Skip to main content

Chemical Reactivity and Surface Chemistry of Porous Silicon

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Porous Silicon

Abstract

The surface chemistry and chemical reactions of porous Si are subjected to an updated review. The reactivity of as-formed porous Si is dominated by the chemistries of silicon-hydrogen and silicon-silicon bonds, which are strong reducing agents. Depending on the oxidant, various surface species can be generated in oxidation-reduction reactions of porous Si, in particular metal nanoparticles, silicon oxides, or silicon-carbon species. The oxidation chemistry of porous Si involving air, water, chemical oxidants, or electrochemical oxidation is discussed. The aqueous stability of these various silicon oxides is quite dependent on the means by which a particular oxide is formed. Si─C bond forming reactions including hydrosilylation, hydrocarbonization, carbonization and reductive electrochemical grafting, together with the chemical method used to confirm Si─C bond formation, are presented. As much interest is focused on the generation of functional nanostructures to graft molecules such as drugs, proteins, targeting agents or biological receptor molecules to porous Si surfaces, the review emphasizes the covalent chemistry of Si─O and Si─C surface species for the attachment of functional species (particularly biomolecules) to porous Si.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson SHC, Elliott H, Wallis DJ, Canham LT, Powell JJ (2003) Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys Status Solidi A 197(2):331–335

    Article  Google Scholar 

  • Anderson AS, Dattelbaum AM, Montano GA, Price DN, Schmidt JG, Martinez JS, Grace WK, Grace KM, Swanson BI (2008) Functional PEG-modified thin films for biological detection. Langmuir 24(5):2240–2247

    Article  Google Scholar 

  • Andrew JS, Anglin EJ, Wu EC, Chen MY, Cheng L, Freeman WR, Sailor MJ (2010) Sustained release of a monoclonal antibody from electrochemically prepared mesoporous silicon oxide. Adv Funct Mater 20:4168–4174

    Article  Google Scholar 

  • Astrova EV (2014) Oxidation of macroporous silicon. In: Canham LT (ed) Handbook of porous silicon. Springer, Cham, p 590

    Google Scholar 

  • Bansal A, Lewis NS (1998) Stabilization of Si photoanodes in aqueous electrolytes through surface alkylation. J Phys Chem B 102(21):4058–4060

    Article  Google Scholar 

  • Bansal A, Li XL, Lauermann I, Lewis NS, Yi SI, Weinberg WH (1996) Alkylation of Si surfaces using a two-step halogenation Grignard route. J Am Chem Soc 118(30):7225–7226

    Article  Google Scholar 

  • Batra I, Coffer JL, Canham LT (2006) Electronically-responsive delivery from a calcified mesoporous silicon structure. Biomed Microdevices 8(2):93–97

    Article  Google Scholar 

  • Bimbo LM, Sarparanta M, Santos HA, Airaksinen AJ, Ma¨kila¨ E, Laaksonen T, Peltonen L, Lehto V-P, Hirvonen J, Salonen J (2010) Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4(6):3023–3032

    Article  Google Scholar 

  • Bjorkqvist M, Salonen J, Laine E, Niinisto L (2003) Comparison of stabilizing treatments on porous silicon for sensor applications. Phys Status Solidi A 197(2):374–377

    Article  Google Scholar 

  • Bjorkqvist M, Salonen J, Laine E (2004a) Humidity behavior of thermally carbonized porous silicon. Appl Surf Sci 222(1–4):269–274

    Article  Google Scholar 

  • Bjorkqvist M, Salonen J, Paski J, Laine E (2004b) Characterization of thermally carbonized porous silicon humidity sensor. Sens Actuator A Phys 112(2-3):244–247

    Article  Google Scholar 

  • Bjorkqvist M, Paski J, Salonen J, Lehto VP (2005) Temperature dependence of thermally-carbonized porous silicon humidity sensor. Phys Status Solidi A 202(8):1653–1657

    Article  Google Scholar 

  • Bonanno LM, DeLouise LA (2007) Steric crowding effects on target detection in an affinity biosensor. Langmuir 23(10):5817–5823

    Article  Google Scholar 

  • Boukherroub R, Morin S, Sharpe P, Wayner DDM, Allongue P (2000a) Insights into the formation mechanisms of Si-OR monolayers from the thermal reactions of alcohols and aldehydes with Si(111)-H. Langmuir 16(19):7429–7434

    Article  Google Scholar 

  • Boukherroub R, Morin S, Wayner DDM, Lockwood DJ (2000b) Thermal route for chemical modification and photoluminescence stabilization of porous silicon. Phys Status Solidi A 182(1):117–121

    Article  Google Scholar 

  • Boukherroub R, Morin S, Wayner DDM, Bensebaa F, Sproule GI, Baribeau JM, Lockwood DJ (2001) Ideal passivation of luminescent porous silicon by thermal, noncatalytic reaction with alkenes and aldehydes. Chem Mater 13(6):2002–2011

    Article  Google Scholar 

  • Boukherroub R, Wojtyk JTC, Wayner DDM, Lockwood DJ (2002) Thermal hydrosilylation of undecylenic acid with porous silicon. J Electrochem Soc 149(2):59–63

    Article  Google Scholar 

  • Boukherroub R, Petit A, Loupy A, Chazalviel JN, Ozanam F (2003) Microwave-assisted chemical functionalization of hydrogen-terminated porous silicon surfaces. J Phys Chem B 107(48):13459–13462

    Article  Google Scholar 

  • Buriak JM (1999) Organometallic chemistry on silicon surfaces: formation of functional monolayers bound through Si-C bonds. Chem Commun 12:1051–1060

    Article  Google Scholar 

  • Buriak JM (2002) Organometallic chemistry on silicon and germanium surfaces. Chem Rev 102(5):1272–1308

    Article  Google Scholar 

  • Buriak JM, Allen MJ (1998) Lewis acid mediated functionalization of porous silicon with substituted alkenes and alkynes. J Am Chem Soc 120(6):1339–1340

    Article  Google Scholar 

  • Canaria CA, Huang M, Cho Y, Heinrich JL, Lee LI, Shane MJ, Smith RC, Sailor MJ, Miskelly GM (2002) The effect of surfactants on the reactivity and photophysics of luminescent nanocrystalline porous silicon. Adv Funct Mater 12(8):495–500

    Article  Google Scholar 

  • Canham LT (1995) Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater 7(12):1033–1037

    Article  Google Scholar 

  • Canham LT (1997) Chemical composition of intentionally oxidised porous silicon. In: Canham LT (ed) Properties of porous silicon, vol 18. Institution of Engineering and Technology, London, p 159

    Google Scholar 

  • Canham LT (2014) Porous silicon for medical use: from conception to clinical use. In: Santos HA (ed) Porous silicon for biomedical applications. Elsevier, New York, pp 3–20

    Chapter  Google Scholar 

  • Canham LT, Saunders SJ, Heeley PB, Keir AM, Cox TI (1994) Rapid chemography of porous silicon undergoing hydrolysis. Adv Mater 6(11):865–868

    Article  Google Scholar 

  • Canham LT, Newey JP, Reeves CL, Houlton MR, Loni A, Simmons AJ, Cox TI (1996) The effects of DC electric currents on the in-vitro calcification of bioactive Si wafers. Adv Mater 8(10):847–849

    Article  Google Scholar 

  • Canham LT, Reeves CL, Loni A, Houlton MR, Newey JP, Simons AJ, Cox TI (1997) Calcium phosphate nucleation on porous silicon: factors influencing kinetics in acellular simulated body fluids. Thin Solid Films 297(1–2):304–307

    Article  Google Scholar 

  • Canham LT, Stewart MP, Buriak JM, Reeves CL, Anderson M, Squire EK, Allcock P, Snow PA (2000) Derivatized porous silicon mirrors: implantable optical components with slow resorbability. Phys Status Solidi A 182(1):521–525

    Article  Google Scholar 

  • Chan DY, Sega AG, Lee JY, Gao T, Cunin F, Renzo FD, Sailor MJ (2014) Optical detection of C2 hydrocarbons ethane, ethylene, and acetylene with a photonic crystal made from carbonized porous silicon. Inorg Chim Acta 422:21–29

    Article  Google Scholar 

  • Chhablani J, Nieto A, Hou H, Wu EC, Freeman WR, Sailor MJ, Cheng L (2013) Oxidized porous silicon particles covalently grafted with daunorubicin as a sustained intraocular drug delivery system. Invest Ophthalmol Vis Sci 54:1268–1279

    Article  Google Scholar 

  • Coffer JL, Montchamp JL, Aimone JB, Weis RP (2003) Routes to calcifled porous silicon: implications for drug delivery and biosensing. Phys Status Solidi A 197(2):336–339

    Article  Google Scholar 

  • Coulthard I, Sham TK (1997) Synthesis of nanophase noble metal systems utilizing porous silicon. Mat Res Soc Symp Proc 457:161–165

    Article  Google Scholar 

  • Dancil K-PS, Greiner DP, Sailor MJ (1999) A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface. J Am Chem Soc 121(34):7925–7930

    Article  Google Scholar 

  • De Stefano L, Rea I, De Tommasi E, Giardina P, Armenante A, Longobardi S, Giocondo M, Rendina I (2009) Biological passivation of porous silicon by a self-assembled nanometric biofilm of proteins. J Nanophoton 3:031985

    Article  Google Scholar 

  • Debarge L, Stoquert JP, Slaoui A, Stalmans L, Poortmans J (1999) Rapid thermal oxidation of porous silicon for surface passivation. Eur Mat Res 84:281–285

    Google Scholar 

  • Dove PM, Han NZ, De Yoreo JJ (2005) Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior. Proc Natl Acad Sci USA 102(43):15357–15362

    Article  Google Scholar 

  • Dubois T, Ozanam F, Chazalviel J-N (1997) Stabilization of the porous silicon surface by grafting of organic groups: direct electrochemical methylation. Proc Electrochem Soc 97–7:296–311

    Google Scholar 

  • Ferrati S, Mack A, Chiappini C, Liu XW, Bean AJ, Ferrari M, Serda RE (2010) Intracellular trafficking of silicon particles and logic-embedded vectors. Nanoscale 2(8):1512–1520

    Article  Google Scholar 

  • Fry NL, Boss GR, Sailor MJ (2014) Oxidation-induced trapping of drugs in porous silicon microparticles. Chem Mater 26:2758–2764

    Article  Google Scholar 

  • Fuertes MC, Marchena M, Marchi MC, Wolosiuk A, Soler-Illia G (2009) Controlled deposition of silver nanoparticles in mesoporous single- or multilayer thin films: from tuned pore fitting to selective spatial location of nanometric objects. Small 5(2):272–280

    Article  Google Scholar 

  • Fukami K, Kobayashi K, Matsumoto T, Kawamura YL, Sakka T, Ogata YH (2008) Electrodeposition of noble metals into ordered macropores in p-type silicon. J Electrochem Soc 155(6):D443–D448

    Article  Google Scholar 

  • Fukami K, Tanaka Y, Chourou ML, Sakka T, Ogata YH (2009) Filling of mesoporous silicon with copper by electrodeposition from an aqueous solution. Electrochim Acta 54(8):2197–2202

    Article  Google Scholar 

  • Gelloz B, Koshida N (2012) Blue phosphorescence in oxidized nano-porous silicon. ECS J Solid State Sci Technol 1(6):R158–R162

    Article  Google Scholar 

  • Gelloz B, Shibata T, Koshida N (2006) Stable electroluminescence of nanocrystalline silicon device activated by high pressure water vapor annealing. Appl Phys Lett 89(19):191103

    Article  Google Scholar 

  • Gelloz B, Loni A, Canham L, Koshida N (2012) Luminescence of mesoporous silicon powders treated by high-pressure water vapor annealing. Nanoscale Res Lett 7:1–4

    Article  Google Scholar 

  • Ghulinyan M, Gelloz B, Ohta T, Pavesi L, Lockwood DJ, Koshida N (2008) Stabilized porous silicon optical superlattices with controlled surface passivation. Appl Phys Lett 93(6):061113

    Article  Google Scholar 

  • Godin B, Gu JH, Serda RE, Bhavane R, Tasciotti E, Chiappini C, Liu XW, Tanaka T, Decuzzi P, Ferrari M (2010) Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. J Biomed Mater Res Part A 94A(4):1236–1243

    Google Scholar 

  • Granitzer P, Rumpf K, Reissner M, Morales MP, Poelt P, Uusimaki T, Albu M (2012) Porous silicon/iron oxide nanocomposites with deposition dependent magnetic properties. ECS Trans 41(35):67–72

    Google Scholar 

  • Gu L, Ruff LE, Qin Z, Corr M, Hedrick SM, Sailor MJ (2012) Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. Adv Mater 24(29):3981–3987

    Article  Google Scholar 

  • Guan B, Magenau A, Ciampi S, Gaus K, Reece PJ, Gooding JJ (2014) Antibody modified porous silicon microparticles for the selective capture of cells. Bioconjug Chem 25(7):1282–1289

    Article  Google Scholar 

  • Gupta P, Dillon AC, Bracker AS, George SM (1991) FTIR studies of H2O and D2O decomposition on porous silicon. Surf Sci 245:360–372

    Article  Google Scholar 

  • Gurtner C, Wun AW, Sailor MJ (1999) Surface modification of porous silicon by electrochemical reduction of organo halides. Angew Chem Int Ed 38(13/14):1966–1968

    Article  Google Scholar 

  • Hamadache F, Duvail JL, Scheuren V, Piraux L, Poleunis C, Bertrand P, Belkaid MS (2002) Electrodeposition of Fe-Co alloys into nanoporous p-type silicon: influence of the electrolyte composition. J Mater Res 17(5):1074–1084

    Article  Google Scholar 

  • Hamm D, Sakka T, Ogata YH (2004) Immersion plating of copper onto porous silicon with different thickness. Electrochim Acta 49(27):4949–4955

    Article  Google Scholar 

  • Harper TF, Sailor MJ (1997) Using porous silicon as a hydrogenating agent: derivatization of the surface of luminescent nanocrystalline silicon with benzoquinone. J Am Chem Soc 119(29):6943–6944

    Article  Google Scholar 

  • Harraz FA, Sakka T, Ogata YH (2001) Immersion plating of copper using (CF3SO3)(2)Cu onto porous silicon from organic solutions. Electrochim Acta 46(18):2805–2810

    Article  Google Scholar 

  • Harraz FA, Tsuboi T, Sasano J, Sakka T, Ogata YH (2002a) Metal deposition onto a porous silicon layer by immersion plating from aqueous and nonaqueous solutions. J Electrochem Soc 149(9):C456–C463

    Article  Google Scholar 

  • Harraz FA, Sakka T, Ogata YH (2002b) Effect of chloride ions on immersion plating of copper onto porous silicon from a methanol solution. Electrochim Acta 47(8):1249–1257

    Article  Google Scholar 

  • Harraz FA, Sasano J, Sakka T, Ogata YH (2003a) Different behavior in immersion plating of nickel on porous silicon from acidic and alkaline fluoride media. J Electrochem Soc 150(5):C277–C284

    Article  Google Scholar 

  • Harraz FA, Sakka T, Ogata YH (2003b) Immersion plating of nickel onto a porous silicon layer from fluoride solutions. Phys Status Solidi A 197(1):51–56

    Article  Google Scholar 

  • Harun NA, Horrocks BR, Fulton DA (2011) A miniemulsion polymerization technique for encapsulation of silicon quantum dots in polymer nanoparticles. Nanoscale 3(11):4733–4741

    Article  Google Scholar 

  • Heikkila T, Salonen J, Tuura J, Kumar N, Salmi T, Murzin DY, Hamdy MS, Mul G, Laitinen L, Kaukonen AM, Hirvonen J, Lehto VP (2007) Evaluation of mesoporous TCPSi, MCM-41, SBA-15, and TUD-1 materials as API carriers for oral drug delivery. Drug Deliv 15(6):337–347

    Article  Google Scholar 

  • Hellmann R, Cotte S, Cadel E, Malladi S, Karlsson LS, Lozano-Perez S, Cabié M, Seyeux A (2015) Nanometre-scale evidence for interfacial dissolution–reprecipitation control of silicate glass corrosion. Nat Mater 14:307–311

    Article  Google Scholar 

  • Huang ZP, Geyer N, Werner P, de Boor J, Gosele U (2011) Metal-assisted chemical etching of silicon: a review. Adv Mater 23(2):285–308

    Article  Google Scholar 

  • Husseini GA, Peacock J, Sathyapalan A, Zilch LW, Asplund MC, Sevy ET, Linford MR (2003) Alkyl monolayers on silica surfaces prepared using neat, heated dimethylmonochlorosilanes with low vapor pressures. Langmuir 19(12):5169–5171

    Article  Google Scholar 

  • Jalkanen T, Torres-Costa V, Salonen J, Bj¨orkqvist M, M¨akil¨a E, Mart´ınez-Duart JM, Lehto V-P (2009) Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors. Opt Express 17(7):5446–5456

    Article  Google Scholar 

  • James TD, Keating A, Parish G, Musca CA (2009) Low temperature N(2)-based passivation technique for porous silicon thin films. Solid State Commun 149(33–34):1322–1325

    Article  Google Scholar 

  • James TD, Parish G, Musca CA, Keating AJ (2010) N(2)-based thermal passivation of porous silicon to achieve long-term optical stability. Electrochem Solid-State Lett 13(12):H428–H431

    Article  Google Scholar 

  • Janshoff A, Dancil K-PS, Steinem C, Greiner DP, Lin VS-Y, Gurtner C, Motesharei K, Sailor MJ, Ghadiri MR (1998) Macroporous p-type silicon Fabry-Perot layers. Fabrication, characterization, and applications in biosensing. J. Am Chem Soc 120(46):12108–12116

    Article  Google Scholar 

  • Jarvis KL, Barnes TJ, Badalyan A, Pendleton P, Prestidge CA (2008) Impact of thermal oxidation on the adsorptive properties and structure of porous silicon particles. J Phys Chem C 112(26):9717–9722

    Article  Google Scholar 

  • Jeske M, Schultze JW, Thonissen M, Munder H (1995) Electrodeposition of metals into porous Si. Thin Solid Films 255:63–66

    Article  Google Scholar 

  • Jiao Y, Koktysh DS, Phambu N, Weiss SM (2010) Dual-mode sensing platform based on colloidal gold functionalized porous silicon. Appl Phys Lett 97(15):153125

    Article  Google Scholar 

  • Joo J, Cruz JF, Vijayakumar S, Grondek J, Sailor MJ (2014) Photoluminescent porous Si/SiO2 core/shell nanoparticles prepared by borate oxidation. Adv Funct Mater 24:5688–5694

    Article  Google Scholar 

  • Joo J, Kwon EJ, Kang J, Skalak M, Anglin EJ, Mann AP, Ruoslahti E, Bhatia S, Sailor MJ (2016) Porous silicon-graphene oxide core-shell nanoparticles for targeted delivery of siRNA to the injured brain. Nanoscale Horiz 1:407

    Article  Google Scholar 

  • Kang J, Joo J, Kwon EJ, Skalak M, Hussain S, She Z-G, Ruoslahti E, Bhatia SN, Sailor MJ (2016) Self-sealing porous silicon-calcium silicate core–shell nanoparticles for targeted siRNA delivery to the injured brain. Adv Mater. doi:10.1002/adma.201600634

  • Kaukonen AM, Laitinen L, Salonen J, Tuura J, Heikkila T, Limnell T, Hirvonen J, Lehto VP (2007) Enhanced in vitro permeation of furosemide loaded into thermally carbonized mesoporous silicon (TCPSi) microparticles. Eur J Pharm Biopharm 66(3):348–356

    Article  Google Scholar 

  • Kawamura YL, Sakka T, Ogata YH (2005) Photoassisted control of Pt electrodeposition on p-type Si. J Electrochem Soc 152(10):C701–C705

    Article  Google Scholar 

  • Kelly TL, Gao T, Sailor MJ (2011) Carbon and carbon/silicon composites templated in microporous silicon rugate filters for the adsorption and detection of organic vapors. Adv Mater 23:1776–1781

    Article  Google Scholar 

  • Kilian KA, Bocking T, Gaus K, Gal M, Gooding JJ (2007a) Si-C linked oligo(ethylene glycol) layers in silicon-based photonic crystals: optimization for implantable optical materials. Biomaterials 28:3055–3062

    Article  Google Scholar 

  • Kilian KA, Böcking T, Gaus K, Gal M, Gooding JJ (2007b) Peptide-modified optical filters for detecting protease activity. ACS Nano 1(4):355–361

    Article  Google Scholar 

  • Kim D, Joo J, Pan Y, Boarino A, Jun YW, Ahn KH, Arkles B, Sailor MJ (2016) Thermally induced silane dehydrocoupling on silicon nanostructures. Angew Chem 128(22):6533–6537

    Article  Google Scholar 

  • Kumar P, Huber P (2010) Quenching of reducing properties of mesoporous silicon and its use as template for metal/semiconductor deposition. J Electrochem Soc 157(3):D172–D176

    Article  Google Scholar 

  • Laaksonen T, Santos H, Vihola H, Salonen J, Riikonen J, Heikkila T, Peltonen L, Kumar N, Murzin DY, Lehto V-P, Hirvonen J (2007) Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chem Res Toxicol 20(12):1913–1918

    Article  Google Scholar 

  • Lai MF, Parish G, Liu YN, Dell JM, Keating AJ (2011) Development of an alkaline-compatible porous-silicon photolithographic process. J Microelectromech Syst 20(2):418–423

    Article  Google Scholar 

  • Lai MF, Parish G, Liu YN, Keating AJ (2012) Surface morphology control of passivated porous silicon using reactive ion etching. J Microelectromech Syst 21(3):756–761

    Article  Google Scholar 

  • Latterich M, Corbeil J (2008) Label-free detection of biomolecular interactions in real time with a nano-porous silicon-based detection method. Proteome Sci 6:31

    Article  Google Scholar 

  • Lees IN, Lin H, Canaria CA, Gurtner C, Sailor MJ, Miskelly GM (2003) Chemical stability of porous silicon surfaces electrochemically modified with functional alkyl species. Langmuir 19:9812–9817

    Article  Google Scholar 

  • Lehto VP, Vaha-Heikkila K, Paski J, Salonen J (2005) Use of thermoanalytical methods in quantification of drug load in mesoporous silicon microparticles. J Therm Anal Calorim 80(2):393–397

    Article  Google Scholar 

  • Létant SE, Content S, Tan TT, Zenhausern F, Sailor MJ (2000) Integration of porous silicon chips in an electronic artificial nose. Sensors Actuators B Chem 69(1–2):193–198

    Article  Google Scholar 

  • Li X, Coffer JL, Chen YD, Pinizzotto RF, Newey J, Canham LT (1998) Transition metal complex-doped hydroxyapatite layers on porous silicon. J Am Chem Soc 120(45):11706–11709

    Article  Google Scholar 

  • Li X, John JS, Coffer JL, Chen Y, Pinizzotto RF, Newey J, Reeves C, Canham LT (2000) Porosified silicon wafer structures impregnated with platinum anti-tumor compounds: fabrication, characterization, and diffusion studies. Biomed Microdevices 2(4):265–272

    Article  Google Scholar 

  • Limnell T, Riikonen J, Salonen J, Kaukonen AM, Laitinen L, Hirvonen J, Lehto VP (2006) The effect of different surface treatment and pore size on the dissolution of ibuprofen from mesoporous silicon particles. Eur J Pharm Sci 28:S34–S34

    Article  Google Scholar 

  • Limnell T, Riikonen J, Salonen J, Kaukonen AM, Laitinen L, Hirvonen J, Lehto VP (2007) Surface chemistry and pore size affect carrier properties of mesoporous silicon microparticles. Int J Pharm 343(1–2):141–147

    Article  Google Scholar 

  • Lin H, Gao T, Fantini J, Sailor MJ (2004a) A porous silicon-palladium composite film for optical interferometric sensing of hydrogen. Langmuir 20:5104–5108

    Article  Google Scholar 

  • Lin H, Mock J, Smith D, Gao T, Sailor MJ (2004b) Surface-enhanced Raman scattering from silver-plated porous silicon. J Phys Chem B 108(31):11654–11659

    Article  Google Scholar 

  • Linford MR, Chidsey CED (1993) Alkyl monolayers covalently attached to silicon surfaces. J Am Chem Soc 115:12631–12632

    Article  Google Scholar 

  • Linford MR, Fenter P, Eisenberger PM, Chidsey CED (1995) Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. J Am Chem Soc 117:3145–3155

    Article  Google Scholar 

  • Liu YM, Chen BL, Cao F, Chan HLW, Zhao XZ, Yuan JK (2011) One-pot synthesis of three-dimensional silver-embedded porous silicon micronparticles for lithium-ion batteries. J Mater Chem 21(43):17083–17086

    Article  Google Scholar 

  • Lowe RD, Szili EJ, Kirkbride P, Thissen H, Siuzdak G, Voelcker NH (2010) Combined immunocapture and laser desorption/ionization mass spectrometry on porous silicon. Anal Chem 82(10):4201–4208

    Article  Google Scholar 

  • Mattei G, Valentini V (2003) In situ functionalization of porous silicon during the electrochemical formation process in ethanoic hydrofluoric acid solution. J Am Chem Soc 125(32):9608–9609

    Article  Google Scholar 

  • Mattei G, Alieva EV, Petrov JE, Yakovlev VA (2000) Quick oxidation of porous silicon in presence of pyridine vapor. Phys Status Solidi A 182(1):139–143

    Article  Google Scholar 

  • Mescheder U (2004) Porous silicon: technology and applications for micromachining and MEMS. In: Yurish SY, Gomes MTSR (eds) Smart sensors and MEMS. Springer, pp 273–288

    Google Scholar 

  • Meskini O, Abdelghani A, Tlili A, Mgaieth R, Jaffrezic-Renault N, Martelet C (2007) Porous silicon as functionalized material for immunosensor application. Talanta 71(3):1430–1433

    Article  Google Scholar 

  • Mikhael B, Elise B, Xavier M, Sebastian S, Johann M, Laetitia P (2011) New silicon architectures by gold-assisted chemical etching. ACS Appl Mater Interfaces 3(10):3866–3873

    Article  Google Scholar 

  • Morazzani V, Cantin JL, Ortega C, Pajot B, Rahbi R, Rosenbauer M, von Bardeleben HJ, Vazsonyi E (1996) Thermal nitridation of p-type porous silicon in ammonia. Thin Solid Films 276(1–2):32–35

    Article  Google Scholar 

  • Niederhauser TL, Lua YY, Sun Y, Jiang GL, Strossman GS, Pianetta P, Linford MR (2002) Formation of (functionalized) monolayers and simultaneous surface patterning by scribing silicon in the presence of alkyl halides. Chem Mater 14(1):27–29

    Article  Google Scholar 

  • Nieto A, Hou H, Moon SW, Sailor MJ, Freeman WR, Cheng L (2015) Surface engineering of porous silicon microparticles for intravitreal sustained delivery of rapamycin. Invest Ophthalmol Vis Sci 56(2):1070–1080

    Article  Google Scholar 

  • Nijdam AJ, Cheng MMC, Geho DH, Fedele R, Herrmann P, Killian K, Espina V, Petricoin EF, Liotta LA, Ferrari M (2007) Physicochemically modified silicon as a substrate for protein microarrays. Biomaterials 28(3):550–558

    Article  Google Scholar 

  • Ogata YH, Sasano J, Jorne J, Tsuboi T, Harraz FA, Sakka T (2000) Immersion plating of copper on porous silicon in various solutions. Phys Status Solidi A 182(1):71–77

    Article  Google Scholar 

  • Ogata YH, Kobayashi K, Motoyama M (2006) Electrochemical metal deposition on silicon. Curr Opin Solid State Mater Sci 10(3–4):163–172

    Article  Google Scholar 

  • Onclin S, Ravoo BJ, Reinhoudt DN (2005) Engineering silicon oxide surfaces using self-assembled monolayers. Angew Chem Int Ed 44(39):6282–6304

    Article  Google Scholar 

  • Orosco MM, Pacholski C, Miskelly GM, Sailor MJ (2006) Protein-coated porous silicon photonic crystals for amplified optical detection of protease activity. Adv Mater 18:1393–1396

    Article  Google Scholar 

  • Panarin AY, Terekhov SN, Khodasevich IA, Turpin PY (2007) Silver-coated nanoporous silicon as SERS-active substrate for investigation of tetrapyrrolic molecules – art. no. 672828. In: Aktsipetrov OA, Shalaev SV, Gaponenko SV, Zheludev NI (eds) Icono 2007: novel photonics materials; optics and optical diagnostics of nanostructures, SPIE-Int Soc Optical Engineering, Bellingham, vol 6728, pp 72828–72828

    Google Scholar 

  • Pap AE, Kordas K, George TF, Leppavuori S (2004) Thermal oxidation of porous silicon: study on reaction kinetics. J Phys Chem B 108(34):12744–12747

    Article  Google Scholar 

  • Parbukov AN, Beklemyshev VI, Gontar VM, Makhonin II, Gavrilov SA, Bayliss SC (2001) The production of a novel stain-etched porous silicon, metallization of the porous surface and application in hydrocarbon sensors. Mater Sci Eng C 15(1–2):121–123

    Article  Google Scholar 

  • Park JS, Lim SH, Sim SJ, Chae H, Yoon HC, Yang SS, Kim BW (2006) Enhancement of sensitivity in interferometric biosensing by using a new biolinker and prebinding antibody. J Microbiol Biotechnol 16(12):1968–1976

    Google Scholar 

  • Park JS, Kinsella JM, Jandial DD, Howell SB, Sailor MJ (2011) Cisplatin-loaded porous Si microparticles capped by electroless deposition of platinum. Small 7(14):2061–2069

    Article  Google Scholar 

  • Peng KQ, Zhu J (2004) Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution. Electrochim Acta 49(16):2563–2568

    Article  Google Scholar 

  • Petrova-Koch V, Muschik T, Kux A, Meyer BK, Koch F, Lehmann V (1992) Rapid thermal oxidized porous Si- the superior photoluminescent Si. Appl Phys Lett 61(8):943–945

    Article  Google Scholar 

  • Presting H, Konle J, Starkov V, Vyatkin A, Konig U (2004) Porous silicon for micro-sized fuel cell reformer units. Mater Sci Eng B 108(1–2):162–165

    Article  Google Scholar 

  • Prokes SM (1993) Light-emission in thermally oxidized porous silicon – evidence for oxide-related luminescence. Appl Phys Lett 62(25):3244–3246

    Article  Google Scholar 

  • Ray M, Sarkar S, Bandyopadhyay NR, Hossain SM, Pramanick AK (2009) Silicon and silicon oxide core-shell nanoparticles: Structural and photoluminescence characteristics. J Appl Phys 105(7):074301

    Article  Google Scholar 

  • Rossi AM, Wang L, Reipa V, Murphy TE (2007) Porous silicon biosensor for detection of viruses. Biosens Bioelectron 23(5):741–745

    Article  Google Scholar 

  • Ruminski AM, King BH, Salonen J, Snyder JL, Sailor MJ (2010) Porous silicon-based optical microsensors for volatile organic analytes: effect of surface chemistry on stability and specificity. Adv Funct Mater 20:2874–2883

    Article  Google Scholar 

  • Sailor MJ (2012) Porous silicon in practice: preparation, characterization, and applications. Wiley-VCH, Weinheim, p 249

    Google Scholar 

  • Sailor MJ (2014) Chemical reactivity and surface chemistry of porous silicon. In: Canham LT (ed) Handbook of porous silicon. Springer, p 355

    Google Scholar 

  • Sailor MJ, Lee EJ (1997) Surface chemistry of luminescent silicon nanocrystallites. Adv Mater 9(10):783–793

    Article  Google Scholar 

  • Sailor MJ, Park JH (2012) Hybrid nanoparticles for detection and treatment of cancer. Adv Mater 24(28):3779–3802

    Article  Google Scholar 

  • Sakka T, Tsuboi T, Ogata YH, Mabuchi M (2000) Raman scattering from metal-deposited porous silicon. J Porous Mater 7(1–3):397–400

    Article  Google Scholar 

  • Salonen J (2014) Drug delivery with porous silicon. In: Canham LT (ed) Handbook of porous silicon. Springer, Cham, p 909

    Google Scholar 

  • Salonen J, Lehto VP, Laine E (1997) Thermal oxidation of free-standing porous silicon films. Appl Phys Lett 70(5):637–639

    Article  Google Scholar 

  • Salonen J, Lehto VP, Bjorkqvist M, Laine E, Niinisto L (2000) Studies of thermally-carbonized porous silicon surfaces. Phys Status Solidi A 182(1):123–126

    Article  Google Scholar 

  • Salonen J, Laine E, Niinisto L (2002) Thermal carbonization of porous silicon surface by acetylene. J Appl Phys 91(1):456–461

    Article  Google Scholar 

  • Salonen J, Bjorkqvist M, Laine E, Niinisto L (2004) Stabilization of porous silicon surface by thermal decomposition of acetylene. Appl Surf Sci 225(1–4):389–394

    Article  Google Scholar 

  • Salonen J, Laitinen L, Kaukonen AM, Tuura J, Bjorkqvist M, Heikkila T, Vaha-Heikkila K, Hirvonen J, Lehto VP (2005a) Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release 108(2–3):362–374

    Article  Google Scholar 

  • Salonen J, Paski J, Vaha-Heikkila K, Heikkila T, Bjorkqvist M, Lehto VP (2005b) Determination of drug load in porous silicon microparticles by calorimetry. Phys Status Solidi A 202(8):1629–1633

    Article  Google Scholar 

  • Salonen J, Tuura J, Bjorkqvist M, Lehto VP (2006) Sub-ppm trace moisture detection with a simple thermally carbonized porous silicon sensor. Sens Actuator B Chem 114(1):423–426

    Article  Google Scholar 

  • Salonen J, Kaukonen AM, Hirvonen J, Lehto VP (2008) Mesoporous silicon in drug delivery applications. J Pharm Sci 97(2):632–653

    Article  Google Scholar 

  • Sasano J, Murota R, Yamauchi Y, Sakka T, Ogata YH (2003a) Re-dissolution of copper deposited onto porous silicon in immersion plating. J Electroanal Chem 559:125–130

    Article  Google Scholar 

  • Sasano J, Schmuki P, Sakka T, Ogata YH (2003b) Laser-assisted nickel deposition onto porous silicon. Phys Status Solidi A 197(1):46–50

    Article  Google Scholar 

  • Sasano J, Schmuki P, Sakka T, Ogata YH (2004) Laser-assisted maskless Cu patterning on porous silicon. Electrochem Solid-State Lett 7(5):G98–G101

    Article  Google Scholar 

  • Sasano J, Schmuki P, Sakka T, Ogata YH (2005) Maskless patterning of various kinds of metals onto porous silicon. Phys Status Solidi A 202(8):1571–1575

    Article  Google Scholar 

  • Sayed SY, Wang F, Mallac M, Meldrum A, Egerton RF, Buriak JM (2009) Heteroepitaxial growth of gold nanostructures on silicon by galvanic displacement. ACS Nano 3(9):2809–2817

    Article  Google Scholar 

  • Schwartz MP, Cunin F, Cheung RW, Sailor MJ (2005) Chemical modification of silicon surfaces for biological applications. Phys Status Solidi A 202(8):1380–1384

    Article  Google Scholar 

  • Sciacca B, Alvarez SD, Geobaldo F, Sailor MJ (2010) Bioconjugate functionalization of thermally carbonized porous silicon using a radical coupling reaction. Dalton Trans 39:10847–10853

    Article  Google Scholar 

  • Secret E, Smith K, Dubljevic V, Moore E, Macardle P, Delalat B, Rogers ML, Johns TG, Durand JO, Cunin F, Voelcker NH (2013) Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs. Adv Healthc Mater 2(5):718–727

    Article  Google Scholar 

  • Serda RE, Mack A, Pulikkathara M, Zaske AM, Chiappini C, Fakhoury JR, Webb D, Godin B, Conyers JL, Liu XW, Bankson JA, Ferrari M (2010) Cellular association and assembly of a multistage delivery system. Small 6(12):1329–1340

    Article  Google Scholar 

  • Sheppard NF, Mears DJ, Straka SW (1996) Micromachined silicon structures for modelling polymer matrix controlled release systems. J Control Release 42:15–24

    Article  Google Scholar 

  • Sieval AB, Demirel AL, Nissink JWM, Linford MR, van der Maas JH, de Jeu WH, Zuilhof H, Sudholter EJR (1998) Highly stable Si-C linked functionalized monolayers on the silicon (100) surface. Langmuir 14(7):1759–1768

    Article  Google Scholar 

  • Sieval AB, Linke R, Zuilhof H, Sudholter EJR (2000) High-quality alkyl monolayers on silicon surfaces. Adv Mater 12(19):1457–1460

    Article  Google Scholar 

  • Simons AJ, Cox TI, Loni A, Canham LT, Blacker R (1996) In: Investigation of the mechanisms controlling the stability of a porous silicon electroluminescent device, E-MRS 96 spring meeting, symposium L: new developments in porous silicon: relation with other nanostructures porous materials, Elsevier, Strasbourg, 1996, pp 281–284

    Google Scholar 

  • Song JH, Sailor MJ (1998a) Dimethyl sulfoxide as a mild oxidizing agent for porous silicon and its effect on photoluminescence. Inorg Chem 37(13):3355–3360

    Article  Google Scholar 

  • Song JH, Sailor MJ (1998b) Functionalization of nanocrystalline porous silicon surfaces with aryllithium reagents: formation of silicon-carbon bonds by cleavage of silicon-silicon bonds. J Am Chem Soc 120(10):2376–2381

    Article  Google Scholar 

  • Song JH, Sailor MJ (1999) Chemical modification of crystalline porous silicon surfaces. Comments Inorg Chem 21(1–3):69–84

    Article  Google Scholar 

  • Starodub NF, Fedorenko LL, Starodub VM, Dikij SP, Svechnikov SV (1996) Use of the silicon crystals photoluminescence to control immunocomplex formation. Sensors Actuators B Chem 35(1–3):44–47

    Article  Google Scholar 

  • Stefano LD, Oliviero G, Amato J, Borbone N, Piccialli G, Mayol L, Rendina I, Terracciano M, Rea I (2013) Aminosilane functionalizations of mesoporous oxidized silicon for oligonucleotide synthesis and detection. J R Soc Interface 10:20130160

    Article  Google Scholar 

  • Steiner P, Kozlowski F, Lang W (1995a) Electroluminescence from porous Si after metal depostion into the pores. Thin Solid Films 255:49–51

    Article  Google Scholar 

  • Steiner P, Kozlowski F, Lang W (1995b) In: Depositing metals into porous Si- the impact on luminescence, Materials Research Society symposium proceedings, Materials Research Society, Boston, 1995, pp 665–670

    Google Scholar 

  • Stewart MP, Buriak JM (1998) Photopatterned hydrosilylation on porous silicon. Angew Chem Int Ed Eng 37(23):3257–3260

    Article  Google Scholar 

  • Stewart MP, Buriak JM (2001) Exciton-mediated hydrosilylation on photoluminescent nanocrystalline silicon. J Am Chem Soc 123:7821–7830

    Article  Google Scholar 

  • Sweetman MJ, McInnes SJP, Vasani RB, Guinan T, Blencowe A, Voelcker NH (2015) Rapid, metal-free hydrosilanisation chemistry for porous silicon surface modification. Chem Commun 51:10640–10643

    Article  Google Scholar 

  • Sweryda-Krawiek B, Chandler-Henderson RR, Coffer JL, Rho YG, Pinizzotto RF (1996) A comparison of porous silicon and silicon nanocrystallite photoluminescence quenching with amines. J Phys Chem 100:13776–13780

    Article  Google Scholar 

  • Tang L, Saharay A, Fleischer W, Hartman PS, Loni A, Canham LT, Coffer JL (2013) Sustained antifungal activity from a ketoconazole-loaded nanostructured mesoporous silicon platform. SILICON 5(3):213–217

    Article  Google Scholar 

  • Terry J, Linford MR, Wigren C, Cao R, Pianetta P, Chidsey CED (1997) Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction. Appl Phys Lett 71(8):1056–1058

    Article  Google Scholar 

  • Terry J, Linford MR, Wigren C, Cao RY, Pianetta P, Chidsey CED (1999) Alkyl-terminated Si(111) surfaces: a high-resolution, core level photoelectron spectroscopy study. J Appl Phys 85(1):213–221

    Article  Google Scholar 

  • Thompson CM, Nieuwoudt M, Ruminski AM, Sailor MJ, Miskelly GM (2010) Electrochemical preparation of pore wall modification gradients across thin porous silicon layers. Langmuir 26(10):7598–7603

    Article  Google Scholar 

  • Tinsley-Bown AM, Canham LT, Hollings M, Anderson MH, Reeves CL, Cox TI, Nicklin S, Squirrell DJ, Perkins E, Hutchinson A, Sailor MJ, Wun A (2000) Tuning the pore size and surface chemistry of porous silicon for immunoassays. Phys Status Solidi A 182(1):547–553

    Article  Google Scholar 

  • Tsang CK, Kelly TL, Sailor MJ, Li YY (2012) Highly stable porous silicon carbon composites as label-free optical biosensors. ACS Nano 6(12):10546–10554

    Article  Google Scholar 

  • Tsuboi T, Sakka T, Ogata YH (1998) Metal deposition into a porous silicon layer by immersion plating: influence of halogen ions. J Appl Phys 83(8):4501–4506

    Article  Google Scholar 

  • Tzur-Balter A, Rubinski A, Segal E (2013a) Designing porous silicon-based microparticles as carriers for controlled delivery of mitoxantrone dihydrochloride. J Mater Res 28(2):231–239

    Article  Google Scholar 

  • Tzur-Balter A, Gilert A, Massad-Ivanir N, Segal E (2013b) Engineering porous silicon nanostructures as tunable carriers for mitoxantrone dihydrochloride. Acta Biomater 9(4):6208–6217

    Article  Google Scholar 

  • Velleman L, Shearer CJ, Ellis AV, Losic D, Voelcker NH, Shapter JG (2010) Fabrication of self-supporting porous silicon membranes and tuning transport properties by surface functionalization. Nanoscale 2(9):1756–1761

    Article  Google Scholar 

  • Waltenburg HN, Yates JT (1995) Surface chemistry of silicon. Chem Rev 95(5):1589–1673

    Article  Google Scholar 

  • Wu CC, Sailor MJ (2013) Selective functionalization of the internal and the external surfaces of mesoporous silicon by liquid masking. ACS Nano 7(4):3158–3167

    Article  Google Scholar 

  • Wu EC, Park J-H, Park J, Segal E, Cunin F, Sailor MJ (2008) Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. ACS Nano 2(11):2401–2409

    Article  Google Scholar 

  • Wu C-C, Alvarez SD, Rang CU, Chao L, Sailor MJ (2009) Label-free optical detection of bacteria on a 1-D photonic crystal of porous silicon. Proc SPIE Int Soc Opt Eng, 7167, 71670Z-71670Z-10

    Google Scholar 

  • Wu EC, Andrew JS, Buyanin A, Kinsella JM, Sailor MJ (2011a) Suitability of porous silicon microparticles for the long-term delivery of redox-active therapeutics. Chem Commun 47:5699–5701

    Article  Google Scholar 

  • Wu EC, Andrew JS, Cheng L, Freeman WR, Pearson L, Sailor MJ (2011b) Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles. Biomaterials 32:1957–1966

    Article  Google Scholar 

  • Yang YJ, Meng GW (2010) Ag dendritic nanostructures for rapid detection of polychlorinated biphenyls based on surface-enhanced Raman scattering effect. J Appl Phys 107(4):044315

    Article  Google Scholar 

  • Zangooie S, Bjorklund R, Arwin H (1998) Protein adsorption in thermally oxidized porous silicon layers. Thin Solid Films 313–314(1–2):825–830

    Article  Google Scholar 

  • Zhang XG (2004) Morphology and formation mechanisms of porous silicon. J Electrochem Soc 151(1):C69–C80

    Article  Google Scholar 

  • Zilony N, Tzur-Balter A, Segal E, Shefi O (2013) Bombarding cancer: biolistic delivery of therapeutics using porous Si carriers. Sci Report 3:2499

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Sailor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Sailor, M.J. (2017). Chemical Reactivity and Surface Chemistry of Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_37-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_37-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04508-5

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Chemical Reactivity and Surface Chemistry of Porous Silicon
    Published:
    23 August 2017

    DOI: https://doi.org/10.1007/978-3-319-04508-5_37-2

  2. Original

    Chemical Reactivity and Surface Chemistry of Porous Silicon
    Published:
    21 May 2014

    DOI: https://doi.org/10.1007/978-3-319-04508-5_37-1