the proposed architecture should lead towards novel nonlinear, non-Turing computational machinery based on quasi-physical, non-digital interactions grounded in the biology of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The difference between body image and body schema is disputed and is somehow fuzzy. For our purpose we assume that they are two sides of the same coin: the former one stresses the static component, mainly based on proprioceptive information, whereas the latter is related to the dynamic synergy formation function.

  2. 2.

    In the simplest case of a linear model, this field is elastic and is characterized by a stiffness matrix K: \( {\overrightarrow{F}}_{\mathrm{H}}=K\left({\overrightarrow{p}}_{\mathrm{T}}-{\overrightarrow{p}}_{\mathrm{H}}\right) \).

  3. 3.

    The Jacobian matrix of the arm is defined as follows: \( {J}_{\mathrm{B}}=\frac{\partial {\overrightarrow{p}}_{\mathrm{H}}}{\partial \overrightarrow{q}} \). It maps motion and effort in opposite directions: \( \frac{d{\overrightarrow{p}}_{\mathrm{H}}}{ dt}={J}_{\mathrm{B}}\frac{d\overrightarrow{q}}{ dt} \) and \( {\overrightarrow{T}}_{\mathrm{A}}={J_{\mathrm{B}}}^{\mathrm{T}}{\overrightarrow{F}}_{\mathrm{H}} \).

References

  • Addessi E, Mancini A, Crescimbene L, Padoa-Schioppa C, Visalberghi E (2008) Preference transitivity and symbolic representation in capuchin monkeys (Cebus apella). PLoS One 3(6):e2414

    PubMed Central  PubMed  Google Scholar 

  • Addis DR, Schacter DL (2012) The hippocampus and imagining the future: where do we stand? Front Hum Neurosci 5:173. doi:10.3389/fnhum.2011.00173

    PubMed Central  PubMed  Google Scholar 

  • Addis DR, Pan L, Vu MA, Laiser N, Schacter DL (2009) Constructive episodic simulation of the future and the past: distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia 47:2222–2238

    PubMed  Google Scholar 

  • Anderson ML (2003) Embodied cognition: a field guide. Artif Intell 149(1):91–130

    Google Scholar 

  • Asai Y, Tasaka Y, Nomura K, Nomura T, Casadio M, Morasso P (2009) A model of postural control in quiet standing: robust compensation of delay-induced instability using intermittent activation of feedback control. PLoS One 4(7), art. no. e6169

    Google Scholar 

  • Asatryan DG, Feldman AG (1965) Functional tuning of the nervous system with control of movement or maintenance of a steady posture: I. Mechanographic analysis of the work of the joint or execution of a postural task. Biofizika 10:837–846

    Google Scholar 

  • Atance CM, O’Neill DK (2001) Episodic future thinking. Trends Cogn Sci 5:533–539

    PubMed  Google Scholar 

  • Barabasi AL (2003) Linked: the new science of networks. Perseus Books, Langue. ISBN 0738206679

    Google Scholar 

  • Barabási A-L (2012) The network takeover. Nat Phys 8:14–16

    Google Scholar 

  • Barabási A-L, Albert R (1999) Emergence of scaling in random network. Science 286:509–512

    PubMed  Google Scholar 

  • Barhen J, Gulati S, Zak M (1989) Neural learning of constrained nonlinear transformations. IEEE Comput 6:67–76

    Google Scholar 

  • Bernstein N (1935) The problem of the interrelation of coordination and localization. Arch Biol Sci 38:15–59. Reprinted in: Bernstein N (1967) The coordination and regulation of movements. Pergamon Press, Oxford, UK

    Google Scholar 

  • Bizzi E, Cheung VCK (2013) The neural origin of muscle synergies. Front Comput Neurosci 7(51). doi:10.3389/fncom.2013.00051

  • Bizzi E, Polit A (1978) Processes controlling arm movements in monkeys. Science 201:1235–1237

    PubMed  Google Scholar 

  • Braitenberg V (1986) Vehicles—experiments in synthetic psychology. MIT Press, Cambridge, MA

    Google Scholar 

  • Bressler SL, Menon V (2010) Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci 14(6):277–290

    PubMed  Google Scholar 

  • Brooks R (1991) Intelligence without representation. Artif Intell J 47:139–159

    Google Scholar 

  • Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13(2):400–404

    CAS  PubMed  Google Scholar 

  • Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci 2:49–57

    Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    PubMed  Google Scholar 

  • Burgess N et al (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–641

    CAS  PubMed  Google Scholar 

  • Chiel HJ, Beer RD (1997) The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci 20:553–557

    CAS  PubMed  Google Scholar 

  • Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI, Shenoy KV (2012) Neural population dynamics during reaching. Nature 487:51–56

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark A (1997) Being there: putting brain, body and world together again. MIT Press, Cambridge, MA

    Google Scholar 

  • Coelho CJ, Nusbaum HC, Rosenbaum DA, Fenn KM (2012) Imagined actions aren’t just weak actions: task variability promotes skill learning in physical practice but not in mental practice. J Exp Psychol Learn Mem Cogn 38:1759–1764

    PubMed  Google Scholar 

  • Cohen MA, Grossberg S (1983) Absolute stability of global pattern-formation and parallel memory storage by competitive neural networks. IEEE Trans Syst Man Cybern 13(5):815–826

    Google Scholar 

  • Cohen RG, Rosenbaum DA (2011) Prospective and retrospective effects in human motor control: planning grasps for object rotation and translation. Psychol Res 75:341–349

    PubMed  Google Scholar 

  • Corballis MC (2013) Mental time travel: a case for evolutionary continuity. Trends Cogn Sci 17:5–6

    PubMed  Google Scholar 

  • D’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6:300–308

    PubMed  Google Scholar 

  • Damasio A (2010) Self comes to mind: constructing the conscious brain. Pantheon, New York, NY

    Google Scholar 

  • Decety J (1996) Do imagined and executed actions share the same neural substrate? Cogn Brain Res 3:87–93

    CAS  Google Scholar 

  • Desmurget M, Sirigu A (2009) A parietal-premotor network for movement intention and motor awareness. Trends Cogn Sci 13:411–419

    PubMed  Google Scholar 

  • Diedrichsen J, Classen J (2012) Stimulating news about modular motor control. Neuron 76:1043–1045

    CAS  PubMed  Google Scholar 

  • Emery NJ, Clayton NS (2004) The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306:1903–1907

    CAS  PubMed  Google Scholar 

  • Frey SH, Gerry VE (2006) Modulation of neural activity during observational learning of actions and their sequential orders. J Neurosci 26:13194–13201

    CAS  PubMed  Google Scholar 

  • Frith U, Frith C (2010) The social brain: allowing humans to boldly go where no other species has been. Philos Trans R Soc Lond B Biol Sci 365:165–176

    PubMed Central  PubMed  Google Scholar 

  • Fritzke B (1995) A growing neural gas network learns topologies. In: Tesauro G, Touretzky D, Leen T (eds) Advances in neural information processing systems, vol 7. MIT Press, Cambridge, MA, pp 625–632

    Google Scholar 

  • Gallese V, Lakoff G (2005) The brain’s concepts: the role of the sensory-motor system in reason and language. Cogn Neuropsychol 22:455–479

    PubMed  Google Scholar 

  • Gallese V, Sinigaglia C (2011) What is so special with embodied simulation. Trends Cogn Sci 15(11):512–519

    PubMed  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233(4771):1416–1419

    CAS  PubMed  Google Scholar 

  • Giszter SF, Mussa-Ivaldi FA, Bizzi E (1993) Convergent force fields organized in the frog’s spinal cord. J Neurosci 13:467–491

    CAS  PubMed  Google Scholar 

  • Glenberg AM, Gallese V (2012) Action-based language: a theory of language acquisition, comprehension, and production. Cortex 48:905–922

    PubMed  Google Scholar 

  • Grafton ST (2009) Embodied cognition and the simulation of action to understand others. Ann N Y Acad Sci 1156:97–117

    PubMed  Google Scholar 

  • Graziano MSA, Botvinick MM (2002) How the brain represents the body: insights from neurophysiology and psychology. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action: attention and performance XIX. Oxford University Press, Oxford, pp 136–157

    Google Scholar 

  • Graziano MSA, Taylor CSR, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841–851

    CAS  PubMed  Google Scholar 

  • Grush R (2004) The emulation theory of representation: motor control, imagery, and perception. Behav Brain Sci 27:377–396

    PubMed  Google Scholar 

  • Haggard P, Wolpert DM (2005) Disorders of body schema. In: Freund HJ, Jeannerod M, Hallett M, Leiguarda R (eds) Higher-order motor disorders: from neuroanatomy and neurobiology to clinical neurology. Oxford University Press, Oxford, pp 261–271

    Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    PubMed Central  PubMed  Google Scholar 

  • Hassabis D, Maguire EA (2011) The construction system of the brain. In: Bar M (ed) Predictions in the brain: using our past to generate a future. Oxford University Press, New York, NY

    Google Scholar 

  • Head H, Holmes G (1911) Sensory disturbances in cerebral lesions. Brain 34:102–254

    Google Scholar 

  • Herbort O, Butz MV (2012) Too good to be true? Ideomotor theory from a computational perspective. Front Psychol 3:494

    PubMed Central  PubMed  Google Scholar 

  • Hesslow G (2002) Conscious thought as a simulation of behavior and perception. Trends Cogn Sci 6:242–247

    PubMed  Google Scholar 

  • Hesslow G, Jirenhed DA (2007) The Inner World of a Simple Robot. J Conscious Stud 14:85–96

    Google Scholar 

  • Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of 2-state neurons. Proc Natl Acad Sci USA Biol Sci 81(10):3088–3092

    CAS  Google Scholar 

  • Hopfield JJ (2008) Searching for memories, Sudoku, implicit check bits, and the iterative use of not-always-correct rapid neural computation. Neural Comput 20:1119–1164

    CAS  PubMed  Google Scholar 

  • Iacoboni M (2009) Neurobiology of imitation. Curr Opin Neurobiol 19:661–665

    CAS  PubMed  Google Scholar 

  • Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14:103–109

    Google Scholar 

  • Johnson M (1987) The body in the mind: the bodily basis of meaning, imagination and reason. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Kandel ER, Tauc L (1965) Heterosynaptic facilitation in neurones of the abdominal ganglion of Aplysia depilans. J Physiol 181:1–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelso JAS, Holt KG (1980) Exploring a vibratory systems analysis of human movement production. J Neurophysiol 43:1183–1196

    CAS  PubMed  Google Scholar 

  • Kohonen T (1995) Self-organizing maps. Springer, Berlin

    Google Scholar 

  • Kornysheva K, Sierk A, Diedrichsen J (2013) Interaction of temporal and ordinal representations in movement sequence. J Neurophysiol 109(5):1416–1424

    PubMed Central  PubMed  Google Scholar 

  • Kuperstein M (1991) Infant neural controller for adaptive sensory-motor coordination. Neural Netw 4(2):131–146

    Google Scholar 

  • Kutch JJ, Valero-Cuevas FJ (2012) Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput Biol 8:e1002434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lacquaniti F, Terzuolo C, Viviani P (1983) The law relating kinematic and figural aspects of drawing movements. Acta Psychol (Amst) 54:115–130

    CAS  Google Scholar 

  • Lakoff G, Johnson M (1999) Philosophy in the flesh: the embodied mind and its challenge to western thought. Basic Books, New York, NY

    Google Scholar 

  • Liepmann H (1905) Ueber Störungen des Handelns bei Gehirnkranken. S. Kargen, Berlin

    Google Scholar 

  • Loram I, Lakie M (2002) Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability. J Physiol 545:1041–1053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y (2012) Rat brains also have a default mode network. Proc Natl Acad Sci U S A 109(10):3979–3984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maguire EA (2001) Neuroimaging studies of autobiographical event memory. Philos Trans R Soc Lond B Biol Sci 356:1441–1451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maravita A, Iriki A (2004) Tools for the body (schema). Trends Cogn Sci 8:79–86

    PubMed  Google Scholar 

  • Marsden CD, Merton PA, Morton HB (1972) Servo action in human voluntary movement. Nature 238:140–143

    CAS  PubMed  Google Scholar 

  • Martin A (2007) The representation of object concepts in the brain. Annu Rev Psychol 58:25–45

    PubMed  Google Scholar 

  • Martin A (2009) Circuits in mind: the neural foundations for object concepts. In: Gazzaniga M (ed) The cognitive neurosciences, 4th edn. MIT Press, Cambridge, MA, pp 1031–1045

    Google Scholar 

  • Martin VC, Schacter DL, Corballis MC, Addis DR (2011) A role for the hippocampus in encoding future simulations. Proc Natl Acad Sci USA 108:13858–13863

    Google Scholar 

  • Mason MF et al (2007) Wandering minds: the default network and stimulus-independent thought. Science 315:393–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biol 5(4):115–133

    Google Scholar 

  • Metta G, Natale L, Nori F, Sandini G, Vernon D, Fadiga L, von Hofsten C, Rosander K, Lopes M, Santos-Victor J, Bernardino A, Montesano L (2010) The iCub humanoid robot: an open-systems platform for research in cognitive development. Neural Netw 23:1125–1134

    PubMed  Google Scholar 

  • Meyer K, Damasio A (2009) Convergence and divergence in a neural architecture for recognition and memory. Trends Neurosci 32(7):376–382

    CAS  PubMed  Google Scholar 

  • Mohan V, Morasso P (2011) Passive motion paradigm: an alternative to optimal control. Front Neurorobot 5:4

    PubMed Central  PubMed  Google Scholar 

  • Mohan V, Morasso P (2012) How past experience, imitation and practice can be combined to swiftly learn to use novel “tools”: insights from skill learning experiments with baby humanoids. In: International conference on biomimetic and biohybrid systems: living machines 2012, Barcelona, 9–12 July 2012

    Google Scholar 

  • Mohan V, Morasso P, Metta G, Sandini G (2009) A biomimetic, force-field based computational model for motion planning and bimanual coordination in humanoid robots. Auton Robots 27:291–307

    Google Scholar 

  • Mohan V, Morasso P, Zenzeri J, Metta G, Chakravarthy VS, Sandini G (2011a) Teaching a humanoid robot to draw ‘Shapes’. Auton Robots 31(1):21–53

    Google Scholar 

  • Mohan V, Morasso P, Metta G, Kasderidis S (2011b) The distribution of rewards in growing sensorimotor maps acquired by cognitive robots through exploration. Neurocomputing. doi:10.1016/j.neucom.2011.06.009

    Google Scholar 

  • Mohan V, Morasso P, Sandini G, Kasderidis S (2013) Inference through embodied simulation in cognitive robots. Cogn Comput 5(1). doi: 10.1007/s12559-013-9205-4

  • Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42:223–227

    CAS  PubMed  Google Scholar 

  • Morasso P, Sanguineti V, Frisone F, Perico L (1998) Coordinate-free sensorimotor processing: computing with population codes. Neural Netw 11:1417–1428

    PubMed  Google Scholar 

  • Morasso P, Casadio M, Mohan V, Zenzeri J (2010) A neural mechanism of synergy formation for whole body reaching. Biol Cybern 102:45–55

    PubMed  Google Scholar 

  • Morasso P, Rea F, Mohan V (2013) A biomimetic framework for coordinating and controlling whole body movements in humanoid robots. In: IEEE EMBC2013, Osaka, 3–7 July, pp 5307–5310

    Google Scholar 

  • Murata A, Fadiga L, Fogassi L, Gallese V, Raos V, Rizzolatti G (1997) Object representation in the ventral premotor cortex (area f5) of the monkey. J Neurophysiol 78:2226–2230

    CAS  PubMed  Google Scholar 

  • Mussa Ivaldi FA, Morasso P, Zaccaria R (1988) Kinematic networks. A distributed model for representing and regularizing motor redundancy. Biol Cybern 60:1–16

    CAS  PubMed  Google Scholar 

  • Mussa-Ivaldi FA (1988) Do neurons in the motor cortex encode movement direction? An alternative hypothesis. Neurosci Lett 91:106–111

    CAS  PubMed  Google Scholar 

  • Nicoll A, Blakemore C (1993) Patterns of local connectivity in the neocortex. Neural Comput 5:665–680

    Google Scholar 

  • Overduin SA, D’Avella A, Carmena JM, Bizzi E (2012) Microstimulation activates a handful of muscle synergies. Neuron 76:1071–1077

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patterson K, Nestor PJ, Rogers TT (2007) Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci 8(12):976–987

    CAS  PubMed  Google Scholar 

  • Pfeifer R, Scheier C (1998) Representation in natural and artificial agents: an embodied cognitive science perspective. Z Naturforsch C 53(7–8):480–503

    CAS  PubMed  Google Scholar 

  • Popescu FC, Rymer WZ (2000) End points of planar reaching movements are disrupted by small force pulses: an evaluation of the hypothesis of equifinality. J Neurophysiol 84(5):2670–2679

    CAS  PubMed  Google Scholar 

  • Pulvermüller F, Fadiga L (2010) Active perception: sensorimotor circuits as a cortical basis for language. Nat Rev Neurosci 11(5):351–360

    PubMed  Google Scholar 

  • Raichle ME et al (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reggia JA, D’Autrechy CL, Sutton GG III, Weinrich M (1992) A competitive distribution theory of neocortical dynamics. Neural Comput 4:287–317

    Google Scholar 

  • Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901

    CAS  PubMed  Google Scholar 

  • Rizzolatti G, Sinigaglia C (2010) The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 11:264–274

    CAS  PubMed  Google Scholar 

  • Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3:131–141

    CAS  Google Scholar 

  • Roh J, Cheung VCK, Bizzi E (2011) Modules in the brain stem and spinal cord underlying motor behaviors. J Neurophysiol 106:1363–1378

    PubMed Central  PubMed  Google Scholar 

  • Rosenbaum DA, Loukopoulos LD, Meulenbroek RGJ, Vaughan J, Engelbrecht SE (1995) Planning reaches by evaluating stored postures. Psychol Rev 102:28–67

    CAS  PubMed  Google Scholar 

  • Rosenbaum DA, Meulenbroek RG, Vaughan J, Jansen C (2001) Posture-based motion planning: applications to grasping. Psychol Rev 108:709–734

    CAS  PubMed  Google Scholar 

  • Rugg MD, Otten LJ, Henson RN (2002) The neural basis of episodic memory: evidence from functional neuroimaging. Philos Trans R Soc Lond B Biol Sci 357(1424):1097–1110

    PubMed Central  PubMed  Google Scholar 

  • Schacter DL, Addis DR, Hassabis D, Martin V, Nathan RS, Szpunar KK (2012) The future of memory: remembering, imagining, and the brain. Neuron 76(4):677–694

    CAS  PubMed  Google Scholar 

  • Sharma N, Pomeroy VM, Baron J (2006) Motor imagery: a back door to the motor system after stroke? Stroke 37:1941–1952

    PubMed  Google Scholar 

  • Sherrington C (1904) The integrative action of the nervous system. Silliman Memorial Lecture

    Google Scholar 

  • Sporns O (2011) The human connectome: a complex network. Ann N Y Acad Sci 1224:109–125

    PubMed  Google Scholar 

  • Sporns O (2013) The human connectome: origins and challenges. Neuroimage 80:53–61

    PubMed  Google Scholar 

  • Sporns O, Tononi G, Edelman GM (2002) Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res 20:69–74

    Google Scholar 

  • Suddendorf T (2013) Mental time travel: continuities and discontinuities. Trends Cogn Sci 17:151–152

    PubMed  Google Scholar 

  • Suddendorf T, Addis DR, Corballis MC (2009) Mental time travel and the shaping of the human mind. Philos Trans R Soc Lond B Biol Sci 364:1317–1324

    PubMed Central  PubMed  Google Scholar 

  • Suinn RM (1972) Behavior rehearsal training for ski racers. Behav Ther 3:519

    Google Scholar 

  • Szpunar KK et al (2007) Neural substrates of envisioning the future. Proc Natl Acad Sci USA 104:642–647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson E (2007) Mind in life: biology, phenomenology and the sciences of mind, no. 1. Harvard University Press, Cambridge, MA, p 568

    Google Scholar 

  • Tulving E (1972) Episodic and semantic memory. In: Tulving E, Donaldson W (eds) Organisation of memory. Academic, New York, NY, pp 381–403

    Google Scholar 

  • Tulving E (2002) Episodic memory: from mind to brain. Annu Rev Psychol 53:1–25

    PubMed  Google Scholar 

  • van den Heuvel MP, Sporns O (2013) Network hubs in the human brain. Trends Cogn Sci 17(12):683–696

    PubMed  Google Scholar 

  • Varela FJ, Maturana HR, Uribe R (1974) Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5:187–196

    CAS  Google Scholar 

  • Vernon D, von Hofsten C, Fadiga L (2010) A roadmap for cognitive development in humanoid robots. Springer, Berlin and Heidelberg

    Google Scholar 

  • Visalberghi E, Tomasello M (1997) Primate causal understanding in the physical and in the social domains. Behav Process 42:189–203

    Google Scholar 

  • Vygotsky LS (1978) Mind in society: the development of higher psychological processes. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Watts JD, Strogatz S (1998) Collective dynamics of small world networks. Nature 393(6684):440–442

    CAS  PubMed  Google Scholar 

  • Weir AAS, Chappell J, Kacelnik A (2002) Shaping of hooks in New Caledonian crows. Science 297:981–983

    CAS  PubMed  Google Scholar 

  • Welberg L (2012) Neuroimaging: rats join the ‘default mode’ club. Nat Rev Neurosci 13(4):223

    Google Scholar 

  • Whiten A, McGuigan N, Marshall-Pescini S, Hopper LM (2009) Emulation, imitation, overimitation and the scope of culture for child and chimpanzee. Philos Trans R Soc Lond B Biol Sci 364:2417–2428

    PubMed Central  PubMed  Google Scholar 

  • Wiener N (1948) Cybernetics: or control and communication in the animal and the machine. MIT Press, Cambridge, MA

    Google Scholar 

  • Woodworth RS (1899) The accuracy of voluntary movement. Psychol Rev Monogr Suppl 3:1–113

    Google Scholar 

  • Zak M (1988) Terminal attractors for addressable memory in neural networks. Phys Lett 133:218–222

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwanathan Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mohan, V., Morasso, P., Sandini, G. (2014). Towards a “Brain-Guided” Cognitive Architecture. In: Cingolani, R. (eds) Bioinspired Approaches for Human-Centric Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-04924-3_7

Download citation

Publish with us

Policies and ethics