Skip to main content

Porous Silicon Micromachining Technology

  • Living reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

In this chapter, silicon electrochemical micromachining (ECM) technology is reviewed with particular emphasis to the fabrication of complex microstructures and microsystems, as well as to their applications in optofluidics, biosensing, photonics, and medical fields. ECM, which is based on the controlled electrochemical dissolution of n-type silicon under backside illumination in acidic (HF-based) electrolytes, enables microstructuring of silicon wafers to be controlled up to the higher aspect ratios (over 100) with sub-micrometer accuracy, thus pushing silicon micromachining well beyond up-to-date both wet and dry microstructuring technologies. Both basic and advanced features of ECM technology are described and discussed by taking the fabrication of a silicon microgripper as case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Astrova EV, Nechitaĭlov AA (2008) Electrochemical etching of macropores in silicon with grooved etch seeds. Semiconductor 42:746–751

    Article  Google Scholar 

  • Astrova EV, Nechitailov AA, Tolmachev VA, Melnikov VA, Perova TS (2009) Photo-electrochemical etching of macro-pores in silicon with grooves as etch seeds. Phys Stat Solid A 206(6):1235–1239

    Article  Google Scholar 

  • Astrova EV, Tolmachev VA, Fedulova GV, Melnikov VA, Ankudinov AV, Perova TS (2010) Optical properties of one-dimensional photonic crystals fabricated by photo-electrochemical etching of silicon. Appl Phys A 98:571–581

    Article  Google Scholar 

  • Barillaro G, Pieri F (2005) A self-consistent theoretical model for macropore growth in n-type silicon. J Appl Phys 97:116105

    Article  Google Scholar 

  • Barillaro G, Strambini LM (2010) Controlling macropore formation in patterned n-type silicon: existence of a pitch-dependent etching current density lower bound. Electrochem Commun 12:1314–1317

    Article  Google Scholar 

  • Barillaro G, Nannini A, Pieri F (2002a) Dimensional constraints on high aspect ratio silicon microstructures fabricated by HF photoelectrochemical etching. J Electrochem Soc 149:C180–C185

    Article  Google Scholar 

  • Barillaro G, Nannini A, Piotto M (2002b) Electrochemical etching in HF solution for silicon micromachining. Sens Actuator A 102:195–201

    Article  Google Scholar 

  • Barillaro G, Diligenti A, Nannini A, Pennelli G (2003) A thick silicon dioxide fabrication process based on electrochemical trenching of silicon. Sens Actuator A 107:279–284

    Article  Google Scholar 

  • Barillaro G, Bruschi P, Diligenti A, Nannini A (2005a) Fabrication of regular silicon microstructures by photo-electrochemical etching of silicon. Phys Stat Solid (c) 2(9):3198–3202

    Article  Google Scholar 

  • Barillaro G, D’Angelo F, Pennelli G, Pieri F (2005b) Fabrication of self-aligned gated silicon microtip array using electrochemical silicon etching. Phys Stat Solid (a) 202(8):1427–1431

    Article  Google Scholar 

  • Barillaro G, Diligenti A, Benedetti M, Merlo S (2006) Silicon micromachined periodic structures for optical applications at λ = 1.55 μm. Appl Phys Lett 89(15):151110/1-3

    Article  Google Scholar 

  • Barillaro G, Nannini A, Piotto M (2007a) Electrochemical fabrication of buried folded microchannels into silicon substrates. Phys Stat Solid (a) 204(5):1464–1468

    Article  Google Scholar 

  • Barillaro G, Annovazzi-Lodi V, Benedetti M, Merlo S (2007b) Reflection properties of hybrid quarter-wavelength silicon microstructures. Appl Phys Lett 90(12):121110/1–121110/3

    Article  Google Scholar 

  • Barillaro G, Merlo S, Strambini L (2008) Band gap tuning of silicon micromachined 1D photonic crystals by thermal oxidation. IEEE J Sel Topic Quantum Electron 14(4):1074–1081

    Article  Google Scholar 

  • Barillaro G, Strambini LM, Annovazzi-lodi V, Merlo S (2009a) Optical characterization of high-order 1-D silicon photonic crystals. IEEE J Sel Topic Quantum Electron 15(5):1359–1367

    Article  Google Scholar 

  • Barillaro G, Merlo S, Strambini LM (2009b) Optical characterization of alcohol-infiltrated one-dimensional silicon photonic crystals. Opt Lett 34(12):1912–1914

    Article  Google Scholar 

  • Barillaro G, Merlo S, Surdo S, Strambini LM, Carpignano F (2011) Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals. Microfluid Nanofluid 12:545–552

    Article  Google Scholar 

  • Bassu M, Surdo S, Strambini LM, Barillaro G (2012) Electrochemical micromachining as an enabling technology for advanced silicon microstructuring. Adv Funct Mater 22(6):1222–1228

    Article  Google Scholar 

  • Carpignano G, Silva S, Surdo V, Leva A, Montecucco F, Aredia AI, Scovassi S, Merlo G, Barillaro G, Mazzini G (2012) A new cell-selective three-dimensional microincubator based on silicon photonic crystals. PLoS One 7(11):e48556

    Article  Google Scholar 

  • Foll H, Carstensen J, Christophersen M, Hasse G (2000) Parameter dependence of pore formation in silicon within a model of local current bursts. Phys Stat Solid A 182:63–69

    Article  Google Scholar 

  • Kleimann P, Linnros J, Juhasz R (2001) Formation of three-dimensional microstructures by electrochemical etching of silicon. Appl Phys Lett 79:1727–1729

    Article  Google Scholar 

  • Köhler M (1999) Etching in microsystem technology. Wiley, Weinheim

    Book  Google Scholar 

  • Lehmann V (1993) The physics of macropore formation in low doped n-type silicon. J Electrochem Soc 140:2836–2843

    Article  Google Scholar 

  • Lehmann V (2002) Electrochemistry of silicon. Wiley, Weinheim

    Book  Google Scholar 

  • Lehmann V, Föll H (1990) Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J Electrochem Soc 137:653–659

    Article  Google Scholar 

  • Matthias S, Müller F, Jamois C, Wehrspohn RB, Gösele U (2004) Large-area three-dimensional structuring by electrochemical etching and lithography. Adv Mater 16(23–24):2166–2170

    Article  Google Scholar 

  • Matthias S, Müller F, Schilling J, Gösele U (2005) Pushing the limits of macroporous silicon etching. Appl Phys A Mater Sci Process 80(7):1391–1396

    Article  Google Scholar 

  • Merlo S, Barillaro G, Carpignano F, Montecucco A, Leva V, Strambini LM, Surdo S, Mazzini G (2012a) Investigation of cell culturing on high aspect-ratio, three-dimensional silicon microstructures. IEEE J Sel Topic Quantum Electron 18(3):1215–1222

    Article  Google Scholar 

  • Merlo S, Barillaro G, Carpignano F, Silva G, Surdo S, Strambini LM, Giorgetti S, Nichino D, Relini A, Mazzini G, Stoppini M, Bellotti V (2012b) Fibrillogenesis of human β-microglobulin in three-dimensional silicon microstructures. J Biophotonics 5(10):785–792

    Article  Google Scholar 

  • Merlo S, Carpignano F, Silva G, Aredia F, Scovassi AI, Mazzini G, Surdo S, Barillaro G (2013) A new cell-selective three-dimensional microincubator based on silicon photonic crystals. Label-free optical detection of cells grown in 3D silicon microstructures. Lab Chip 13:3284

    Article  Google Scholar 

  • Ohji H, Trimp PJ, French PJ (1999) Fabrication of free standing structure using single step electrochemical etching in hydrofluoric acid. Sens Actuator A 73:95–100

    Article  Google Scholar 

  • Ottow S, Lehmann V, Föll H (1996) Processing of three-dimensional microstructures using macroporous n-type silicon. J Electrochem Soc 143:385–390

    Article  Google Scholar 

  • Polito G, Surdo S, Robbiano V, Tregnago G, Cacialli F, Barillaro G (2013) Two-dimensional array of photoluminescent light-sources by selective integration of conjugated luminescent polymers into three-dimensional silicon microstructures. Adv Opt Mater 1(12):894–898

    Article  Google Scholar 

  • Schilling J, Müller F, Matthias S, Wehrspohn RB, Gösele U, Busch K (2001) Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter. Appl Phys Lett 78(9):1180–1182

    Article  Google Scholar 

  • Strambini LM, Longo A, Diligenti A, Barillaro G (2012) A minimally invasive microchip for transdermal injection/sampling applications. Lab Chip 12:3370–3379

    Article  Google Scholar 

  • Surdo S, Merlo S, Carpignano F, Strambini LM, Trono C, Giannetti A, Baldini F, Barillaro G (2012) Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis. Lab Chip 12(21):4403–4415

    Article  Google Scholar 

  • Surdo S, Carpignano F, Silva G, Merlo S, Barillaro G (2013) An all-silicon optical platform based on linear array of vertical high-aspect-ratio silicon/air photonic crystals. Appl Phys Lett 103(17):171103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Barillaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Barillaro, G. (2014). Porous Silicon Micromachining Technology. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_79-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_79-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics