Skip to main content

Porous Silicon Polymer Composites

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Porous Silicon
  • 239 Accesses

Abstract

The emerging cwwwwwlass of nanocomposites that integrate polymers with nanostructured porous silicon displays unparalleled properties that spring up from characteristics of each building block and their interactions. Recent research reveals their enormous potential as extremely promising materials for chemical sensors, optoelectronic devices, photovoltaics, energy storage, and numerous biomedical applications such as smart drug delivery systems, lab-on-chip devices, and tissue engineering scaffolds. In this updated chapter, these nanomaterials and their applications are discussed with emphasis on basic design guidelines and fabrication strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alcoutlabi MB, Gregory M (2005) Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter 17(15):R461–R524

    Article  Google Scholar 

  • Alvarez SD (2009) The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors. Biomaterials 30(1):26–34

    Article  Google Scholar 

  • Araújo F (2014) The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials 35(33):9199–9207

    Article  Google Scholar 

  • Badeva D (2012) Embedding and electropolymerization of terthiophene derivatives in porous n-type silicon. Mater Chem Phys 133(2–3):592–598

    Article  Google Scholar 

  • Beavers KR et al (2016) Porous silicon and polymer nanocomposites for delivery of peptide nucleic acids as anti-microRNA therapies. Adv Mater 28(36):7984–7992

    Article  Google Scholar 

  • Belhousse S (2010) Electrochemical grafting of poly(3-hexylthiophene) on porous silicon for gas sensing. Surf Interface Anal 42(6–7):1041–1045

    Article  Google Scholar 

  • Betty CA (2009) Highly sensitive capacitive immunosensor based on porous silicon–polyaniline structure: bias dependence on specificity. Biosens Bioelectron 25(2):338–343

    Article  Google Scholar 

  • Bonanno LML, Delouise A (2010) Integration of a chemical-responsive hydrogel into a porous silicon photonic sensor for visual colorimetric readout. Adv Funct Mater 20(4):573–578

    Article  Google Scholar 

  • Bonanno L, Segal ME (2011) Nanostructured porous silicon/polymer-based hybrids: from biosensing to drug delivery. Nanomedicine 6(10):1755–1770

    Article  Google Scholar 

  • Braunecker W, Matyjaszewski AK (2007) Controlled/living radical polymerization: Features, developments, and perspectives. Prog Polym Sci 32(1):93–146

    Article  Google Scholar 

  • Brodoceanu D (2015) Dense arrays of uniform submicron pores in silicon and their applications. ACS Appl Mater Interfaces 7(2):1160–1169

    Article  Google Scholar 

  • Buriak JM (2002) Organometallic chemistry on silicon and germanium surfaces. Chem Rev 102(5):1271–1308

    Article  Google Scholar 

  • Chen L (2009) Gel-pad microarrays templated by patterned porous silicon for dual-mode detection of proteins. Lab Chip 9(6):756–760

    Article  Google Scholar 

  • Chiboub N (2010) Chemical and electrochemical grafting of polyaniline on aniline-terminated porous silicon. Surf Interface Anal 42(6–7):1342–1346

    Article  Google Scholar 

  • Ciampi S (2008) Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters. Langmuir 24(11):5888–5892

    Article  Google Scholar 

  • Coffer JL (2005) Porous silicon-based scaffolds for tissue engineering and other biomedical applications. Phys Status Solidi (A) Appl Mater Sci 202(8):1451–1455

    Article  Google Scholar 

  • De Stefano L (2009) Hybrid polymer-porous silicon photonic crystals for optical sensing. J Appl Phys 106(2):023109

    Google Scholar 

  • DeLouise LA (2005) Hydrogel-supported optical-microcavity sensors. Adv Mater 17(18):2199–2203

    Article  Google Scholar 

  • Dian J (2013) Electrochemical fabrication and characterization of porous silicon/polypyrrole composites and chemical sensing of organic vapors. Int J Electrochem Sci 8(2):1559–1572

    Google Scholar 

  • El-Zohary SE (2013) Electrical characterization of nanopolyaniline/porous silicon heterojunction at high temperatures. J Nanomater 2013:568175, p.8

    Google Scholar 

  • Fan D (2009) Location-dependent controlled release kinetics of model hydrophobic compounds from mesoporous silicon/biopolymer composite fibers. Phys Status Solidi (a) 206(6):1322–1325

    Article  Google Scholar 

  • Fan D (2011) The role of nanostructured mesoporous silicon in discriminating in vitro calcification for electrospun composite tissue engineering scaffolds. Nanoscale 3(2):354–361

    Article  Google Scholar 

  • Fukami K (2009) Multistep filling of porous silicon with conductive polymer by electropolymerization. Phys Status Solidi (a) 206(6):1259–1263

    Article  Google Scholar 

  • Gao L (2008) Label-free colorimetric detection of gelatinases on nanoporous silicon photonic films. Anal Chem 80(5):1468–1473

    Article  Google Scholar 

  • Ge M (2012) Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett 12(5):2318–2323

    Article  Google Scholar 

  • Godin B (2011) Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc Chem Res 44(10):979–989

    Article  Google Scholar 

  • Gongalsky MB (2012) Enhanced photoluminescence of porous silicon nanoparticles coated by bioresorbable polymers. Nanoscale Res Lett 7(1):446–446

    Article  Google Scholar 

  • Gorman CB (2008) Effect of substrate geometry on polymer molecular weight and polydispersity during surface-initiated polymerization. Macromolecules 41(13):4856–4865

    Article  Google Scholar 

  • Greiner AJ, Wendorff H (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46(30):5670–5703

    Article  Google Scholar 

  • Hakshur K (2016) High surface area thermoplastic polymer films fabricated by mechanical tearing using nano-porous silicon. Microelectron Eng 150:71–73

    Article  Google Scholar 

  • Halliday DP (1996) Electroluminescence from porous silicon using a conducting polyaniline contact. Thin Solid Films 276(1–2):299–302

    Article  Google Scholar 

  • Harraz FA (2008) Hybrid nanostructure of polypyrrole and porous silicon prepared by galvanostatic technique. Electrochim Acta 53(10):3734–3740

    Article  Google Scholar 

  • Henstock JR (2014) Porous silicon confers bioactivity to polycaprolactone composites in vitro. J Mater Sci Mater Med 25(4):1087–1097

    Article  Google Scholar 

  • Hernandez-Montelongo J (2014) Porous silicon-cyclodextrin based polymer composites for drug delivery applications. Carbohydr Polym 110:238–252

    Article  Google Scholar 

  • Holthausen D (2012) Polymerization-amplified optical DNA detection on porous silicon templates. ACS Macro Lett 1(7):919–921

    Article  Google Scholar 

  • Irani YD (2015) A novel pressed porous silicon-polycaprolactone composite as a dual-purpose implant for the delivery of cells and drugs to the eye. Exp Eye Res 139:123–131

    Article  Google Scholar 

  • Jarvis KL (2012) Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications. Adv Colloid Interf Sci 175:25–38

    Article  Google Scholar 

  • Jin J-H (2009) Integrated urea sensor module based on poly(3-methylthiophene)-modified p-type porous silicon substrate. J Porous Mater 16(4):379–386

    Article  Google Scholar 

  • Kashanian S (2010) Evaluation of mesoporous silicon/polycaprolactone composites as ophthalmic implants. Acta Biomater 6(9):3566–3572

    Article  Google Scholar 

  • Keten S (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of [beta]-sheet crystals in silk. Nat Mater 9(4):359–367

    Article  Google Scholar 

  • Kilian KA (2009a) The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. Chem Commun (Camb) (6):630–640

    Google Scholar 

  • Kilian KA (2009b) Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals. Nano Lett 9(5):2021–2025

    Article  Google Scholar 

  • Kim J (2008) Photonic polymer replicas from DBR PSi. Colloids Surf A Physicochem Eng Asp 313–314:484–487

