Skip to main content

Vacuum Systems for Synchrotron Light Sources and FELs

  • Living reference work entry
  • First Online:
Synchrotron Light Sources and Free-Electron Lasers
  • 131 Accesses

Abstract

Vacuum systems of particle accelerators have to account for various boundary conditions. The main requirement is keeping a specified pressure for the machine during operation with changing synchrotron radiation load on the surface and varying temperatures. Other effects like the beam-wall interaction due to wakefields, the avoidance of particle transport to protect sensitive surfaces and cost have to be considered as well. The design of the vacuum systems results in several challenges ranging from the mechanical design, surface physics, and materials science to process engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • E. Al-Dmour, Vacuum performance in the most recent third generation synchrotron light sources, in Proceedings of EPAC08, Genoa, Italy, OZBG01, 2008, p. 31 ff

    Google Scholar 

  • E. Al-Dmour, ALBA Storage Ring Vacuum System commissioning, in Proceedings of IPAC2011, San Sebastián, Spain, TUPS015, 2011, p. 1551 ff

    Google Scholar 

  • Balewski, PETRA III Technical Design Report, DESY, Hamburg 2004-035 (2004)

    Google Scholar 

  • M. Böhnert, D. Hoppe, L. Lilje, H. Remde, J. Wojtkiewicz, K. Zapfe, Particle free pump down and venting of UHV Vacuum Systems, in Proceedings of the 14th Workshop on RF Superconductivity, Berlin, 2007, THPPO104, 2009

    Google Scholar 

  • Calcvac (2011) Calcvac – a program which can calculate pressure profiles in accelerator beamlines. https://xfel-wiki.desy.de/Calcvac

  • A.W. Chao, K.H. Mess, M. Tigner, F. Zimmermann, Handbook of Accelerator Physics and Engineering, 2nd edn. (2013), World Scientific, Singapore. ISBN: 978-981-4415-84-2

    Google Scholar 

  • J.-R. Chen, Construction of a large accelerator TPS. Presentation to OLAV IV, NSRRC, Hsinchu, 2014

    Google Scholar 

  • S.M. Chung, Performance of the PLS Storage Ring Vacuum System, in Proceedings of the APAC98, Tsukuba, Japan, 4E103, 1998, p. 277 ff

    Google Scholar 

  • J.D. Cockcroft, E.T.S. Walton, Experiments with high velocity positive ions. Proc. R. Soc. Lond. A 136(830), 619–630 (1932). https://doi.org/10.1098/rspa.1932.0107

    Article  ADS  Google Scholar 

  • M. Cox, Diamond Light Source Vacuum Systems: the first seven years of user operations. Presentation to OLAV IV, NSRRC, Hsinchu, 2014

    Google Scholar 

  • M. Cox et al., Diamond Light Source Vacuum Systems commissioning status, in Proceedings of EPAC06, Edinburgh, Scorland, THPLS025, 2006, p. 3332 ff

    Google Scholar 

  • DIN, DIN 28400 Teil 1, (Mai 1990): Vakuumtechnik; Benennungen und Definitionen; Allgemeine Benennungen (2009)

    Google Scholar 

  • M.J. Ferreira, LCLS-II Project. Presentation to OLAV IV, NSRRC, Hsinchu, 2014

    Google Scholar 

  • P. Grafström, Lifetime, cross section and activation, in CERN Accelerator School Vacuum in Accelerators: Platja d’Aro, Spain, 2006, CERN, Geneva, CERN-2007-003 (2006)

    Google Scholar 

  • O. Gröbner, A.G. Mathewson, H. Störi, P. Strubin, Studies of photon induced gas desorption using synchrotron radiation. Vacuum 33, 397–408 (1983)

    Article  ADS  Google Scholar 

  • G.Y. Hsiung et al., Fifteen years operation experiences of TLS Vacuum System, in Proceedings of PAC09, Vancouver, BC, Canada, WE4RAC03, 2009, p. 1941 ff

    Google Scholar 

  • P.C. Marin, Synchrotron radiation stimulated gas desorption from metals. Nucl. Inst. Methods Phys. Res. B 89, 69–73 (1994). Copyright 1994. Reprinted with permission from Elsevier

    Article  ADS  Google Scholar 

  • H.P. Marques, G. Debut, M. Hahn, Photodesorption measurements at ERSF D31, in Proceedings of IPAC2011, San Sebastián, Spain, TUPS002, 2011, p. 1518 ff. Picture reproduced under CC-BY 3.0. https://creativecommons.org/licenses/by/3.0/

  • Molflow, Molflow+ − a Monte-Carlo Simulator package developed at CERN (2013), http://test-molflow.web.cern.ch/

  • S.P. Møller, Beam residual gas interactions, in CERN Accelerator School Vacuum Technology, Snekersten, Denmark, CERN, Geneva, CERN-99-05 (1999)

    Google Scholar 

  • D. Na, Updated status of the PAL-XFEL Vacuum System. Presentation to OLAV IV, NSRRC, Hsinchu, 2014

    Google Scholar 

  • B. Nagorny, Performance of the vacuum system for the PETRA III damping wiggler section. Vacuum 86(7), 822–826 (2012)

    Article  ADS  Google Scholar 

  • B. Nagorny et al., Vacuum system design of the third generation synchrotron radiation source PETRA III. J. Phys. Conf. Ser. 100, 092012 (2008). https://doi.org/10.1088/1742-6596/100/9/092012; © IOP Publishing. Reproduced with permission. All rights reserved

    Article  Google Scholar 

  • J.R. Noonan, APS Storage Ring Vacuum System performance, in Proceedings of the PAC07, Vancouver, B.C., Canada, 1998, p. 3552 ff

    Google Scholar 

  • H. Ohkuma et al., Vacuum conditioning and beam lifetime of the Spring-8 storage ring, in Proceedings of the 1999 Particle Accelerator Conference, New York, 1999, 1999, p. 2352 ff

    Google Scholar 

  • A. Piwinski, The Touschek Effect in Strong Focussing Storage Rings, DESY 98-179. arXiv:physics/9903034v1 [physics.acc-ph]. ISSN 0418-9833; November 1998 (1999)

    Google Scholar 

  • E. Rutherford, Proc. R. Soc. Lond. 117(777), 310 (1928). https://doi.org/10.1098/rspa.1928.0001

    Article  ADS  Google Scholar 

  • M. Seidel, J. Boster, R. Böspflug, W. Giesske, U. Naujoks, M. Schwartz, The vacuum system for PETRA III, in Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee, 2005, p. 2473 ff. Picture reproduced under CC-BY 3.0. https://creativecommons.org/licenses/by/3.0/

  • P. Tavares et al., Commissioning and first-year operational results of the MAX IV 3 GeV ring. J. Synchrotron Radiat. 25, 1291–1316 (2018). https://doi.org/10.1107/S1600577518008111

    Article  Google Scholar 

  • E. Trakhtenberg, P. Den Hartog, G. Wiemerslage, Extruded aluminum vacuum chambers for insertion devices, in Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA, THOBS5, 2011, p. 2093 ff

    Google Scholar 

Further Reading

    Vacuum Physics and Technology

    • K. Jousten (ed.), Wutz Handbuch Vakuumtechnik: Theorie und Praxis, Auflage: 9, überarb. u. erw. Aufl. (Vieweg+Teubner Verlag, Wiesbaden, 2006). ISBN-10: 383480133X

      Google Scholar 

    • J.F. O’Hanlon, A User’s Guide to Vacuum Technology, 3rd edn. (Wiley-Interscience, 2003). ISBN-10: 0471270520

      Google Scholar 

    Accelerator-Centric Vacuum Compendia

    Vacuum Systems and Cryogenics

    In-Vac-Undulators

    • T. Tanaka, T. Hara, R. Tsuru, D. Iwaki, X. Marechal, T. Bizen, T. Seike, H. Kitamura, In-vacuum undulators, in Proceedings of the 27th International Free Electron Laser Conference 21–26 August 2005, Stanford, California, USA, 2005, p. 370, JACoW/eConf C0508213

      Google Scholar 

    Front-Ends

    • J. Falta, T. Möller, Forschung mit Synchrotronstrahlung: Eine Einführung in die Grundlagen und Anwendungen (Vieweg+Teubner Verlag, Wiesbaden, 2010)

      Google Scholar 

    • Franz (2004) Beamline front ends and optics Chapter 5, in PETRA III TDR [Balewski, 2004]

      Google Scholar 

    • U. Hahn, H.B. Peters, R. Röhlsberger, H. Schulte-Schrepping, The generic beamline concept of the PETRA III undulator beamlines. AIP Conf. Proc. 879, 539–542 (2007). https://doi.org/10.1063/1.2436117

      Article  ADS  Google Scholar 

    • J. Strachan, D.G. Clarke, Front ends at diamond, in Proceedings of EPAC 2006, Edinburgh, Scotland, 2006, p. 3335 ff

      Google Scholar 

    Download references

    Author information

    Authors and Affiliations

    Authors

    Corresponding author

    Correspondence to Lutz Lilje .

    Editor information

    Editors and Affiliations

    Rights and permissions

    Reprints and permissions

    Copyright information

    © 2019 Springer Nature Switzerland AG

    About this entry

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this entry

    Lilje, L. (2019). Vacuum Systems for Synchrotron Light Sources and FELs. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-04507-8_14-1

    Download citation

    • DOI: https://doi.org/10.1007/978-3-319-04507-8_14-1

    • Received:

    • Accepted:

    • Published:

    • Publisher Name: Springer, Cham

    • Print ISBN: 978-3-319-04507-8

    • Online ISBN: 978-3-319-04507-8

    • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

    Publish with us

    Policies and ethics