Skip to main content

Abstract

Engineers must make decisions or advise decisions makers in problems involving uncertainty and risk. Engineering risk assessments support engineers and scientists in this task, by providing a structured approach to understanding and modeling the risks. Such risk assessments are based on a quantitative engineering modeling approach, which differs from the actuarial approach to risk modeling. Because of limited data, engineers must utilize all available information from multiple sources, including physical and logical models, observed data and expert knowledge. This information is uncertain and often contradicting. The methods presented in this chapter help engineers to consistently combine this information to come up with best estimates of risk and optimal decision support. They also help the engineer in understanding the limitations and sensitivity of risk estimates and facilitate the communication and comparison of risks. Finally, they enable the definition of clear criteria for assessing the acceptability and optimality of engineering solutions to reducing risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Selected Bibliography

  1. T. Aven, Foundations of Risk Analysis. A Knowledge and Decision-Oriented Perspective (Wiley, Chichester, 2005)

    Google Scholar 

  2. J.R. Benjamin, C.A. Cornell, Probability, Statistics, and Decision for Civil Engineers (McGraw-Hill, New York, 1970)

    Google Scholar 

  3. I. Papaioannou, D. Straub, Reliability updating in geotechnical engineering including spatial variability of soil. Comput. Geotech. 42, 44–51 (2012)

    Article  Google Scholar 

  4. M.G. Stewart, R.E. Melchers, Probabilistic Risk Assessment of Engineering Systems (Chapman & Hall, London, 1997)

    Google Scholar 

  5. Straub, Lecture notes in engineering risk analysis. TU München (2011)

    Google Scholar 

  6. Straub, Lecture notes in structural reliability methods. TU München (2011)

    Google Scholar 

Additional Literature

  1. G.E. Apostolakis, How useful is quantitative risk assessment? Risk Anal. 24(3), 515–520 (2004)

    Google Scholar 

  2. S.-K. Au, J.L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation. Probab. Eng. Mech. 16, 263–277 (2001)

    Article  Google Scholar 

  3. T. Aven, J.E. Vinnem, On the use of risk acceptance criteria in the offshore oil and gas industry. Reliab. Eng. Syst. Saf. 90(1), 15–24 (2005)

    Article  Google Scholar 

  4. R.E. Barlow, F. Proschan, Mathematical Theory of Reliability. Classics in Applied Mathematics, vol. 17 (SIAM, Philadelphia, 1996)

    Book  MATH  Google Scholar 

  5. E.S. Beckjord, M.A. Cunningham, J.A. Murphy, Probabilistic safety assessment development in the United States 1972–1990. Reliab. Eng. Syst. Saf. 39(2), 159–170 (1993)

    Article  Google Scholar 

  6. M.T. Bensi, A. Der Kiureghian, D. Straub, A Bayesian network methodology for infrastructure seismic risk assessment and decision support. PEER Report 2011/02, Pacific Earthquake Engineering Research Center, University of California, Berkeley (2011)

    Google Scholar 

  7. K. Breitung, Asymptotic approximations for multinormal integrals. J. Eng. Mech., Trans. ASCE 110(3), 357–366 (1984)

    Article  Google Scholar 

  8. C.G. Bucher, U. Bourgund, A fast and efficient response surface approach for structural reliability problems. Struct. Saf. 7(1), 57–66 (1990)

    Google Scholar 

  9. S. Coles, L.R. Pericchi, S. Sisson, A fully probabilistic approach to extreme rainfall modeling. J. Hydrol. 273(1–4), 35–50 (2003)

    Article  Google Scholar 

  10. R.M. Cooke, J.M. van Noortwijk, Local probabilistic sensitivity measures for comparing FORM and Monte Carlo calculations illustrated with dike ring reliability calculations. Comput. Phys. Commun. 117(1–2), 86–98 (1999)

    Article  MATH  Google Scholar 

  11. C. Czado, E.C. Brechmann, Bayesian risk analysis, in Risk – A Multidisciplinary Introduction, ed. by C. Klüppelberg, D. Straub, I. Welpe (2014)

    Google Scholar 

  12. A. Der Kiureghian, P.-L. Liu, Structural reliability under incomplete probability information. J. Eng. Mech., Trans. ASCE 112(1), 85–104 (1986)

    Article  Google Scholar 

  13. DIN, Eurocode 0—basis of structural design (EN 1990:2002). Deutsches Institut für Normung e.V. (2001)

    Google Scholar 

  14. O. Ditlevsen, H.O. Madsen, Structural Reliability Methods (Wiley, New York, 1996)

    Google Scholar 

  15. S. Engelund, R. Rackwitz, A benchmark study on importance sampling techniques in structural reliability. Struct. Saf. 12(4), 255–276 (1993)

    Google Scholar 

  16. M.H. Faber, I.B. Kroon, E. Kragh, D. Bayly, P. Decosemaeker, Risk assessment of decommissioning options using Bayesian networks. J. Offshore Mech. Arct. Eng. 124(4), 231–238 (2002)

    Article  Google Scholar 

  17. V. Fasen, C. Klüppelberg, A. Menzel, Quantifying extreme risks, in Risk – A Multidisciplinary Introduction, ed. by C. Klüppelberg, D. Straub, I. Welpe (2014)

    Google Scholar 

  18. A. Friis-Hansen, Bayesian networks as a decision support tool in marine applications. PhD thesis, DTU, Lyngby, Denmark (2000)

    Google Scholar 

  19. A. Grêt-Regamey, D. Straub, Spatially explicit avalanche risk assessment linking Bayesian networks to a GIS. Nat. Hazards Earth Syst. Sci. 6(6), 911–926 (2006)

    Article  Google Scholar 

  20. A. Høyland, M. Rausand, System Reliability Theory. Models and Statistical Methods. A Wiley-Interscience Publication (Wiley, New York, 1994)

    Google Scholar 

  21. HSE, Reducing Risks, Protecting People. HSE’s Decision-Making Process. JHSE Books (Health and Safety Executive, Liverpool, 2001)

    Google Scholar 

  22. F.V. Jensen, T.D. Nielsen, Bayesian Networks and Decision Graphs. Information Science and Statistics (Springer, New York, 2007)

    Book  MATH  Google Scholar 

  23. R.B. Jongejan, How safe is safe enough? The government’s response to industrial and flood risks. PhD thesis, TU, Delft, NL (2008)

    Google Scholar 

  24. A. Lentz, Acceptability of civil engineering decisions involving human consequences. PhD thesis, TU München (2007)

    Google Scholar 

  25. L.D. Lutes, S. Sarkani, Random Vibrations. Analysis of Structural and Mechanical Systems (Elsevier/Butterworth/Heinemann, Amsterdam, 2004)

    Google Scholar 

  26. R.E. Melchers, Structural Reliability Analysis and Prediction (Wiley, New York, 1999)

    Google Scholar 

  27. NTSB, Aviation accident statistics. National Transportation Safety Board, US (2010). Retrieved June 19, 2011

    Google Scholar 

  28. A. Papoulis, S.U. Pillai, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, Boston, 2009)

    Google Scholar 

  29. M.E. Paté-Cornell, Quantitative safety goals for risk management of industrial facilities. Struct. Saf. 13(3), 145–157 (1994)

    Article  Google Scholar 

  30. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. The Morgan Kaufmann Series in Representation and Reasoning (Morgan Kaufmann, San Mateo, 1988)

    Google Scholar 

  31. R. Rackwitz, Reliability analysis—a review and some perspectives. Struct. Saf. 23(4), 365–395 (2001)

    Article  Google Scholar 

  32. R. Rackwitz, Optimal and acceptable technical facilities involving risks. Risk Anal. 24(3), 675–695 (2004)

    Article  Google Scholar 

  33. R. Rackwitz, B. Fiessler, Structural reliability under combined load sequences. Comput. Struct. 9, 489–494 (1978)

    Article  MATH  Google Scholar 

  34. R.Y. Rubinstein, D.P. Kroese, Simulation and the Monte Carlo Method (Wiley-Interscience, New York, 2007)

    Book  Google Scholar 

  35. S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (Prentice-Hall, Englewood Cliffs, 2003)

    Google Scholar 

  36. J. Song, A. Der Kiureghian, Bounds on system reliability by linear programming. J. Eng. Mech., Trans. ASCE 129(6), 627–636 (2003)

    Article  Google Scholar 

  37. D. Straub, Stochastic modeling of deterioration processes through dynamic Bayesian networks. J. Eng. Mech., Trans. ASCE 135(10), 1089–1099 (2009)

    Article  MathSciNet  Google Scholar 

  38. D. Straub, Reliability updating with equality information. Probab. Eng. Mech. 26(2), 254–258 (2011)

    Article  MathSciNet  Google Scholar 

  39. D. Straub, A. Der Kiureghian, Bayesian network enhanced with structural reliability methods. Part A: theory. J. Eng. Mech., Trans. ASCE 136(10), 1248–1258 (2010)

    Article  Google Scholar 

  40. D. Straub, M.H. Faber, Risk based inspection planning for structural systems. Struct. Saf. 27(4), 335–355 (2005)

    Article  Google Scholar 

  41. D. Straub, I. Welpe, Decision-making under risk: a normative and behavioral perspective, in Risk – A Multidisciplinary Introduction, ed. by C. Klüppelberg, D. Straub, I. Welpe (2014)

    Google Scholar 

  42. D. Straub, M.T. Bensi, A. Der Kiureghian, Spatial modeling of earthquake hazard and infrastructure performance through Bayesian networks, in Proc. ASCE Engineering Mechanics ’08 Conference, University of Minnesota, Minneapolis (2008)

    Google Scholar 

  43. B. Sudret, Meta-models for structural reliability and uncertainty quantification, in Proc. Asian-Pacific Symposium on Structural Reliability and Its Applications, Singapore (2012)

    Google Scholar 

  44. B. Vogel-Heuser, S. Rösch, Integrated modeling of complex production automation systems to increase dependability, in Risk – A Multidisciplinary Introduction, ed. by C. Klüppelberg, D. Straub, I. Welpe (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Straub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Straub, D. (2014). Engineering Risk Assessment. In: Klüppelberg, C., Straub, D., Welpe, I. (eds) Risk - A Multidisciplinary Introduction. Springer, Cham. https://doi.org/10.1007/978-3-319-04486-6_12

Download citation

Publish with us

Policies and ethics