Skip to main content

A Method for Topological Transit Network Design in Urban Area

  • Chapter
  • First Online:
Computer-based Modelling and Optimization in Transportation

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 262))

  • 1757 Accesses

Abstract

The goal of this chapter is to design jointly the road network and the transit routes in an urban area. Generally, the transit route design is made without evaluating the possible changes in the path due to the road network layout design. In the problem, two main aspects can be considered: it is necessary to design, in a joint model, road network for cars and buses; it is necessary to design route for buses integrated with the optimized road network. Starting from a rigid road supply and an elastic demand, the road and the transit network are designed in accordance with one or more objectives (minimum travel time, maximum users satisfaction). The problem is formulated as a discrete problem. The proposed algorithm implemented is heuristic, based on genetic algorithm. To test the proposed procedure, an application to a main transit line of Reggio Calabria is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Billheimer, J.W., Gray, P.: Network design with fixed and variable cost elements. Transp. Sci. 7, 49–74 (1973)

    Article  Google Scholar 

  2. Chen, M., Alfa, A.S.: A network design algorithm using a stochastic incremental traffic assignment approach. Transp. Sci. 25(3), 215–224 (1991)

    Article  MATH  Google Scholar 

  3. Foulds, L.R.: A multi-commodity flow network design problem. Transp. Res. Part B 15, 273–283 (1981)

    Article  MathSciNet  Google Scholar 

  4. Gao, Z., Wu, J., Sun, H.: Solution algorithm for the bi-level discrete network design problem. Transp. Res. B 39, 479–495 (2005)

    Article  Google Scholar 

  5. Poorzahedy, H., Abulghasemi, F.: Application of ant system to network design problem. Transportation 32, 251–273 (2005)

    Article  Google Scholar 

  6. Herrmann, J.W., Ioannou, G., Minis, I., Proth, J.M.: A dual ascent approach to the fixed-charge capacitated network design problem. Eur. J. Oper. Res. 95, 476–490 (1996)

    Article  MATH  Google Scholar 

  7. Kalafatas, G., Peeta, S.: Planning for evacuation: insights from an efficient network design model. J. Infrastruct. Syst. 15(1), 21–30 (2009)

    Article  Google Scholar 

  8. Webster, F.W.: Traffic signal settings. Road Research Technical Paper no. 39 (1958)

    Google Scholar 

  9. Webster, F.V., Cobbe, B.M.: Traffic signals. Road Research Laboratory Technical Paper 56, London, UK (1966)

    Google Scholar 

  10. Allsop, R.E.: SIGCAP: a computer program for assessing the traffic capacity of signal-controlled road junctions. Traffic Eng. Control 17, 338–341 (1976)

    Google Scholar 

  11. Gartner, N.H.: Area traffic control and network equilibrium. In: Florian, M. (ed.) Traffic Equilibrium Methods, vol. 118, pp. 274–297. Lecture Notes in Economics and Mathematical SystemsSpringer, Berlin (1976)

    Chapter  Google Scholar 

  12. Smith, M.J.: The existence, uniqueness and stability of traffic equilibria. Transp. Res. B 13(4), 295–304 (1979)

    Article  Google Scholar 

  13. Sheffi, Y., Powell, W.B.: Optimal signal setting over transportation networks. Transp. Eng. 109(6), 824–839 (1983)

    Article  Google Scholar 

  14. Meneguzzer, C.: An equilibrium route choice model with explicit treatment of the effect of intersections. Transp. Res. B 29, 329–356 (1995)

    Article  Google Scholar 

  15. Chiou, S.W.: Optimal design of signal-controlled road network. Appl. Math. Comput. 189, 1–8 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Marcianò, F.A., Musolino, G., Vitetta, A.: Signal setting design on a road network: application of a system of models in evacuation conditions. WIT Transactions on Information and Communication Technologies 43(part I), 443–454 (2010)

    Article  Google Scholar 

  17. Cantarella, G.E., Velonà, P., Vitetta A.: Day-to-day dynamic network modeling and optimization. In: IEEE International Intelligent Transportation Systems Conference, pp. 2086–2092 (2011)

    Google Scholar 

  18. Cantarella, G.E., Pavone, G., Vitetta, A.: Heuristics for urban road network design: lane layout and signal settings. Eur. J. Oper. Res. 175, 1682–1695 (2006)

    Article  MATH  Google Scholar 

  19. Russo, F., Vitetta, A.: A topological method to choose optimal solutions after solving the multi-criteria urban road network design problem. Transportation 33, 347–370 (2006)

    Article  Google Scholar 

  20. Poorzahedy, H., Rouhani, O.M.: Hybrid meta-heuristic algorithms for solving network design problem. Eur. J. Oper. Res. 182(2), 578–596 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Polimeni, A., Vitetta, A.: A procedure for an integrated network and vehicle routing optimisation problem. Procedia Soc. Behav. Sci. 54, 65–74 (2012)

    Article  Google Scholar 

  22. Baaj, H.M., Mahmassani, H.S.: Hybrid route generation heuristic algorithm for the design of transit networks. Transp. Res. C 3(1), 31–50 (1995)

    Article  Google Scholar 

  23. Ceder, A., Wilson, N.H.M.: Bus network design. Transp. Res. B 20(4), 331–344 (1986)

    Article  Google Scholar 

  24. Ceder, A.: Designing public transport network and routes. In: Lam, W.H.K., Bell, M.G.H. (eds.) Advanced Modeling For Transit Operations and Service Planning, Chapter 3, pp. 59–91. Emerald Group Publishing Limited (2003)

    Google Scholar 

  25. Nuzzolo, A., Russo, F., Crisalli, U.: Transit Network Modelling. The Schedule-Based Dynamic Approach. FrancoAngeli, Milano (2003)

    Google Scholar 

  26. Fusco, G., Gori, S., Petrelli, M.: An heuristic transit network design algorithm for medium size towns. In: Proceedings of the 13th Mini-EURO Conference, Bari (2002)

    Google Scholar 

  27. Mesquita, M., Paias, A.: Set partitioning/covering-based approaches for the integrated vehicle and crew scheduling problem. Comput. Oper. Res. 35, 1562–1575 (2008)

    Article  MATH  Google Scholar 

  28. Russo F.: Metodi per la progettazione dei sistemi di trasporto collettivo. Quaderno di dipartimento, QD-SD 1/10 (2010)

    Google Scholar 

Download references

Acknowledgments

Partially supported by national MIUR under PRIN2009 grants n. 2009EP3S42_001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Polimeni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Polimeni, A., Vitetta, A. (2014). A Method for Topological Transit Network Design in Urban Area. In: de Sousa, J., Rossi, R. (eds) Computer-based Modelling and Optimization in Transportation. Advances in Intelligent Systems and Computing, vol 262. Springer, Cham. https://doi.org/10.1007/978-3-319-04630-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04630-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04629-7

  • Online ISBN: 978-3-319-04630-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics