Skip to main content

Biomolecule Attachment to Porous Silicon

  • Living reference work entry
  • First Online:
Handbook of Porous Silicon
  • 309 Accesses

Abstract

Porous silicon is utilized in a variety of interdisciplinary and applied fields such as medical diagnostics, tissue engineering, vaccine development, drug delivery, and biomedical imaging and sensing. As a result, the interest in the chemistry of porous silicon is focused on the generation of functional nanostructures to graft molecules such as drugs, proteins, targeting agents, or biological receptor molecules to these porous surfaces. For the immobilization of such biomolecules to porous silicon, it is important to have a stable base layer which can be achieved by a number of strategies including oxidation, polymer modification, and a variety of different self-assembled monolayer systems. Once the base layer is formed that present moieties on their distal end compatible with bioconjugation chemistry, various biomolecules can then be added to the construct. The first part of this review discusses such strategies to attach the biomolecule to the modified porous silicon surface along with the discussion of the key components of the interfacial design. The bioconjugation strategy involves a linker molecule that connects the biologically active species to the porous surface. To attach a biological species to an immobilized linker, an activating step is usually employed to allow formation of a covalent bond between the species and the linker. The second part of the chapter covers the applications of biomolecule attachment using porous silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allongue P, Costa-Kieling V, Gerischer H (1993) Etching of silicon in naoh solutions: I. In situ scanning tunneling microscopic investigation of n-si(111). J Electrochem Soc 140(4):1009–1018. doi:10.1149/1.2056189

    Article  Google Scholar 

  • Alvarez S, Derfus A, Schwartz M et al (2009) The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors. Biomaterials 30(1):26–34

    Article  Google Scholar 

  • Alves WA, Fiorito PA, Froyer G et al (2008) Immobilization of catalysts of biological interest on porous oxidized silicon surfaces. J Nanosci Nanotechnol 8(7):3570–3576

    Article  Google Scholar 

  • Anderson SHC, Elliott H, Wallis DJ et al (2003) Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys Status Solidi A 197(2):331–335. doi:10.1002/pssa.200306519

    Article  Google Scholar 

  • Angelescu A, Kleps I, Mihaela M et al (2003) Porous silicon matrix for applications in biology. Rev Adv Mater Sci 5:440–449

    Google Scholar 

  • Anglin EJ, Schwartz MP, Ng VP et al (2004) Enginering the chemistry and nanostructure of porous silicon fabry-perot films for loading and release of a steroid. Langmuir 20(25):11264–11269

    Article  Google Scholar 

  • Archer M, Christophersen M, Fauchet PM (2004) Macroporous silicon electrical sensor for DNA hybridization detection. Biomed Microdevices 6(3):203–211

    Article  Google Scholar 

  • Bayliss S, Buckberry L, Harris P et al (1997a) Nanostructured semiconductors: Compatibility with biomaterials. Thin Solid Films 297(1-2):308–310

    Article  Google Scholar 

  • Bayliss SC, Harris PJ, Buckberry LD et al (1997b) Phosphate and cell growth on nanostructured semiconductors. J Mater Sci Lett 16:737–740

    Article  Google Scholar 

  • Bayliss SC, Buckberry LD, Fletcher I et al (1999a) The culture of neurons on silicon. Sensors Actuators A Phys A74(1–3):139–142

    Article  Google Scholar 

  • Bayliss SC, Heald R, Fletcher DI et al (1999b) The culture of mammalian cells on nanostructured silicon. Adv Mater (Weinheim, Ger) 11:318–321. doi:10.1002/(sici)1521-4095(199903)11:4<318::aid-adma318>3.0.co;2-z

    Article  Google Scholar 

  • Bayliss SC, Buckberry LD, Harris PJ et al (2000) Nature of the silicon-animal cell interface. J Porous Mater 7(1/2/3):191–195

    Article  Google Scholar 

  • Bellet D, Lamagnère P, Vincent A et al (1996) Nanoindentation investigation of the young’s modulus of porous silicon. J Appl Phys 80(7):3772–3776. doi:10.1063/1.363305

    Article  Google Scholar 

  • Ben-Tabou de Leon S, Sa’ar A, Oren R et al (2004) Neurons culturing and biophotonic sensing using porous silicon. Appl Phys Lett 84(22):4361–4363

    Article  Google Scholar 

  • Böcking T, Kilian KA, Hanley T et al (2005) Formation of tetra(ethylene oxide) terminated si-c linked monolayers and their derivatization with glycine: an example of a generic strategy for the immobilization of biomolecules on silicon. Langmuir 21(23):10522–10529

    Article  Google Scholar 

  • Böcking T, Kilian KA, Gaus K et al (2008) Modifying porous silicon with self-assembled monolayers for biomedical applications: The influence of surface coverage on stability and biomolecule coupling. Adv Funct Mater 18(23):3827–3833. doi:10.1002/adfm.200800640

    Article  Google Scholar 

  • Bonanno LM, DeLouise LA (2007) Steric crowding effects on target detection in an affinity biosensor. Langmuir 23:5817–5823

    Article  Google Scholar 

  • Borini S, Rossi AM, Boarino L et al (2003) Patterning of porous silicon by electron-beam lithography. J Electrochem Soc 150(5):G311–G313. doi:10.1149/1.1564109

    Article  Google Scholar 

  • Boukherroub R, Morin S, Wayner D et al (2000) Thermal route for chemical modification and photoluminescence stabilization of porous silicon. Phys Status Solidi (a) 182(1):117–121

    Article  Google Scholar 

  • Boukherroub R, Morin S, Wayner DDM et al (2001) Ideal passivation of luminescent porous silicon by thermal, noncatalytic reaction with alkenes and aldehydes. Chem Mater 13(6):2002–2011

    Article  Google Scholar 

  • Boukherroub R, Wayner DDM, Lockwood DJ (2002a) Photoluminescence stabilization of anodically-oxidized porous silicon layers by chemical functionalization. Appl Phys Lett 81(4):601–603

    Article  Google Scholar 

  • Boukherroub R, Wojtyk JTC, Wayner DDM et al (2002b) Thermal hydrosilylation of undecylenic acid with porous silicon. J Electrochem Soc 149(2):H59–H63

    Article  Google Scholar 

  • Boukherroub R, Petit A, Loupy A et al (2003) Microwave-assisted chemical functionalization of hydrogen-terminated porous silicon surfaces. J Phys Chem B 107(48):13459–13462

    Article  Google Scholar 

  • Buriak JM (1999a) Organometallic chemistry on silicon surfaces: Formation of functional monolayers bound through si–c bonds. Chem Commun 12:1051–1060

    Article  Google Scholar 

  • Buriak JM (1999b) Silicon-carbon bonds on porous silicon surfaces. Adv Mater 11(3):265–267

    Article  Google Scholar 

  • Buriak JM (2002) Organometallic chemistry on silicon and germanium surfaces. Chem Rev 102(5):1271–1308

    Article  Google Scholar 

  • Buriak JM, Allen MJ (1998) Lewis acid mediated functionalization of porous silicon with substituted alkenes and alkynes. J Am Chem Soc 120(6):1339–1340

    Article  Google Scholar 

  • Canham LT (1995) Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater 7(12):1033–1037

    Article  Google Scholar 

  • Canham L (1997) Properties of porous silicon. Institution of Engineering and Technology, London, pp. 1–29

    Google Scholar 

  • Canham LT, Reeves CL, Newey JP et al (1999) Derivatized mesoporous silicon with dramatically improved stability in simulated human blood plasma. Adv Mater 11(18):1505–1507

    Article  Google Scholar 

  • Canham LT, Stewart MP, Buriak JM et al (2000) Derivatized porous silicon mirrors: Implantable optical components with slow resorbability. Phys Status Solidi A: Appl Res 182(1):521–525

    Article  Google Scholar 

  • Carlisle EM (1972) Silicon: an essential element for the chick. Science 178(4061):619–621

    Article  Google Scholar 

  • Chan S, Fauchet PM, Li Y et al (2000) Porous silicon microcavities for biosensing applications. Phys Status Solidi A: Appl Res 182(1):541–546

    Article  Google Scholar 

  • Chan S, Horner SR, Fauchet PM et al (2001) Identification of gram negative bacteria using nanoscale silicon microcavities. J Am Chem Soc 123:11797–11798. doi:10.1021/ja016555r

    Article  Google Scholar 

  • Chen L, Chen Z-T, Wang J et al (2009) Gel-pad microarrays templated by patterned porous silicon for dual-mode detection of proteins. Lab Chip 9(6):756–760

    Article  Google Scholar 

  • Cheng L, Anglin E, Cunin F et al (2008) Intravitreal properties of porous silicon photonic crystals: a potential self-reporting intraocular drug-delivery vehicle. Br J Ophthalmol 92(5):705–711

    Article  Google Scholar 

  • Chhablani J, Nieto A, Hou H et al (2013) Oxidized porous silicon particles covalently grafted with daunorubicin as a sustained intraocular drug delivery system. Invest Ophthalmol Vis Sci 54(2):1268–1279. doi:10.1167/iovs.12-11172

    Article  Google Scholar 

  • Chiappini C, Tasciotti E, Fakhoury JR et al (2010) Tailored porous silicon microparticles: Fabrication and properties. ChemPhysChem 11(5):1029–1035. doi:10.1002/cphc.200900914

    Article  Google Scholar 

  • Chin V, Collins BE, Sailor MJ et al (2001) Compatibility of primary hepatocytes with oxidized nanoporous silicon. Adv Mater 13(24):1877–1880

    Article  Google Scholar 

  • Ciampi S, Böcking T, Kilian KA et al (2008) Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters. Langmuir 24(11):5888–5892

    Article  Google Scholar 

  • Clare TL, Clare BH, Nichols BM et al (2005) Functional monolayers for improved resistance to protein adsorption: oligo(ethylene glycol)-modified silicon and diamond surfaces. Langmuir 21(14):6344–6355

    Article  Google Scholar 

  • Clements LR, Wang P-Y, Harding F et al (2011) Mesenchymal stem cell attachment to peptide density gradients on porous silicon generated by electrografting. Phys Status Solidi (a) 208(6):1440–1445. doi:10.1002/pssa.201000320

    Article  Google Scholar 

  • Coffer JL (2014) Porous silicon and tissue engineering scaffolds. In: Canham L (ed) Handbook of porous silicon. Springer International Publishing, Cham, pp 1–7. doi:10.1007/978-3-319-04508-5_92-1

    Google Scholar 

  • Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18(24):1573–1583

    Article  Google Scholar 

  • Dancil K-PS, Greiner DP, Sailor MJ (1999) A porous silicon optical biosensor: detection of reversible binding of igg to a protein a-modified surface. J Am Chem Soc 121(34):7925–7930

    Article  Google Scholar 

  • DeLouise LA, Kou PM, Miller BL (2005) Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. Insights into biosensor sensitivity. Anal Chem 77(10):3222–3230

    Article  Google Scholar 

  • Estephan E, Saab M-B, Agarwal V et al (2011) Peptides for the biofunctionalization of silicon for use in optical sensing with porous silicon microcavities. Adv Funct Mater 21(11):2003–2011. doi:10.1002/adfm.201002742

    Article  Google Scholar 

  • Flavel BS, Sweetman MJ, Shearer CJ et al (2011) Micropatterned arrays of porous silicon: Toward sensory biointerfaces. ACS Appl Mater Interfaces 3(7):2463–2471. doi:10.1021/am2003526

    Article  Google Scholar 

  • Gerischer H, Allongue P, Costa Kieling V (1993) The mechanism of the anodic oxidation of silicon in acidic fluoride solutions revisited. Phys Chem 97(6):753–756

    Google Scholar 

  • Gilles MA, Hudson AQ, Borders CL (1990) Stability of Water-soluble Carbodiimides in Aqueous-solution. Anal Biochem 184:244–248. DOI: 10.1016/0003-2697(90)90675-Y

    Google Scholar 

  • Godin B, Gu J, Serda RE et al (2010) Tailoring the degradation kinetics of mesoporous silicon structures through pegylation. J Biomed Mater Res A 94A(4):1236–1243. doi:10.1002/jbm.a.32807

    Google Scholar 

  • Gooding JJ, Ciampi S (2011) The molecular level modification of surfaces: From self-assembled monolayers to complex molecular assemblies. Chem Soc Rev 40(5):2704–2718. doi:10.1039/C0CS00139B

    Article  Google Scholar 

  • Guan B, Magenau A, Kilian KA et al (2011) Mesoporous silicon photonic crystal microparticles: Towards single-cell optical biosensors. Faraday Discuss 149:301–317

    Article  Google Scholar 

  • Guan B, Ciampi S, Luais E et al (2012) Depth-resolved chemical modification of porous silicon by wavelength-tuned irradiation. Langmuir 28(44):15444–15449. doi:10.1021/la303649u

    Article  Google Scholar 

  • Guan B, Magenau A, Ciampi S et al (2014) Antibody modified porous silicon microparticles for the selective capture of cells. Bioconjug Chem 25(7):1282–1289. doi:10.1021/bc500144u

    Article  Google Scholar 

  • Gupta B, Zhu Y, Guan B et al (2013) Functionalised porous silicon as a biosensor: emphasis on monitoring cells in vivo and in vitro. Analyst 138(13):3593–3615. doi:10.1039/C3AN00081H

    Article  Google Scholar 

  • Gupta B, Mai K, Lowe SB et al (2015) Ultrasensitive and specific measurement of protease activity using functionalized photonic crystals. Anal Chem 87(19):9946–9953. doi:10.1021/acs.analchem.5b02529

    Article  Google Scholar 

  • Hamilton-Brown P, Gengenbach T, Griesser HJ et al (2009) End terminal, poly(ethylene oxide) graft layers: surface forces and protein adsorption. Langmuir 25(16):9149–9156. doi:10.1021/la900703e

    Article  Google Scholar 

  • Hermanson GT (2013) Chapter 1 – introduction to bioconjugation. In: Hermanson GT (ed) Bioconjugate techniques, 3rd edn. Academic, Boston, pp 1–125. doi:10.1016/B978-0-12-382239-0.00001-7

    Chapter  Google Scholar 

  • Jamadagni SN, Godawat R, Garde S (2009) How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces. Langmuir 25(22):13092–13099. doi:10.1021/la9011839

    Article  Google Scholar 

  • Jane A, Dronov R, Hodges A et al (2009) Porous silicon biosensors on the advance. Trends Biotechnol 27:230–239. doi:10.1016/j.tibtech.2008.12.004

    Article  Google Scholar 

  • Janshoff A, Dancil K-PS, Steinem C et al (1998) Macroporous p-type silicon fabry-perot layers. Fabrication, characterization, and applications in biosensing. J Am Chem Soc 120(46):12108–12116

    Article  Google Scholar 

  • Kilian KA, Böcking T, Ilyas S et al (2006) Optimisation of nanostructured porous silicon surface chemistry towards biophotonic sensors. In: IEEE nanoscience and nanotechnology ICONN 2006 Proceedings, 486

    Google Scholar 

  • Kilian KA, Böcking T, Gaus K et al (2007a) Peptide modified optical filters for detecting protease activity. ACS Nano 1:355–361

    Article  Google Scholar 

  • Kilian KA, Böcking T, Gaus K et al (2007b) Si-c linked oligo(ethylene glycol) layers in porous silicon photonic crystals: optimization for implantable optical materials. Biomaterials 28:3055–3062

    Article  Google Scholar 

  • Kilian KA, Böcking T, Gaus K et al (2007c) Hybrid lipid bilayers in nanostructured silicon: a biomimetic mesoporous scaffold for optical detection of cholera toxin. Chem Commun:1936–1938

    Google Scholar 

  • Kilian KA, Böcking T, Ilyas S et al (2007d) Forming antifouling organic multilayers on porous silicon rugate filters towards in vivo/ex vivo biophotonic devices. Adv Funct Mater 17(15):2884–2890

    Article  Google Scholar 

  • Kilian KA, Böcking T, Gaus K et al (2008) Introducing distinctly different chemical functionalities onto the internal and external surfaces of mesoporous materials. Angew Chem Int Ed 47(14):2697–2699. doi:10.1002/anie.200704784

    Article  Google Scholar 

  • Kilian KA, Boecking T, Gooding JJ (2009a) The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. Chem Commun (6):630–640. doi:10.1039/B815449j

    Google Scholar 

  • Kilian KA, Lai LMH, Magenau A et al (2009b) Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals. Nano Lett 9:2021–2025. doi:10.1021/nl900283j

    Article  Google Scholar 

  • Kingshott P, Griesser HJ (1999) Surfaces that resist bioadhesion. Curr Opinion Solid State Mater Sci 4(4):403–412. doi:10.1016/S1359-0286(99)00018-2

    Article  Google Scholar 

  • Kovalainen M, Monkare J, Makila E et al (2012) Mesoporous silicon (psi) for sustained peptide delivery: effect of psi microparticle surface chemistry on peptide yy3-36 release. Pharm Res 29(3):837–846. doi:10.1007/s11095-011-0611-6

    Article  Google Scholar 

  • Kozlowski F, Steiner P, Lang W et al (1994) Light-emitting diodes in porous silicon. Sensors Actuators A Phys 43(1):153–156. doi:10.1016/0924-4247(93)00685-W

    Article  Google Scholar 

  • Krismastuti FSH, Pace S, Voelcker NH (2014) Porous silicon resonant microcavity biosensor for matrix metalloproteinase detection. Adv Funct Mater 24(23):3639–3650. doi:10.1002/adfm.201304053

    Article  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  Google Scholar 

  • Le Saux G, Magenau A, Böcking T et al (2011) The relative importance of topography and rgd ligand density for endothelial cell adhesion. PLoS One 6(7):e21869. doi:10.1371/journal.pone.0021869

    Article  Google Scholar 

  • Létant SE, Hart BR, Kane SR et al (2004) Enzyme immobilization on porous silicon surfaces. Adv Mater 16(8):689–693

    Article  Google Scholar 

  • Létant SE, Kane SR, Hart BR et al (2005) Hydrolysis of acetylcholinesterase inhibitors – organophosphorus acid anhydrolase enzyme immobilization on photoluminescent porous silicon platforms. Chem Commun (Cambridge, United Kingdom) (7):851–853

    Google Scholar 

  • Lie LH, Patole SN, Pike AR et al (2004) Immobilisation and synthesis of DNA on si(111), nanocrystalline porous silicon and silicon nanoparticles. Faraday Discuss FIELD Full Journal Title:Faraday discussions 125:235–249; discussion 293–309

    Google Scholar 

  • Lin VSY, Motesharei K, Dancil K-PS et al (1997) A porous silicon-based optical interferometric biosensor. Science 278(5339):840–843

    Article  Google Scholar 

  • Linford MR, Chidsey CED (1993) Alkyl monolayers covalently bonded to silicon surfaces. J Am Chem Soc 115(26):12631–12632

    Article  Google Scholar 

  • Low SP, Williams KA, Canham LT et al (2006) Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials 27(26):4538–4546

    Article  Google Scholar 

  • Low SP, Voelcker NH, Canham LT et al (2009) The biocompatibility of porous silicon in tissues of the eye. Biomaterials 30(15):2873–2880

    Article  Google Scholar 

  • Martínez HM, Rincon NE, Torres J et al (2008) Porous silicon thin film as co sensor. Microelectron J 39(11):1354–1355. doi:10.1016/j.mejo.2008.01.035

    Article  Google Scholar 

  • McCall DT, Zhang Y, Hook DJ et al (2015) Optimizing pin-printed and hydrosilylated microarray spot density on porous silicon platforms. Langmuir 31(41):11370–11377. doi:10.1021/acs.langmuir.5b02692

    Article  Google Scholar 

  • Ng CCA, Ciampi S, Harper JB et al (2010) Antifouling behaviour of silicon surfaces modified with self-assembled monolayers containing both ethylene glycol and charged moieties. Surf Sci 604(17–18):1388–1394. doi:10.1016/j.susc.2010.04.025

    Article  Google Scholar 

  • Orosco MM, Pacholski C, Miskelly GM et al (2006) Protein-coated porous-silicon photonic crystals for amplified optical detection of protease activity. Adv Mater (Weinheim, Ger) 18:1393–1396. doi:10.1002/adma.200502420

    Article  Google Scholar 

  • Orosco MM, Pacholski C, Sailor MJ (2009) Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nat Nanotechnol 4:255–258. doi:10.1038/nnano.2009.11

    Article  Google Scholar 

  • Pacholski C, Sartor M, Sailor MJ et al (2005) Biosensing using porous silicon double-layer interferometers: reflective interferometric fourier transform spectroscopy. J Am Chem Soc 127(33):11636–11645

    Article  Google Scholar 

  • Park J-H, Gu L, von Maltzahn G et al (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8(4):331–336 http://www.nature.com/nmat/journal/v8/n4/suppinfo/nmat2398_S1.html

    Article  Google Scholar 

  • Premnath P, Tan B, Venkatakrishnan K (2012) Bioactive interlinked extracellular matrix-like silicon nano-network fabricated by femtosecond laser synthesis. Biores Open Access 1(5):231–238. doi:10.1089/biores.2012.0254

    Article  Google Scholar 

  • Reffitt DM, Jugdaohsingh R, Thompson RP et al (1999) Silicic acid: its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion. J Inorg Biochem 76(2):141–147

    Article  Google Scholar 

  • Ryckman JD, Liscidini M, Sipe JE et al (2011) Direct imprinting of porous substrates: a rapid and low-cost approach for patterning porous nanomaterials. Nano Lett 11(5):1857–1862. doi:10.1021/nl1028073

    Article  Google Scholar 

  • Sailor MJ, Wu EC (2009) Photoluminescence-based sensing with porous silicon films, microparticles, and nanoparticles. Adv Funct Mater 19(20):3195–3208. doi:10.1002/adfm.200900535

    Article  Google Scholar 

  • Salonen J (2014) Drug delivery with porous silicon. In: Canham L (ed) Handbook of porous silicon. Springer International Publishing, Cham, pp 909–919. doi:10.1007/978-3-319-05744-6_91

    Google Scholar 

  • Sam S, Chazalviel JN, Gouget-Laemmel AC et al (2010) Covalent immobilization of amino acids on the porous silicon surface. Surf Interface Anal 42(6–7):515–518. doi:10.1002/sia.3285

    Article  Google Scholar 

  • Sam SS, Chazalviel J-NJ, Gouget-Laemmel ACA et al (2011) Peptide immobilisation on porous silicon surface for metal ions detection. Nanoscale Res Lett 6(1):1

    Article  Google Scholar 

  • Santos HA, Salonen J, Bimbo LM (2013) Porous silicon for drug delivery. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, New York, pp 1772–1780. doi:10.1007/978-1-4614-1533-6_447

    Chapter  Google Scholar 

  • Schilp S, Rosenhahn A, Pettitt ME et al (2009) Physicochemical properties of (ethylene glycol)-containing self-assembled monolayers relevant for protein and algal cell resistance. Langmuir 25(17):10077–10082. doi:10.1021/la901038g

    Article  Google Scholar 

  • Schmuki P, Erickson LE, Lockwood DJ (2000) Porous semiconductor micropatterns formed on focussed ion beam implants. J Porous Mater 7(1):233–237. doi:10.1023/a:1009655324979

    Article  Google Scholar 

  • Schöning MJ, Ronkel F, Crott M et al (1997) Miniaturization of potentiometric sensors using porous silicon microtechnology. Electrochim Acta 42(20):3185–3193

    Article  Google Scholar 

  • Schwartz MP, Cunin F, Cheung RW et al (2005) Chemical modification of silicon surfaces for biological applications. Phys Status Solidi A 202:1380–1384

    Article  Google Scholar 

  • Schwartz MP, Alvarez SD, Sailor MJ (2007) Porous sio2 interferometric biosensor for quantitative determination of protein interactions: Binding of protein a to immunoglobuling derived from different species. Anal Chem 79:327–334

    Article  Google Scholar 

  • Sharma S, Johnson RW, Desai TA (2003) Evaluation of the stability of nonfouling ultrathin poly(ethylene glycol) films for silicon-based microdevices. Langmuir 20(2):348–356. doi:10.1021/la034753l

    Article  Google Scholar 

  • Shtenberg G, Segal E (2014) Porous silicon optical biosensors. In: Canham L (ed) Handbook of porous silicon. Springer International Publishing, Cham, pp 857–868. doi:10.1007/978-3-319-05744-6_87

    Google Scholar 

  • Soeriyadi AH, Gupta B, Reece PJ et al (2014) Optimising the enzyme response of a porous silicon photonic crystal via the modular design of enzyme sensitive polymers. Polym Chem 5(7):2333–2341. doi:10.1039/C3PY01638B

    Article  Google Scholar 

  • Staros JV, Wright RW, Swingle DM (1986) Enhancement by n-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal Biochem 156(1):220–222. doi:10.1016/0003-2697(86)90176-4

    Article  Google Scholar 

  • Steinem C, Janshoff A, Lin VSY et al (2004) DNA hybridization-enhanced porous silicon corrosion: mechanistic investigations and prospect for optical interferometric biosensing. Tetrahedron 60:11259–11267. doi:10.1016/j.tet.2004.06.130

    Article  Google Scholar 

  • Stewart MP, Buriak JM (1998) Photopatterned hydrosilylation on porous silicon. Angew Chem Int Ed 37(23):3257–3260. doi:10.1002/(sici)1521-3773(19981217)37:23<3257::aid-anie3257>3.0.co;2-1

    Article  Google Scholar 

  • Sun W, Puzas JE, Sheu T-J et al (2007) Nano- to microscale porous silicon as a cell interface for bone-tissue engineering. Adv Mater 19:4

    Google Scholar 

  • Sweetman MJ, Shearer CJ, Shapter JG et al (2011) Dual silane surface functionalization for selective attachment of human neuronal cells on porous silicon. Langmuir:9497–9503. doi:10.1021/la201760w

    Google Scholar 

  • Sweetman MJ, Ronci M, Ghaemi SR et al (2012) Porous silicon films micropatterned with bioelements as supports for mammalian cells. Adv Funct Mater 22(6):1158–1166. doi:10.1002/adfm.201102000

    Article  Google Scholar 

  • Szili EJ, Jane A, Low SP et al (2011) Interferometric porous silicon transducers using an enzymatically amplified optical signal. Sensors Actuators B Chem 160(1):341–348. doi:10.1016/j.snb.2011.07.059

    Article  Google Scholar 

  • Tanaka T, Mangala LS, Vivas-Mejia PE et al (2010) Sustained small interfering rna delivery by mesoporous silicon particles. Cancer Res 70(9):3687–3696. doi:10.1158/0008-5472.can-09-3931

    Article  Google Scholar 

  • Thust M, Schöning MJ, Frohnhoff S et al (1996) Porous silicon as a substrate material for potentiometric biosensors. Meas Sci Technol 7(1):26

    Article  Google Scholar 

  • Thust M, Schöning MJ, Schroth P et al (1999) Enzyme immobilisation on planar and porous silicon substrates for biosensor applications. J Mol Catal B Enzym 7(1):77–83

    Article  Google Scholar 

  • Wilchek M, Miron T (1985) Activation of sepharose withn,n′-disuccinimidyl carbonate. Appl Biochem Biotechnol 11 (3):191–193. doi:10.1007/bf02798475

    Google Scholar 

  • Xia B, Li J, Xiao S-J et al (2005) A simple method for covalent immobilization of proteins on porous silicon surfaces. Chem Lett 34(2):226–227

    Article  Google Scholar 

  • Yam CM, Lopez-Romero JM, Gu J et al (2004) Protein-resistant monolayers prepared by hydrosilylation of alpha-oligo(ethylene glycol)-omega-alkenes on hydrogen-terminated silicon(111) surfaces. Chem Commun 21:2510–2511

    Article  Google Scholar 

  • Zhu Y, Gupta B, Guan B et al (2013) Photolithographic strategy for patterning preformed, chemically modified, porous silicon photonic crystal using click chemistry. ACS Appl Mater Interfaces 5(14):6514–6521. doi:10.1021/am4006012

    Article  Google Scholar 

  • Zhu Y, Soeriyadi AH, Parker SG et al (2014) Chemical patterning on preformed porous silicon photonic crystals: towards multiplex detection of protease activity at precise positions. J Mater Chem B 2(23):3582–3588. doi:10.1039/C4TB00281D

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bakul Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Gupta, B., Gooding, J. (2016). Biomolecule Attachment to Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_115-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_115-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics