Skip to main content

Biodegradability of Porous Silicon

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Porous Silicon
  • 236 Accesses

Abstract

There is increasing interest in biodegradable silicon nanostructures for drug delivery and theranostic formulations, as well as “transient” microelectronic implants. The medical biodegradability of mesoporous silicon is now established both in vitro and in vivo. This updated review highlights the techniques used to date to characterize this phenomenon, the degradation kinetics, and the various factors that can influence the kinetics of dissolution into orthosilicic acid. Recent in vivo studies have started to address the in vitro to in vivo correlation for specific tissue microenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahuja G, Pathak K (2009) Porous carriers for controlled/modulated drug delivery. Indian J Pharm Sci 71(6):599–607

    Article  Google Scholar 

  • Anderson SHC, Elliott H, Wallis DJ, Canham LT, Powell JJ (2000) Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys Status Solidi A 197:331–335

    Article  Google Scholar 

  • Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 60(11):1266–1277

    Article  Google Scholar 

  • Bowditch AP, Waters K, Gale H, Rice P, Scott EAM, Canham LT, Reeves CL, Loni A, Cox TI (1999) In-vivo assessment of tissue compatibility and calcification of bulk and porous silicon. Mater Res Soc Symp Proc 536:149–154

    Article  Google Scholar 

  • Canham LT (1995) Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater 7:1033–1037

    Article  Google Scholar 

  • Canham LT (2007) Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology 18:185704

    Article  Google Scholar 

  • Canham LT (2014) Porous silicon for medical use: from conception to clinical use, chap 1. In: Santos HA (ed) Biomedical uses of porous silicon. Woodhead Publishing, Cambridge, UK, pp 3–20

    Google Scholar 

  • Canham LT, Reeves CL, Newey JP, Houlton MR, Cox TI, Buriak JM, Stewart MP (1999) Derivatized mesoporous silicon with dramatically improved stability in simulated human blood plasma. Adv Mater 11(18):1505–1507

    Article  Google Scholar 

  • Cheng L, Anglin E, Cunin F, Kim D, Sailor MJ, Falkenstein I, Tammewar A, Freeman WR (2008) Intravitreal properties of porous silicon photonic crystals: a potential self-reporting intraocular drug-delivery vehicle. Br J Ophthalmol 92(5):705–711

    Article  Google Scholar 

  • Chiappini C, Liu X, Fakhoury JR, Ferrari M (2010) Biodegradable porous silicon barcode nanowires with defined geometry. Adv Funct Mater 20(14):2231–2239

    Article  Google Scholar 

  • Finnie KS, Waller DJ, Perret FL, Krause-Heuer AM, Lin HQ, Hanna JV, Barbe CJ (2009) Biodegradability of sol-gel silica microparticles for drug delivery. J Sol-Gel Sci Technol 49:12–18

    Article  Google Scholar 

  • Godin B, Gu J, Serda RE, Bhavane R, Tasciotti E, Chiapinni C, Lu X, Tanaka T, Decuzzi P, Ferrari M (2010) Tailoring the degradation kinetics of mesoporous silicon through PEGylation. J Biomed Mater Res 94(4):1236–1243

    Google Scholar 

  • Gu L, Ruff LE, Qin Z, Corr M, Hedrick SM, Sailor MJ (2012) Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. Adv Mater 24(29):3981–3987

    Article  Google Scholar 

  • Henstock JR, Ruktanonchai UR, Canham LT, Anderson SI (2014) Porous silicon confers bioactivity to polycaprolactone composites in vitro. J Mater Sci 25(4):1087–1097

    Google Scholar 

  • Hon NK, Shaposhnik Z, Diebold ED, Tamanoi F, Jalali B (2012) Tailoring the biodegradability of porous silicon nanoparticles. J Biomed Mater Res 100(12):3416–3421

    Article  Google Scholar 

  • Iler RK (1979) Chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry. Wiley, New York

    Google Scholar 

  • Jugdaohsingh R, Anderson SH, Tucker KL, Elliott H, Kiel DP, Thompson RP, Powell JJ (2002) Dietary silicon intake and absorption. Am J Clin Nutr 75(5):887–893

    Google Scholar 

  • Kang et al (2015) Dissolution chemistry and biocompatibility of silicon and germanium-based semiconductors for transient electronics. Appl Mater Interf 7:9297–9305

    Article  Google Scholar 

  • Kang SK et al (2016) Bioresorbable silicon electronic sensors for the brain. Nature 530:71–76

