Skip to main content

IR Spectroscopy and Spectromicroscopy with Synchrotron Radiation

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Synchrotron Light Sources and Free-Electron Lasers

Abstract

Properties of infrared emission from synchrotron radiation, beamline specificities and optimization, and multidisciplinary applications are the main content of this chapter. Bending magnets are the essential source of infrared emission, and simplified formulas are provided to allow calculating flux and brilliance for a particular beamline. The requirements for large vertical and horizontal collection angles in this long wavelength regime impose appropriate optics to collect and propagate efficiently the beam to the instruments. Present prototypical optical setups exhibit aberration, which can be eliminated using appropriate optics described in this chapter. Example for a specific facility is given which may help improving existing beamlines. Spectroscopy and microscopy are the main approaches exploited, using commercially available instruments. These instruments are briefly described as well as the most relevant detectors used in infrared. Emerging techniques are shown, such as IR tomography and nano-infrared spectroscopy and imaging. For the latter, few beamlines operate presently a nano-infrared instrument, and several are under development. Numerous applications have been reported over the last 20 years, and for each of them, this chapter gives some examples and the related references. The recent application in nano-spectroscopy and imaging are emphasized in the application section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • M. Abo-Bakr et al., Steady-state far-infrared coherent synchrotron radiation detected at BESSY II. Phys. Rev. Lett. 88(25 Pt 1), 254801 (2002)

    Article  ADS  Google Scholar 

  • M. Abo-Bakr et al., Brilliant, coherent far-infrared (THz) synchrotron radiation. Phys. Rev. Lett. 90(9), 094801 (2003)

    Article  ADS  Google Scholar 

  • M. Autore et al., Phase diagram and optical conductivity of LaxEu0.2SrxCuO4. Phys. Rev. B Condens. Matter 90(3), 035102 (2014)

    Article  ADS  Google Scholar 

  • C.J. Baily, M. Surman, A.E. Russell, Investigation of the CO induced lifting of the (1×2) reconstruction on Pt{ 1 1 0 } using synchrotron far-infrared RAIRS. Surf. Sci. (2003). https://www.sciencedirect.com/science/article/pii/S0039602802023464

  • J. Barros et al., Coherent synchrotron radiation for broadband terahertz spectroscopy. Rev. Sci. Instrum. 84(3), 033102 (2013)

    Article  ADS  Google Scholar 

  • D.N. Basov et al., Initial scientific uses of coherent synchrotron radiation in electron storage rings (2004). https://escholarship.org/uc/item/7t33t36k. Accessed 30 Mar 2018

  • H.A. Bechtel, G.J. Flynn, C. Allen, Stardust interstellar preliminary examination III: infrared spectroscopic analysis of interstellar dust candidates. Meteorit. Planet. Sci. (2014a). https://doi.org/10.1111/maps.12125/full

  • H.A. Bechtel, E.A. Muller, et al., Ultrabroadband infrared nanospectroscopic imaging. Proc. Natl. Acad. Sci. U. S. A. 111, 7191–7196 (2014b). https://doi.org/10.1073/pnas.1400502111

    Article  ADS  Google Scholar 

  • L. Bertrand et al., Cultural heritage and archaeology materials studied by synchrotron spectroscopy and imaging. Appl. Phys. A Mater. Sci. Process. 106(2), 377–396 (2012)

    Article  ADS  Google Scholar 

  • P. Born, K. Holldack, Analysis of granular packing structure by scattering of THz radiation. Rev. Sci. Instrum. 88(5), 051802 (2017)

    Article  ADS  Google Scholar 

  • R.A. Bosch, Shielding of infrared edge and synchrotron radiation. Nucl. Instrum. Methods Phys. Res. Sect. A 482(3), 789–798 (2002)

    Article  ADS  Google Scholar 

  • L. Bozec et al., Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation. Meas. Sci. Technol. 13, 1217–1222 (2002). https://doi.org/10.1088/0957-0233/13/8/308

    Article  ADS  Google Scholar 

  • J.M. Byrd et al., Terahertz coherent synchrotron radiation from femtosecond laser modulation of the electron beam at the Avanced Light Source, Proceedings of the 2005 Particile Accelerator Conference, Knoxville, Tennessee (2005), pp. 3682–3684

    Google Scholar 

  • P. Calvani et al., Study of the optical gap in novel superconductors by coherent THz radiation. Infrared Phys. Technol. 51(5), 429–432 (2008)

    Article  ADS  Google Scholar 

  • G.L. Carr, Resolution limits for infrared microspectroscopy explored with synchrotron radiation. Rev. Sci. Instrum. 72(3), 1613–1619 (2001)

    Article  ADS  Google Scholar 

  • G. Carr, S. Kramer, J.B. Murphy, R.P.S.M. Lobo, D. Tanner, Observation of coherent synchrotron radiation from the NSLS VUV ring. Nucl. Instrum. Methods Phys. Res. Sect. A 463, 387–392 (2001)

    Article  ADS  Google Scholar 

  • G.L. Carr et al., High-power terahertz radiation from relativistic electrons. Nature 420(6912), 153–156 (2002)

    Article  ADS  Google Scholar 

  • G.L. Carr, O. Chubar, P. Dumas, Chapter 3, Multichannel detection with a synchrotron light source: design and potential, in Spectrochemical Analysis Using Infrared Multichannel Detectors 1st edn. (eds., Bhargava, R. and Levin, I.W.) 56–84 (Wiley-Blackwell, Oxford, 2007)

    Google Scholar 

  • J. Chen et al., Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012). https://doi.org/10.1038/nature11254

    Article  ADS  Google Scholar 

  • O. Chubar et al., Physical optics computer code optimized for synchrotron radiation, in OpticalDesign and Analysis Software II Published in SPIE Proceedings Vol. 4769: Optical Design and Analysis Software II Richard C. Juergens, Editor(s) (2002), pp. 145–152. https://doi.org/10.1117/12.481182

  • O. Chubar et al., Simulation and optimization of synchrotron infrared micro-spectroscopic beamlines using wave optics computation: ESRF and SOLEIL’s cases. AIP Conf. Proc. (2007). https://doi.org/10.1063/1.2436134

  • M. Cirtog et al., … and Fourier transform infrared spectroscopy from neon matrix and a new supersonic jet experiment coupled to the infrared AILES beamline of synchrotron SOLEIL. J. Phys. Chem. A (2011). https://doi.org/10.1021/jp111507z

    Article  ADS  Google Scholar 

  • M. Cotte et al., Recent applications and current trends in cultural heritage science using synchrotron-based Fourier transform infrared micro-spectroscopy. C. R. Phys. 10(7) (2009). https://doi.org/10.1016/j.crhy.2009.03.016

    Article  ADS  Google Scholar 

  • D. Creagh, J. McKinlay, P. Dumas, The design of the infrared beamline at the Australian synchrotron. Vib. Spectrosc. 41(2) (2006). https://doi.org/10.1016/j.vibspec.2006.02.009

    Article  Google Scholar 

  • A. Cvitkovic et al., Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Opt. Express 15, 8550–8565 (2007)

    Article  ADS  Google Scholar 

  • J. D’Archangel et al., Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces. Opt. Express 21, 17150–17160 (2013). https://doi.org/10.1364/oe.21.017150

    Article  ADS  Google Scholar 

  • S. Dai et al., Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014). https://doi.org/10.1126/science.1246833

    Article  ADS  Google Scholar 

  • A. Dazzi et al., Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 30, 2388–2390 (2005). https://doi.org/10.1364/ol.30.002388

    Article  ADS  Google Scholar 

  • P. Dumas et al., Adsorption and reactivity of NO on Cu(111): a synchrotron infrared reflection absorption spectroscopic study. Surf. Sci. 371(2–3), 200 (1997)

    Article  ADS  Google Scholar 

  • P. Dumas et al., Molecules at surfaces and interfaces studied using vibrational spectroscopies and related techniques. Surf. Rev. Lett. 6(2), 225 (1999)

    Article  ADS  Google Scholar 

  • W.D. Duncan, G.P. Williams, Infrared synchrotron radiation from electron storage rings. Appl. Opt. 22(18), 2914–2923 (1983)

    Article  ADS  Google Scholar 

  • U. Engström, R. Ryberg, Freezing out a Fermi resonance: a temperature dependence study of the low-energy modes of CO on Pt(111). J. Chem. Phys. 115(1), 519–523 (2001)

    Article  ADS  Google Scholar 

  • M. Faye et al., First high resolution analysis of the ν3 band of the 36SF6 isotopologue. J. Mol. Spectrosc. 346, 23–26 (2018)

    Article  ADS  Google Scholar 

  • Z. Fei et al., Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012). https://doi.org/10.1038/nature11253

    Article  ADS  Google Scholar 

  • L. Feng et al., Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photonics 8, 307–312 (2014). https://doi.org/10.1038/nphoton.2013.373

    Article  Google Scholar 

  • R.O. Freitas et al., Infrared nanospectroscopy at the LNLS: current status and ongoing developments. Synchrotron Radiat. News 30(4), 24–30 (2017). https://doi.org/10.1080/08940886.2017.1338420

    Article  Google Scholar 

  • R.O. Freitas et al., Low-aberration beamline optics for synchrotron infrared nanospectroscopy. Opt. Express 26, 11238–11249 (2018). https://doi.org/10.1364/oe.26.011238

    Article  ADS  Google Scholar 

  • R. Georges et al., Nuclear spin symmetry conservation in 1H216O investigated by direct absorption FTIR spectroscopy of water vapor cooled down in supersonic expansion. J. Phys. Chem. A 121(40), 7455–7468 (2017)

    Article  Google Scholar 

  • J.A. Gerber et al., Phase-resolved surface plasmon interferometry of graphene. Phys. Rev. Lett. 113 (2014). https://doi.org/10.1103/PhysRevLett.113.055502

  • A.A. Govyadinov et al., Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy. J. Phys. Chem. Lett. 4, 1526–1531 (2013)

    Article  Google Scholar 

  • P.R. Griffiths, J.A. De Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986)

    Google Scholar 

  • H. Günzler, H.-U. Gremlich, IR Spectroscopy. An Introduction (Wiley-VCH, Weinheim, 2002)

    Google Scholar 

  • A. Hecht, E. Zajac, Optics, 2nd edn. (Addison-Wesley, Reading, 1987)

    Google Scholar 

  • M. Hein et al., Friction of conduction electrons with adsorbates: simultaneous changes of DC resistance and broadband IR reflectance of thin Cu(111) films exposed to CO. Surf. Sci. 419(2), 308–320 (1999)

    Article  ADS  Google Scholar 

  • M. Hein et al., CO interaction with co-adsorbed C2H4 on Cu(111) as revealed by friction with the conduction electrons. Surf. Sci. 465(3), 249–258 (2000)

    Article  ADS  Google Scholar 

  • R.M. Herman et al., Rayleigh range and the M2 factor for Bessel–Gauss beams. Appl. Opt. 37(16), 3398–3400 (1998)

    Article  ADS  Google Scholar 

  • P. Hermann et al., Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation. Opt. Express 21, 2913–2919 (2013)

    Article  ADS  Google Scholar 

  • C.J. Hirschmugl et al., Adsorbate-substrate resonant interactions observed for CO on Cu(100) in the far infrared. Phys. Rev. Lett. 65(4), 480–483 (1990)

    Article  ADS  Google Scholar 

  • A. Hofmann, Quasi-monochromatic synchrotron radiation from undulators. Nucl. Inst. Methods 152(1), 17–21 (1978)

    Article  ADS  Google Scholar 

  • V. Humblot et al., Synchrotron far-infrared RAIRS studies of complex molecules on Cu(110). Surf. Sci. 537(1), 253–264 (2003)

    Article  ADS  Google Scholar 

  • F. Huth et al., Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 10, 352–356 (2011)

    Article  ADS  Google Scholar 

  • F. Huth et al., Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Y. Ikemoto et al., Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source. Opt. Commun. 285, 2212–2217 (2012)

    Article  ADS  Google Scholar 

  • J.D. Jackson, Classical Electrodynamics, Third Edition (John Wiley and Sons, USA, 2007)

    Google Scholar 

  • R.W. Johns et al., Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals. Nat. Commun. 7 (2016). https://doi.org/10.1038/ncomms11583

  • F. Keilmann, R. Hillenbrand, Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362, 787–805 (2004). https://doi.org/10.1098/rsta.2003.1347

    Article  ADS  Google Scholar 

  • O. Khatib et al., Far infrared synchrotron near-field nanoimaging and nanospectroscopy. ACS Photonics 5, 2773–2779 (2018). https://doi.org/10.1021/acsphotonics.8b00565

    Article  Google Scholar 

  • A.M. Khounsary, B. Lai. Power Distributions of the APS Bending Magnets and Insertion Devices. Argonne Light Source Note LS-198 (1992). https://www.aps.anl.gov/icms_files/lsnotes/files/APS_1417922.pdf

  • S. Kimura et al., Front end and optics of infrared beamline at SPring-8. Nucl. Instrum. Methods Phys. Res. Sect. A 467–468(Part 1), 437–440 (2001)

    Article  ADS  Google Scholar 

  • B. Knoll, F. Keilmann, Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999). https://doi.org/10.1038/20154

    Article  ADS  Google Scholar 

  • F. Kwabia Tchana et al., A new, low temperature long-pass cell for mid-infrared to terahertz spectroscopy and synchrotron radiation use. Rev. Sci. Instrum. 84(9), 093101 (2013)

    Article  ADS  Google Scholar 

  • P. Lagarde, Infrared spectroscopy with synchrotron radiation. Infrared Phys. (1978). https://doi.org/10.1016/0020-0891(78)90046-5

    Article  ADS  Google Scholar 

  • P. Lerch et al., Assessing noise sources at synchrotron infrared ports. J. Synchrotron Radiat. 19(Pt 1), 1–9 (2012)

    Article  Google Scholar 

  • Z.Q. Li et al., Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy. Phys. Rev. Lett. 102(3), 037403 (2009)

    Article  ADS  Google Scholar 

  • M. Liu et al., Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging. Phys. Rev. B 91, 245155 (2015)

    Article  ADS  Google Scholar 

  • I. Lo Vecchio et al., Optical conductivity of V4O7 across its metal-insulator transition. Phys. Rev. B Condens. Matter 90(11), 115149 (2014)

    Article  ADS  Google Scholar 

  • R. López-Delgado, H. Szwarc, Focusing all the synchrotron radiation (2π radians) from an electron storage ring on a single point without time distortion. Opt. Commun. 19(2), 286–291 (1976)

    Article  ADS  Google Scholar 

  • K. Loutherback et al., Microfluidic approaches to synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy of living biosystems. Protein Pept. Lett. 23(3), 273–282 (2016)

    Article  Google Scholar 

  • M.C. Martin, P. Dumas, Materials sciences using synchrotron infrared light sources, in Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications, ed. by J. Yarwood, R. Douthwaite, S. Duckett, vol. 43 (Royal Society of Chemistry, Cambridge, 2012), pp. 141–165

    Chapter  Google Scholar 

  • D.H. Martin, E. Puplett, Polarised interferometric spectrometry for the millimetre and submillimetre spectrum. Infrared Phys. 10(2), 105–109 (1970)

    Article  ADS  Google Scholar 

  • M.C. Martin et al., Negligible sample heating from synchrotron infrared beam. Appl. Spectrosc. (2001). https://doi.org/10.1366/0003702011951551

    Article  ADS  Google Scholar 

  • M.C. Martin et al., Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy. TrAC Trends Anal. Chem. 29(6) (2010). https://doi.org/10.1016/j.trac.2010.03.002

    Article  Google Scholar 

  • E.C. Mattson et al., Restoration and spectral recovery of mid-infrared chemical images. Anal. Chem. 84, 6173–6180 (2012). https://doi.org/10.1021/ac301080h

    Article  Google Scholar 

  • T.E. May, Infrared facility at the Canadian light source. Infrared Phys. Technol. 45(5), 383–387 (2004)

    Article  ADS  Google Scholar 

  • A.R.W. McKellar, High-resolution infrared spectroscopy with synchrotron sources. J. Mol. Spectrosc. 262(1), 1–10 (2010)

    Article  ADS  Google Scholar 

  • A.S. McLeod et al., Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants. Phys. Rev. B 90 (2014). https://doi.org/10.1103/PhysRevB.90.085136

  • P. Meyer, P. Lagarde, Synchrotron radiation in the infrared. J. Phys. 37(12), 1387–1390 (1976)

    Article  Google Scholar 

  • L.M. Miller, P. Dumas, From structure to cellular mechanism with infrared microspectroscopy. Curr. Opin. Struct. Biol. 20(5) (2010). https://doi.org/10.1016/j.sbi.2010.07.007

    Article  Google Scholar 

  • C. Mirri et al., Anisotropic optical conductivity of Sr4Ru3O10. Phys. Rev. B Condens. Matter 85(23), 235124 (2012)

    Article  ADS  Google Scholar 

  • E. Mitri et al., SU-8 bonding protocol for the fabrication of microfluidic devices dedicated to FTIR microspectroscopy of live cells. Lab Chip 14(1) (2014). https://doi.org/10.1039/c3lc50878a

    Article  Google Scholar 

  • T. Moreno, Optimized IR synchrotron beamline design. J. Synchrotron Radiat. 22(5), 1163–1169 (2015)

    Article  Google Scholar 

  • T. Moreno, M. Idir, SPOTX a ray tracing software for X-ray optics. J. Phys. IV 11(PR2), Pr2–527–Pr2–531 (2001)

    Google Scholar 

  • T. Moreno et al., Optical layouts for large infrared beamline opening angles. J. Phys. Conf. Ser. 424(Part 4), 55–56 (2013)

    Google Scholar 

  • E.A. Muller et al., Infrared chemical nano-imaging: accessing structure, coupling, and dynamics on molecular length scales. J. Phys. Chem. Lett. 6, 1275–1284 (2015)

    Article  Google Scholar 

  • T. Nanba et al., Far-infrared spectroscopy by synchrotron radiation at the UVSOR facility. Int. J. Infrared Millimeter Waves 7(11), 1769–1776 (1986)

    Article  ADS  Google Scholar 

  • M.J. Nasse et al., High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat. Methods 8(5), 413–416 (2011). https://doi.org/10.1038/nmeth.1585

    Article  Google Scholar 

  • J. Nehrkorn et al., Recent progress in synchrotron-based frequency-domain Fourier-transform THz-EPR. J. Magn. Reson. 280, 10–19 (2017)

    Article  ADS  Google Scholar 

  • B. Nelander, The beam line for infrared spectroscopy at the Lund University synchrotron radiation source. J. Mol. Struct. 294, 205 (1993)

    Article  ADS  Google Scholar 

  • B. Nelander, V. Sablinskas, Status report from the beam line for IR spectroscopy at Max-lab. J. Mol. Struct. 348, 167–169 (1995)

    Article  ADS  Google Scholar 

  • J.S. Nodvick, D.S. Saxon, Suppression of coherent radiation by electrons in a synchrotron. Phys. Rev. J. Arch. 96, 180 (1954)

    Article  ADS  Google Scholar 

  • P.R. Norton, Infrared image sensors. Organ. Ethics Healthc. Bus. Policy OE 30(11), 1649–1664 (1991)

    Google Scholar 

  • A. Nucara et al., Hardening of the soft phonon in bulk SrTiO3 interfaced with LaAlO3 and SrRuO3. Phys. Rev. B Condens. Matter 93(22), 224103 (2016)

    Article  ADS  Google Scholar 

  • J. Pellicer-Porres et al., High-pressure study of the infrared active modes in wurtzite and rocksalt ZnO. Phys. Rev. B 84(12) (2011). https://doi.org/10.1103/PhysRevB.84.125202

  • J. Pellicer-Porres et al., Investigation of lattice dynamical and dielectric properties of MgO under high pressure by means of mid- and far-infrared spectroscopy. J. Phys. Condens. Matter 25(50) (2013). https://doi.org/10.1088/0953-8984/25/50/505902

    Google Scholar 

  • F. Peragut et al., Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation. Appl. Phys. Lett. 104 (2014). https://doi.org/10.1063/1.4885416

    Article  ADS  Google Scholar 

  • B.N.J. Persson, A.I. Volokitin, Infrared reflection-absorption spectroscopy of dipole-forbidden adsorbate vibrations. Surf. Sci. 310(1), 314–336 (1994)

    Article  ADS  Google Scholar 

  • A. Perucchi et al., Multiband conductivity and a multigap superconducting phase in V3Si films from optical measurements at terahertz frequencies. Phys. Rev. B Condens. Matter 81(9), 092509 (2010)

    Article  ADS  Google Scholar 

  • B. Pollard et al., Infrared vibrational nanospectroscopy by self-referenced interferometry. Nano Lett. 16, 55–61 (2016). https://doi.org/10.1021/acs.nanolett.5b02730

    Article  ADS  Google Scholar 

  • M. Quack, F. Merkt, Handbook of High-Resolution Spectroscopy, vol. 2 (Wiley, Chichester, 2011), pp. 965–1019. Chapter 26

    Book  Google Scholar 

  • A. Rogalski, Infrared detectors: an overview. Infrared Phys. Technol. 43(3), 187–210 (2002)

    Article  ADS  Google Scholar 

  • A. Rogalski, Infrared detectors: status and trends. Prog. Quantum Electron. 27(2), 59–210 (2003)

    Article  ADS  Google Scholar 

  • P. Roy et al., Infrared synchrotron radiation from an undulator. Nucl. Instrum. Methods Phys. Res. Sect. A 325(3), 568–573 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • P. Roy et al., The AILES infrared beamline on the third generation synchrotron radiation facility SOLEIL. Infrared Phys. Technol. 49(1), 139–146 (2006)

    Article  ADS  Google Scholar 

  • E.L. Runnerstrom et al., Defect engineering in plasmonic metal oxide nanocrystals. Nano Lett. 16, 3390–3398 (2016). https://doi.org/10.1021/acs.nanolett.6b01171

    Article  ADS  Google Scholar 

  • N. Salvadó et al., Advantages of the use of SR-FTIR microspectroscopy: applications to cultural heritage. Anal. Chem. 77(11), 3444–3451 (2005)

    Article  Google Scholar 

  • U. Schade et al., THz near-field imaging employing synchrotron radiation. Appl. Phys. Lett. 84, 1422–1424 (2004). https://doi.org/10.1063/1.1650034

    Article  ADS  Google Scholar 

  • U. Schade et al., THz near-field imaging of biological tissues employing synchrotron radiation. Proc. SPIE Int. Soc. Opt. Eng. 5725, 46–52 (2005). https://doi.org/10.1117/12.590731

    Article  ADS  Google Scholar 

  • E. Schweizer et al., The electron storage ring as a source of infrared radiation. Nucl. Instrum. Methods Phys. Res. Sect. A 239(3), 630–634 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  • J. Schwinger, On the classical radiation of accelerated electrons. Phys. Rev. 75(12), 1912–1925 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Z. Shi et al., Amplitude- and phase-resolved nanospectral imaging of phonon polaritons in hexagonal boron nitride. ACS Photonics 2, 790–796 (2015). https://doi.org/10.1021/acsphotonics.5b00007

    Article  Google Scholar 

  • M. Shimada et al., Intense terahertz synchrotron radiation by laser bunch slicing at UVSOR-II electron storage ring. Jpn. J. Appl. Phys. 46, 7939 (2007)

    Article  ADS  Google Scholar 

  • A. Shurakov, Y. Lobanov, Superconducting hot-electron bolometer: from the discovery of hot-electrons phenomena to practical applications. Supercond. Sci. Technol. 29(2), 023001 (2015)

    Article  ADS  Google Scholar 

  • E.J. Singley et al., Measuring the Josephson plasma resonance in Bi2Sr2CaCu2O8 using intense coherent THz synchrotron radiation. Phys. Rev. B Condens. Matter 69(9), 092512 (2004)

    Article  ADS  Google Scholar 

  • E. Stavitski et al., Dynamic full-field infrared imaging with multiple synchrotron beams. Anal. Chem. 85, 3599–3605 (2013). https://doi.org/10.1021/ac3033849

    Article  Google Scholar 

  • D. Steele, Infrared spectroscopy: theory, in Handbook of Vibrational Spectroscopy, ed. by J. M. Chalmers, vol. 1 (Wiley, Chichester, 2002), pp. 44–70

    Google Scholar 

  • J.R. Stevenson, J.M. Cathcart, Design considerations for parasitic use of synchrotron radiation in the infrared. Nucl. Inst. Methods 172(1), 367–369 (1980)

    Article  ADS  Google Scholar 

  • J.R. Stevenson, H. Ellis, R. Bartlett, Synchrotron radiation as an infrared source. Appl. Opt. 12(12), 2884–2889 (1973)

    Article  ADS  Google Scholar 

  • B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2004). http://www.kinetics.nsc.ru/chichinin/books/spectroscopy/Stuart04.pdf

  • M. Surman et al., Adsorption of CO on Pt{1 1 1}: a synchrotron far-infrared RAIRS study. Surf. Sci. 511(1–3), L303–L306 (2002)

    Article  Google Scholar 

  • S. Tammaro et al., High density terahertz frequency comb produced by coherent synchrotron radiation. Nat. Commun. 6, 7733 (2015)

    Article  ADS  Google Scholar 

  • L. Vaccari et al., Infrared microspectroscopy of live cells in microfluidic devices (MD-IRMS): toward a powerful label-free cell-based assay. Anal. Chem. 84(11), 4768–4775 (2012)

    Article  Google Scholar 

  • H. Wiedemann, Charged particle acceleration, in Particle Accelerator Physics: Basic Principles and Linear Beam Dynamics, ed. by H. Wiedemann (Springer Berlin Heidelberg, Berlin/Heidelberg, 1993), pp. 265–299

    Chapter  Google Scholar 

  • G.P. Williams, The national synchrotron light source in the infrared region. Nucl. Instrum. Methods Phys. Res. 195(1), 383–387 (1982)

    Article  ADS  Google Scholar 

  • C.-Y. Wu et al., High-spatial-resolution mapping of catalytic reactions on single particles. Nature 541, 511–515 (2017). https://doi.org/10.1038/nature20795

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Dumas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dumas, P., Martin, M.C., Carr, G.L. (2020). IR Spectroscopy and Spectromicroscopy with Synchrotron Radiation. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-04507-8_71-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04507-8_71-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04507-8

  • Online ISBN: 978-3-319-04507-8

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    IR Spectroscopy and Spectromicroscopy with Synchrotron Radiation
    Published:
    30 January 2020

    DOI: https://doi.org/10.1007/978-3-319-04507-8_71-2

  2. Original

    IR Spectroscopy and Spectromicroscopy with Synchrotron Radiation
    Published:
    21 December 2019

    DOI: https://doi.org/10.1007/978-3-319-04507-8_71-1