Skip to main content

Effect of Strain Rate on Tensile Strength and Work Hardening for Al–Zn Magnesium Alloys

  • Chapter
  • First Online:
Recent Trends in Nanotechnology and Materials Science

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The effect of strain rate on mechanical behavior of Al–Zn magnesium alloys was investigated at room temperature under tensile loading with a wide range of strain rate. The quasi-static tensile test was performed in four different strain rates to obtain their effect on tensile properties, work hardening rate, strain hardening exponent, and strength coefficient using a round shape tensile specimen. Two types of Al–Zn magnesium alloys were used in this study i.e., AZ31 and AZ61 magnesium alloys. The yield stress and tensile strength of AZ31 were found to be the strain rate dependent but not so clear for AZ61. The elongations of AZ31 were approximately 15 % for all strain rate levels. The elongation for AZ31 was slightly decreased with increasing strain rate, while that for AZ61 was significantly decreased. For all strain rate levels, the work hardening rate of AZ61 was higher compared to that of AZ31. The strain hardening exponent was decreased with increasing strain rate. In contrast, the strength coefficient was increased with increasing strain rate for both alloys. The change in the fracture mode as observed from the fracture surface implies that the fracture mechanisms in AZ31 change as the strain rate increases. Mechanical properties of AZ61 and AZ31 in this study were relied to the grain size, presence of precipitate, twinning and alloying addition. While, the strain rate dependency of AZ31 and AZ61 tensile strength might be due to the critical resolved shear stress (CRSS) of slip systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, I.R., Wei, S.D.: Appl. Mech. Mater. 24–25, 325–330 (2010)

    Article  Google Scholar 

  2. Kainer, K.U.: Magnesium—Alloys and Technologies WILEY-VCH GmbH & Co. KGaA (2003)

    Google Scholar 

  3. Mordike, B.L., Ebert, T.: Mater. Sci. Eng. A 302, 37–45 (2001)

    Article  Google Scholar 

  4. Ulacia, I., Dudamell, N.V., Gálvez, F., Yi, S., Pérez-Prado, M.T., Hurtado, I.: Acta Mater. 58, 2988–2998 (2010)

    Article  Google Scholar 

  5. Li, B., Joshi, S., Azevedo, K., Ma, E., Ramesh, K.T., Figueiredo, R.B., Langdon, T.G.: Mater. Sci. Eng. A 517, 24–29 (2009)

    Article  Google Scholar 

  6. Pérez, P., Garcés, G., Adeva, P.: Comp. Sci. Technol. 64, 145–151 (2004)

    Article  Google Scholar 

  7. Gurugubelli, S.N., Gupta, A.V.S.S.K.S., Bhargava, N.R.M.R.: Int. J. Mater. Eng. Innovat. 3, 32–49 (2012)

    Article  Google Scholar 

  8. Agnew, S.R., Mehrotra, P., Lillo, T.M., Stoica, G.M., Liaw, P.K.: Acta Mater. 53, 3135–3146 (2005)

    Article  Google Scholar 

  9. Chamos, A.N., Pantelakis, S.G., Haidemenopoulos, G.N., Kamoutsi, E.: Fatigue Fract. Eng. Mater. Struct. 31, 812–821 (2008)

    Article  Google Scholar 

  10. Kim, W.J., Chung, S.W., Chung, C.S., Kum, D.: Acta Mater. 49, 3337–3345 (2001)

    Article  Google Scholar 

  11. Li, Y., Enoki, M.: Mater. Trans. 48, 1215–1220 (2007)

    Article  Google Scholar 

  12. Marya, M., Hector, L.G., Verma, R., Tong, W.: Mater. Sci. Eng., A 418, 341–356 (2006)

    Article  Google Scholar 

  13. ASTM E 646 – 00, United States

    Google Scholar 

  14. Dieter, G.E. Mechanical Metallurgy. McGraw Hill, New York (1928)

    Google Scholar 

  15. Kleemola, H.J., Nieminen, M.A.: Metall. Trans. 5, 1863–1866 (1973)

    Article  Google Scholar 

  16. Roesler, J., Harders, H., Beaker, M.: Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers and Composites. Springer, Berlin (2007)

    Google Scholar 

  17. Barnett, M.R.: Mater. Sci. Eng. A 464, 8–16 (2007)

    Article  Google Scholar 

  18. Trojanová, Z., Lukáč, P., Podrábský, T., Pešička, J.: Mater. Eng. 19, 12–17 (2012)

    Google Scholar 

  19. Yoshida, Y., Arai, K., Itoh, S., Kamado, S., Kojima, Y.: Sci. Technol. Adv. Mater. 6, 185–194 (2005)

    Article  Google Scholar 

  20. Srivatsan, T.S., Vasudevan, S., Petraroli, M.: J. Alloy. Compd. 461, 154–159 (2008)

    Article  Google Scholar 

  21. Barnett, M.R.: Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. A 34, 1799–1806 (2003)

    Article  Google Scholar 

  22. Kurukuri, S., Bardelcik, A., Worswick, M.J., Mishra, R.K., Carter, J.T.: Proc. EPJ Web Conf. (2012)

    Google Scholar 

  23. Styczynski, A., Hartig, C., Bohlen, J., Letzig, D.: Scripta Mater. 50, 943–947 (2004)

    Article  Google Scholar 

  24. Kapoor, R., Singh, J.B., Chakravartty, J.K.: Mater. Sci. Eng., A 496, 308–315 (2008)

    Article  Google Scholar 

  25. Zhao, F., Li, Y.L., Suo, T., Huang, W.D., Liu, J.R.: Trans. Nonferrous Metal. Soc. China (English Edition) 20, 1316–1320 (2010)

    Article  Google Scholar 

  26. Koike, J., Kobayashi, T., Mukai, T., Watanabe, H., Suzuki, M., Maruyama, K., Higashi, K.: Acta Mater. 51, 2055–2065 (2003)

    Article  Google Scholar 

  27. Barnett, M.R.: Mater. Sci. Eng., A 464, 1–7 (2007)

    Article  Google Scholar 

  28. Edelson, B.I., Baldwin, W.M.: Trans. Am. Soc. Met. 55, 230 (1962)

    Google Scholar 

  29. Ohji, K., Ogura, K., Mutoh, Y.: Strength and Structure of Solid Materials. Noordhoff International Publishing, Netherlands pp. 99–113 (1976)

    Google Scholar 

  30. Yablinsky, C.A., Cerreta, E.K., Gray Iii, G.T., Brown, D.W. Vogel, S.C.: Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 37, 1907–1915 (2006)

    Google Scholar 

  31. Kapoor, R., Nemat-Nasser, S.: Mech. Mater. 27, 1–12 (1998)

    Article  Google Scholar 

  32. Kim, H.L., Chang, Y.W.: Metal. Mater. Int. 17, 563–568 (2011)

    Article  Google Scholar 

  33. Tanski, T.: Achiev. Mater. Manuf. Eng. 54, 260–274 (2012)

    Google Scholar 

  34. Zhang, Z., Sun, Q., Li, C., Zhao, W.: J. Mater. Eng. Perform. 15, 19–22 (2006)

    Article  Google Scholar 

  35. Kulkarni, P., Prabhakar, S.: Proceedings of the 4th European LS-DYNA Users Conference, pp. 27–34 (2003)

    Google Scholar 

  36. Zhang, H.X., Wang, W.X., Wei, Y.H., Li, J.Y., Wang, J.L.: Trans. Nonferrous Met. Soc. China 12, 1225–1233 (2011)

    Article  Google Scholar 

  37. Zhou, L., Nakata, K., Liao, J., Tsumura, T.: Mater. Des. 42, 505–512 (2012)

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the supports from the Universiti Kebangsaan Malaysia, Ministry of Higher Education Malaysia (ERGS/1/2011/TK/UKM/02/9), Nagaoka University of Technology, Fuel Cell Institute and Universiti Tun Hussein Onn Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Abdul Latif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdul Latif, N., Sajuri, Z., Syarif, J., Mutoh, Y. (2014). Effect of Strain Rate on Tensile Strength and Work Hardening for Al–Zn Magnesium Alloys. In: Gaol, F., Webb, J. (eds) Recent Trends in Nanotechnology and Materials Science. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-04516-0_7

Download citation

Publish with us

Policies and ethics