    Article  Google Scholar 

  • Li HL, Zhu Y, Xu D, Wan Y, Xia L, Zhao X (2009) Vapour-phase silanization of oxidised porous silicon for stabilizing composition and photoluminescence. J Appl Phys 105:114–307

    Google Scholar 

  • Maher S, Kumeria T, Wang Y, Kaur G, Fathalla D, Fetih G, Santos A, Habib F, Evdokiou A, Losic D (2016) From the mine to cancer therapy: natural and biodegradable theranostic silicon nanocarriers from diatoms for sustained delivery of chemotherapeutics. Adv Healthc Mater. https://doi.org/10.1002/adhm.201600688

  • Martinez JO, Chiappini C et al (2013) Engineering multi-stage nanovectors for controlled degradation and tunable release kinetics. Biomaterials 34(33) 8469–8477

    Google Scholar 

  • Martinez JO, Evangelopoulos E, Chiappino C, Liu X, Ferrari M, Tasciotti E (2014) Degradation and biocompatibility of multistage nanovectors in physiological systems. J Biomed Mater Res 102:3540–3549

    Article  Google Scholar 

  • McInnes SJP, Thissen H, Choudbury NR, Voelcker NH (2009) New biodegradable materials produced by ring opening polymerisation of poly(l-lactide) on porous silicon substrates. J Colloid Interface Sci 332:336–344

    Article  Google Scholar 

  • McInnes SJ, Irani Y, Williams KA, Voelcker NH (2012) Controlled drug delivery from composites of nanostructured porous silicon and poly(l-lactide). Nanomedicine 7(7):995–1016

    Article  Google Scholar 

  • Park JH, Ye M, Park K (2005) Biodegradable polymers for microencapsulation of drugs. Molecules 10:146–161

    Article  Google Scholar 

  • Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8(4):331–336

    Article  Google Scholar 

  • Peckham J, Andrews GT (2015) Comparative study of the biodegradability of porous silicon films in simulated body fluid. Biomed Mater Eng 25(1):111–116

    Google Scholar 

  • Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) (2004) Biomaterials science: an introduction to materials in medicine, 2nd edn. Elsevier, San Diego, p 851

    Google Scholar 

  • Refitt DM, Jugdaosingh R, Thompson RPH, Powell JJ (1999) Silicic acid: its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion. J Inorg Biochem 76:141–147

    Article  Google Scholar 

  • Sarparanta M, Bimbo LM, Rytkonen J, Makila E, Laaksonen TJ, Laaksonen P, Nyman M, Salonen J, Linder MB, Hirvonen J, Santos HA, Airaksinen AJ (2012) Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol Pharm 9:654–663

    Article  Google Scholar 

  • Shabir Q, Pokale A, Loni A, Johnson DR, Canham LT, Fenollosa R, Tymczenko M, Rodríguez I, Meseguer F, Cros A (2011) Medically biodegradable hydrogenated amorphous silicon microspheres. SILICON 2011:173–176

    Article  Google Scholar 

  • Tolli MA, Ferreira MPA, Kinnunen SM et al (2014) In-vivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. Biomaterials 36(29):8394–8405

    Google Scholar 

  • Tolstik E, Osminkina LA, Matthaus C, Burkhardt M, Tsurikov KE, Natashina UA, Timoshenko VY, Heintzmann R, Popp J, Sivakov V (2016) Studies of silicon nanoparticles uptake and biodegradation in cancer cells by Raman Spectroscopy. Nanomedicine 12(7):1931–1940

    Article  Google Scholar 

  • Tzur Balter A, Shatsberg Z, Beckerman M, Segal E, Artzi N (2015) Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues. Nat Commun 6:6208

    Article  Google Scholar 

  • Tzur-Balter A, Rubinskia A, Segal E (2013) Designing porous silicon-based microparticles as carriers for controlled delivery of mitoxantrone dihydrochloride. J Mater Res 28(2):231–239

    Article  Google Scholar 

  • Yin L, Farimani AB, Min K, Vishal N, Lam J, Lee YK, Aluru NR, Rogers JA (2015) Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics. Adv Mater 27:1857–1864

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qurrat Shabir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Her Majesty the Queen in Right of United Kingdom

About this entry

Cite this entry

Shabir, Q. (2017). Biodegradability of Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_39-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_39-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04508-5

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Biodegradability of Porous Silicon
    Published:
    12 September 2017

    DOI: https://doi.org/10.1007/978-3-319-04508-5_39-2

  2. Original

    Biodegradability of Porous Silicon
    Published:
    10 June 2014

    DOI: https://doi.org/10.1007/978-3-319-04508-5_39-1