    Article  Google Scholar 

  • Koh Y (2008) DBR PSi/PMMA composite materials for smart patch application. Colloids Surf A Physicochem Eng Asp 313–314:328–331

    Article  Google Scholar 

  • Krepker M, Segal AE (2013) Dual-functionalized porous Si/hydrogel hybrid for label-free biosensing of organophosphorus compounds. Anal Chem 85(15):7353–7360

    Article  Google Scholar 

  • Kruk M (2008) Grafting monodisperse polymer chains from concave surfaces of ordered mesoporous silicas. Macromolecules 41(22):8584–8591

    Article  Google Scholar 

  • Levitsky IA (2007) Fluorescent polymer-porous silicon microcavity devices for explosive detection. Appl Phys Lett 90(4):041904

    Google Scholar 

  • Li YY (2003) Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299(5615):2045–2047

    Article  Google Scholar 

  • Li YY (2005) Porous-silicon/polymer nanocomposite photonic crystals formed by microdroplet patterning. Adv Mater 17(10):1249–1251

    Article  Google Scholar 

  • Liang L (2000) Thermosensitive poly(N-isopropylacrylamide)-clay nanocomposites with enhanced temperature response. Langmuir 16(25):9895–9899

    Article  Google Scholar 

  • Massad-Ivanir N (2010) Construction and characterization of porous SiO2/hydrogel hybrids as optical biosensors for rapid detection of bacteria. Adv Funct Mater 20(14):2269–2277

    Article  Google Scholar 

  • Massad-Ivanir N (2012a) Hydrogels synthesized in electrochemically machined porous Si hosts: effect of nano-scale confinement on polymer properties. Soft Matter 8(35):9166–9176

    Article  Google Scholar 

  • Massad-Ivanir N (2012b) in Nano-Biotechnology for Biomedical and Diagnostic Research, ed. by E. Zahavi, A. Ordentlich, S. Itzhaki, A. Shafferman. Advances in Experimental Medicine and Biology, vol 733 (Springer Netherlands, 2012), p.37–45

    Google Scholar 

  • McInnes S (2006) Characterisation of porous silicon/poly(l-lactide) composites prepared using surface initiated ring opening polymerisation, Brisbane

    Google Scholar 

  • McInnes SJ (2009) New biodegradable materials produced by ring opening polymerisation of poly(l-lactide) on porous silicon substrates. J Colloid Interface Sci 332(2):336–344

    Article  Google Scholar 

  • McInnes SJ (2012a) Controlled drug delivery from composites of nanostructured porous silicon and poly(l-lactide). Nanomedicine (London, England) 7(7):995–1016

    Article  Google Scholar 

  • McInnes SJP (2012b) Combination of iCVD and porous silicon for the development of a controlled drug delivery system. ACS Appl Mater Interfaces 4(7):3566–3574

    Article  Google Scholar 

  • McInnes SJP (2016a) “Thunderstruck”: plasma-polymer-coated porous silicon microparticles as a controlled drug delivery system. ACS Appl Mater Interfaces 8(7):4467–4476

    Article  Google Scholar 

  • McInnes SJP (2016b) Fabrication and characterization of a porous silicon drug delivery system with an initiated chemical vapor deposition temperature-responsive coating. Langmuir 32(1):301–308

    Article  Google Scholar 

  • Minko S (2008) Grafting on solid surfaces: “grafting to” and “grafting from” methods. In: Stamm M (ed) Polymer surfaces and interfaces. Springer, Berlin, pp 215–234

    Chapter  Google Scholar 

  • Mishra JK (2008) Photoluminescence studies on porous silicon/polymer heterostructure. J Lumin 128(7):1169–1174

    Article  Google Scholar 

  • Mukherjee P (2006) Biorelevant mesoporous silicon /polymer composites: directed assembly, disassembly, and controlled release. Biomed Microdevices 8(1):9–15

    Article  Google Scholar 

  • Muller S et al (2016) Temperature controlled antimicrobial release from poly (diethylene glycol methylether methacrylate) functionalized bottleneck structured porous silicon for the inhibition of bacterial growth. Macromol Chem Phys 217(20):2243–2251

    Article  Google Scholar 

  • Nahor A (2011) Hybrid structures of porous silicon and conjugated polymers for photovoltaic applications. Phys Status Solidi (C) Curr Top Solid State Phys 8(6):1908–1912

    Article  Google Scholar 

  • Näkki S (2015) Improved stability and biocompatibility of nanostructured silicon drug carrier for intravenous administration. Acta Biomater 13:207–215

    Article  Google Scholar 

  • Nguyen T-P (2003b) Optical properties of porous silicon/poly(p phenylene vinylene) devices. Phys E: Low-dim Syst Nanostruct 17:664–665

    Article  Google Scholar 

  • Nguyen TP (2003a) Filling porous silicon pores with poly(p phenylene vinylene). Phys Status Solidi (a) 197(1):232–235

    Article  Google Scholar 

  • Orosco MM (2006) Protein-coated porous-silicon photonic crystals for amplified optical detection of protease activity. Adv Mater 18(11):1393–1396

    Article  Google Scholar 

  • Pace S (2012) Temperature sensors to monitor wound healing. In: Porous Semiconductors Science and Technology Malaga, Institute for Materials Science, Universiity of Valencia, Paterna, Valencia

    Google Scholar 

  • Pace S (2013) Study of the optical properties of a thermoresponsive polymer grafted onto porous silicon scaffolds. New J Chem 37(1):228–235

    Article  Google Scholar 

  • Pang-Leen OI, Levitsky A (2011) Fluorescent gas sensors based on nanoporous optical resonators (microcavities) infiltrated with sensory emissive polymers. IEEE Sensors J 11(11):2947–2951

    Article  Google Scholar 

  • Park JS (2007) Porous silicon-based polymer replicas formed by bead patterning. Phys Status Solidi A-Appl Mater Sci 204(5):1383–1387

    Article  Google Scholar 

  • Perelman LA (2010) Preparation and characterization of a pH- and thermally responsive poly(N-isopropylacrylamide-co-acrylic acid)/porous SiO2 hybrid. Adv Funct Mater 20(5):826–833

    Article  Google Scholar 

  • Schwartz MP (2006) The smart petri dish: a nanostructured photonic crystal for real-time monitoring of living cells. Langmuir 22(16):7084–7090

    Article  Google Scholar 

  • Sciacca B (2011) Chitosan-functionalized porous silicon optical transducer for the detection of carboxylic acid-containing drugs in water. J Mater Chem 21(7):2294–2302

    Article  Google Scholar 

  • Segal E (2007) Confinement of thermoresponsive hydrogels in nanostructured porous silicon dioxide templates. Adv Funct Mater 17(7):1153–1162

    Article  Google Scholar 

  • Segal E (2009) Grafting stimuli-responsive polymer brushes to freshly-etched porous silicon. Phys Status Solidi C 6(7):1717–1720

    Article  Google Scholar 

  • Shahbazi M-A (2014) Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering. Biomaterials 35(26):7488–7500

    Article  Google Scholar 

  • Shang Y (2011) Optical ammonia gas sensor based on a porous silicon rugate filter coated with polymer-supported dye. Anal Chim Acta 685(1):58–64

    Article  Google Scholar 

  • Shrestha N (2015) Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: a controlled dual protein-drug delivery system. Biomaterials 68:9–20

    Article  Google Scholar 

  • Soeriyadi AH (2014) Optimising the enzyme response of a porous silicon photonic crystal via the modular design of enzyme sensitive polymers. Polym Chem 5(7):2333–2333

    Article  Google Scholar 

  • Sun T, Tsang WM, Park WT (2016) Microfabricated porous silicon backbone for stable neural interfaces. Mater Lett 165:119–122

    Article  Google Scholar 

  • Svrcek V (2009) Top-down prepared silicon nanocrystals and a conjugated polymer-based bulk heterojunction: optoelectronic and photovoltaic applications. Acta Mater 57(20):5986–5995

    Article  Google Scholar 

  • Sychev FY (2009) Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals. Appl Phys Lett 95(16):163301–163303

    Article  Google Scholar 

  • Uemura T (2010) Unveiling thermal transitions of polymers in subnanometre pores. Nat Commun 1:8

    Google Scholar 

  • Urbach B (2007a) Composite structures of polyaniline and mesoporous silicon: electrochemistry, optical and transport properties. J Phys Chem C 111(44):16586–16592

    Article  Google Scholar 

  • Urbach B (2007b) Composite structures of porous silicon and polyaniline for optoelectronic applications. Phys Status Solidi C 4(6):1951–1955

    Article  Google Scholar 

  • Vasani RB (2011) Stimulus-responsiveness and drug release from porous silicon films ATRP-grafted with poly(N-isopropylacrylamide). Langmuir 27(12):7843–7853

    Article  Google Scholar 

  • Wang C (2012) DNA microarray fabricated on poly(acrylic acid) brushes-coated porous silicon by in situ rolling circle amplification. Analyst 137(19):4539–4545

    Article  Google Scholar 

  • Wang J (2016) Thermolytic grafting of polystyrene to porous silicon. Chem Mater 28(1):79–89

    Article  Google Scholar 

  • Whitehead MA (2008) High-porosity poly(epsilon-caprolactone)/mesoporous silicon scaffolds: calcium phosphate deposition and biological response to bone precursor cells. Tissue Eng A 14(1):195–206

    Article  Google Scholar 

  • Wu JM, Sailor J (2009) Chitosan hydrogel-capped porous SiO2 as a pH responsive nano-valve for triggered release of insulin. Adv Funct Mater 19(5):733–741

    Article  Google Scholar 

  • Xu D (2004) Functionalization of hydrogen-terminated silicon via surface-initiated atom-transfer radical polymerization and derivatization of the polymer brushes. J Colloid Interface Sci 279(1):78–87

    Article  Google Scholar 

  • Xu W (2015) Smart porous silicon nanoparticles with polymeric coatings for sequential combination therapy. Mol Pharm 12(11):4038–4047

    Article  Google Scholar 

  • Yang SHI, Choi S (2010) Thickness control of biomimetic silica thin films: grafting density of poly(2-(dimethylamino)ethyl methacrylate) templates. Bull Kor Chem Soc 31(3):753–756

    Article  Google Scholar 

  • Yoon MS (2003) Covalent crosslinking of 1-D photonic crystals of microporous Si by hydrosilylation and ring-opening metathesis polymerization. Chem Commun (Camb) (6):680–681

    Google Scholar 

  • Zahavy E (2016) Nano biotechnology for biomedical and diagnostic research, vol 733. Springer, Dordrecht, pp 37–45

    Google Scholar 

  • Zdyrko B (2006) Macromolecular anchoring layers for polymer grafting: comparative study. Polymer 47(1):272–279

    Article  Google Scholar 

  • Zhang H (2014) Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix. Adv Mater 26(26):4497–4503

    Article  Google Scholar 

  • Zheng H (2016) Porous silicon@polythiophene core-shell nanospheres for lithium-ion batteries. Part Part Syst Charact 33(2):75–81

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksym A. Krepker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Krepker, M.A., Segal, E. (2018). Porous Silicon Polymer Composites. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_18-4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_18-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04508-5

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Porous Silicon Polymer Composites
    Published:
    07 December 2017

    DOI: https://doi.org/10.1007/978-3-319-04508-5_18-4

  2. Porous Silicon-Polymer Composites
    Published:
    25 January 2017

    DOI: https://doi.org/10.1007/978-3-319-04508-5_18-3

  3. Polymer: Porous Silicon Composites
    Published:
    06 September 2014

    DOI: https://doi.org/10.1007/978-3-319-04508-5_18-2

  4. Original

    Published:
    03 May 2014

    DOI: https://doi.org/10.1007/978-3-319-04508-5_18-1