Skip to main content

Stochastic k-Tree Grammar and Its Application in Biomolecular Structure Modeling

  • Conference paper
Language and Automata Theory and Applications (LATA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8370))

Abstract

Stochastic context-free grammar (SCFG) has been successful in modeling biomolecular structures, typically RNA secondary structure, for statistical analysis and structure prediction. Context-free grammar rules specify parallel and nested co-occurren-ces of terminals, and thus are ideal for modeling nucleotide canonical base pairs that constitute the RNA secondary structure. Stochastic grammars have been sought, which may adequately model biomolecular tertiary structures that are beyond context-free. Some of the existing linguistic grammars, developed mostly for natural language processing, appear insufficient to account for crossing relationships incurred by distant interactions of bio-residues, while others are overly powerful and cause excessive computational complexity. This paper introduces a novel stochastic grammar, called stochastic k-tree grammar (SkTG), for the analysis of context-sensitive languages. With the new grammar rules, co-occurrences of distant terminals are characterized and recursively organized into k-tree graphs. The new grammar offers a viable approach to modeling context-sensitive interactions between bioresidues because such relationships are often constrained by k-trees, for small values of k, as demonstrated by earlier investigations. In this paper it is shown, for the first time, that probabilistic analysis of k-trees over strings are computable in polynomial time n O(k). Hence, SkTG permits not only modeling of biomolecular tertiary structures but also efficient analysis and prediction of such structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achawanantakun, R., Takyar, S., Sun, Y.: Grammar string: A novel ncRNA secondary structure representation. lifesciences society org, pp. 2–13 (2010)

    Google Scholar 

  2. Rozenknop, A.: Gibbsian context-free grammar for parsing. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2002. LNCS (LNAI), vol. 2448, pp. 49–56. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Arnborg, S., Proskurowski, A.: Linear time algorithms for np-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23(1), 11–24 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chiang, D., Joshi, A.K., Searls, D.B.: Grammatical representations of macromolecular structure. Journal of Computational Biology 13(5), 1077–1100 (2006)

    Article  MathSciNet  Google Scholar 

  5. Dill, K.A., Lucas, A., Hockenmaier, J., Huang, L., Chiang, D., Josh, A.K.: Computational linguistics: A new tool for exploring biopolymer structures and statistical mechanics. Polymer 48, 4289–4300 (2007)

    Article  Google Scholar 

  6. Ding, L., Samad, A., Li, G., Robinson, R., Xue, X., Malmberg, R., Cai, L.: Finding maximum spanning k-trees on backbone graphs in polynomial time (2013) (manuscript)

    Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)

    Google Scholar 

  8. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press (1998)

    Google Scholar 

  9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (2007)

    Google Scholar 

  10. Huang, Z., Mohebbi, M., Malmberg, R., Cai, L.: RNAv: Non-coding RNA secondary structure variation search via graph homomorphism. In: Proceedings of Computational Systems Bioinformatics Conference (CSB 2010), vol. 9, pp. 56–69 (2010)

    Google Scholar 

  11. Huang, Z., Wu, Y., Robertson, J., Feng, L., Malmberg, R., Cai, L.: Fast and accurate search for non-coding RNA pseudoknot structures in genomes. Bioinforamtics 24(20), 2281–2287 (2008)

    Article  Google Scholar 

  12. Thiim, J.F.I.M., Mardia, M., Ferkinghoff-Borg, K., Hamelryck, J.,, T.: A probabilistic model of RNA conformational space. PLoS Comput. Biol. 5(6) (2009)

    Google Scholar 

  13. Joshi, A.: How much context-sensitivity is necessary for characterizing structural descriptions. In: Dowty, D., Karttunen, L., Zwicky, A. (eds.) Natural Language Processing: Theoretical, Computational, and Psychological Perspectives, pp. 206–250. Cambridge University Press, NY (1985)

    Google Scholar 

  14. Joshi, A., Vijay-Shanker, K., Weir, D.: The convergence of mildly context-sensitive grammar formalisms. Issues in Natural Language Processing, pp. 31–81. MIT Press, Cambridge (1991)

    Google Scholar 

  15. Jurafsky, D., Wooters, C., Segal, J., Stolcke, A., Fosler, E., Tajchaman, G., Morgan, N.: Using a stochastic context-free grammar as a language model for speech recognition. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing, pp. 189–192 (1995)

    Google Scholar 

  16. Klein, D., Manning, C.: Accurate unlexicalized parsing. In: Proceedings of the 41st Meeting of the Association for Computational Linguistics, pp. 423–430 (2003)

    Google Scholar 

  17. Knudsen, B., Hein, J.: Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res. 31, 3423–3428 (2003)

    Article  Google Scholar 

  18. Lari, K., Young, S.J.: The estimation of stochastic context-free grammars using the inside-outside algorithm. Computer Speech and Language 4, 35–56 (1990)

    Article  Google Scholar 

  19. Martin, D., Sigal, R., Weyuker, E.J.: Computability, complexity, and languages: Fundamentals of theoretical computer science, 2nd edn. Morgan Kaufmann (1994)

    Google Scholar 

  20. Murzin, A.G., Brenner, S., Hubbard, T., Chothia, C.: Scop: A structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology 247(4), 536–540 (1995)

    Google Scholar 

  21. Nawrocki, E.P., Kolbe, D.L., Eddy, S.R.: Infernal 1.0: Inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009)

    Article  Google Scholar 

  22. Noller, H.F.: Structure of ribosomal RNA. Annual Review of Biochemistry 53, 119–162 (1984)

    Article  Google Scholar 

  23. Patil, H.P.: On the structure of k-trees. Journal of Combinatorics, Information and System Sciences 11(2-4), 57–64 (1986)

    MATH  MathSciNet  Google Scholar 

  24. Rivas, E., Lang, R., Eddy, S.R.: A range of complex probabilistic models for RNA secondary structure prediction that include the nearest neighbor model and more. RNA 18, 193–212 (2012)

    Article  Google Scholar 

  25. Sakakibara, Y., Brown, M., Hughey, R., Mian, I.S., Sjolander, K., Underwood, R.C., Haussler, D.: Stochastic context-free grammars for tRNA modeling. Nucleic Acids Research 22, 5112–5120 (1994)

    Article  Google Scholar 

  26. Salomaa, A.: Jewels of Formal Language Theory. Computer Science Press (1981)

    Google Scholar 

  27. Sánchez, I.A., Benedi, J.M., Linares, D.: Performance of a scfg-based language model with training data sets of increasing size. In: Proceedings of Conference on Pattern Recognition and Image Analysis, pp. 586–594 (2005)

    Google Scholar 

  28. Searls, D.B.: The computational linguistics of biological sequences. Artificial Intelligence and Molecular Biology, pp. 47–120 (1993)

    Google Scholar 

  29. Searls, D.B.: Molecules, languages and automata. In: Sempere, J.M., García, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 5–10. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  30. Sergio Caracciolo, S., Masbaum, G., Sokal, A., Sportiello, A.: A randomized polynomial-time algorithm for the spanning hypertree problem on 3-uniform hypergraphs. CoRR abs/0812.3593 (2008)

    Google Scholar 

  31. Song, Y., Liu, C., Huang, X., Malmberg, R., Xu, Y., Cai, L.: Efficient parameterized algorithms for biopolymer structure-sequence alignment. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(4), 423–431 (2006)

    Article  Google Scholar 

  32. Srebro, N.: Maximum likelihood bounded tree-width Markov networks. Artificial Intelligence 143(2003), 123–138 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars for RNA structure prediction. Theoretical Computer Science 210, 277–303 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vijay-Shanker, K., Weir, D.: The equivalence of four extensions of context-free grammars. Mathematical Systems Theory 27(6), 511–546 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  35. Waters, C.J., MacDonald, B.A.: Efficient word-graph parsing and search with a stochastic context-free grammar. In: Proceedings of IEEE Workshop on Automatic Speech Recognition and Understanding, pp. 311–318 (1997)

    Google Scholar 

  36. Xu, J., Berger, B.: Fast and accurate algorithms for protein side-chain packing. Journal of the ACM 53(4), 533–557 (2006)

    Article  MathSciNet  Google Scholar 

  37. Xu, Y., Liu, Z., Cai, L., Xu, D.: Protein structure prediction by protein threading. In: Computational Methods for Protein Structure Prediction and Modeling, pp. 389–430. Springer I&II (2006)

    Google Scholar 

  38. Progress, Y.Z.: challenges in protein structure prediction. Current Opinions in Structural Biology 18(3), 342–348 (2008)

    Article  Google Scholar 

  39. Weinberg, Z., Ruzzo, L.: Faster genome annotation of non-coding RNA families without loss of accuracy. In: Proceedings of Conference on Research in Computational Molecular Biology (RECOMB 2004), pp. 243–251 (2004)

    Google Scholar 

  40. Zimand, M.: The complexity of the optimal spanning hypertree problem. Technical Report, University of Rochester. Computer Science Department (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ding, L., Samad, A., Xue, X., Huang, X., Malmberg, R.L., Cai, L. (2014). Stochastic k-Tree Grammar and Its Application in Biomolecular Structure Modeling. In: Dediu, AH., Martín-Vide, C., Sierra-Rodríguez, JL., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2014. Lecture Notes in Computer Science, vol 8370. Springer, Cham. https://doi.org/10.1007/978-3-319-04921-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04921-2_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04920-5

  • Online ISBN: 978-3-319-04921-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics