Skip to main content

Science and Metaphysics: The Case of Quantum Physics

  • Chapter
  • First Online:
Mind, Values, and Metaphysics
  • 848 Accesses

Abstract

The chapter argues that doing metaphysics requires taking science into account and that doing so implies going as far as to take a stance on what the appropriate formulation of the scientific theories in question is. I illustrate this claim by considering quantum physics. The famous measurement problem teaches us that answering the very question of what the appropriate formulation of quantum mechanics requires employing the conceptual tools of philosophy. I first set out a general metaphysical framework that applies to all the different formulations of quantum mechanics (namely a certain sort of holism), then consider the three different types of solution to the measurement problem and finally conclude that despite appearances to the contrary, Bohm’s theory still stands out as the best candidate for an ontological interpretation of quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler SL (2003) Why decoherence has not solved the measurement problem: a response to PW Anderson. Stud Hist Philos Mod Phys 34:135–142

    Article  Google Scholar 

  • Albert DZ (1992) Quantum mechanics and experience. Harvard University Press, Cambridge (Massachusetts)

    Google Scholar 

  • Albert DZ (1996) Elementary quantum metaphysics. In: Cushing JT, Fine A, Goldstein S (eds) Bohmian mechanics and quantum theory: an appraisal. Kluwer, Dordrecht, pp 277–284

    Google Scholar 

  • Allori V, Goldstein S, Tumulka R, Zanghì N (2008) On the common structure of Bohmian mechanics and the Ghirardi–Rimini–Weber theory. Br J Philos Sci 59:353–389

    Article  Google Scholar 

  • Aspect A, Dalibard J, Roger G (1982) Experimental test of Bell’s inequalities using time-varying analyzers. Phys Rev Lett 49:1804–1807

    Article  Google Scholar 

  • Balashov Y (2010) Persistence and spacetime. Oxford University Press, Oxford

    Google Scholar 

  • Bell JS (1987) Speakable and unspeakable in quantum mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Belot G (2012) Quantum states for primitive ontologists. A case study. Eur J Philos Sci 2:67–83

    Google Scholar 

  • Berkovitz J (2008) On predictions in retro-causal interpretations of quantum mechanics. Stud Hist Philos Mod Phys 39:709–735.

    Article  Google Scholar 

  • Bohm D (1952) A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. Phys Rev 85:166–193

    Article  Google Scholar 

  • Bohm D, Hiley B (1993) The undivided universe. An ontological interpretation of quantum theory. Routledge, London

    Google Scholar 

  • Chang H, Cartwright N (1993) Causality and realism in the EPR experiment. Erkenntnis 38:169–190

    Article  Google Scholar 

  • Dorato M, Esfeld M (2010) GRW as an ontology of dispositions. Stud Hist Philos Mod Phys 41:41–49

    Article  Google Scholar 

  • Dürr D, Goldstein S, Zanghì N (2013) Quantum physics without quantum philosophy. Springer, Berlin

    Google Scholar 

  • Einstein A (1948) Quanten–Mechanik und Wirklichkeit. Dialectica 2:320–324

    Article  Google Scholar 

  • Esfeld M (2004) Quantum entanglement and a metaphysics of relations. Stud Hist Philos Mod Phys 35:601–617

    Article  Google Scholar 

  • Esfeld M, Lam V (2008) Moderate structural realism about space–time. Synthese 160:27–46

    Article  Google Scholar 

  • Esfeld M, Lam V (2011) Ontic structural realism as a metaphysics of objects. In: Bokulich A, Bokulich P (eds) Scientific structuralism. Springer, Dordrecht, pp 143–159

    Google Scholar 

  • Esfeld M, Lazarovici D, Hubert M, Dürr D (2013) The ontology of Bohmian mechanics. Br J Philos Sci DOI 10.1093/bjps/axt019

    Google Scholar 

  • Everett H (1957) ‘Relative state’ formulation of quantum mechanics. Rev Mod Phys 29:454–462. (Reprinted in DeWitt B S, Graham N (eds) (1973) The many-worlds interpretation of quantum mechanics. Princeton University Press, Princeton, pp 141–149)

    Google Scholar 

  • French S (2014) The structure of the world. Metaphysics and representation. Oxford University Press, Oxford

    Google Scholar 

  • Ghirardi GC, Grassi R, Benatti F (1995) Describing the macroscopic world: closing the circle within the dynamical reduction program. Foundations Phys 25:5–38

    Article  Google Scholar 

  • Ghirardi GC, Rimini A, Weber T (1986) Unified dynamics for microscopic and macroscopic systems. Phys Rev D 34:470–491

    Article  Google Scholar 

  • Gisin N (1984) Quantum measurements and stochastic processes. Phys Rev Lett 52:1657–1660. (and reply p. 1776)

    Google Scholar 

  • Kiefer C (2012) Quantengravitation. In: Esfeld M (ed) Philosophie der Physik. Suhrkamp, Berlin, pp 267–286

    Google Scholar 

  • Ladyman J (2010) Reply to Hawthorne: physics before metaphysics. In: Saunders S, Barrett J, Kent A, Wallace D (eds) Many worlds? Everett, quantum theory, and reality. Oxford University Press, Oxford, pp 154–160

    Google Scholar 

  • Ladyman J, Ross D (2007) Every thing must go. Metaphysics naturalised. Oxford University Press, Oxford

    Google Scholar 

  • Lange M (2002) An introduction to the philosophy of physics. Blackwell, Oxford

    Google Scholar 

  • Maudlin T (1995) Three measurement problems. Topoi 14:7–15

    Google Scholar 

  • Maudlin T (2007) Completeness, supervenience, and ontology. J Phys A Math Theor 40:3151–3171

    Google Scholar 

  • Maudlin T (2008) Non-local correlations in quantum theory: some ways the trick might be done. In: Smith Q, Craig WL (eds) Einstein, relativity, and absolute simultaneity. Routledge, London pp 186–209

    Google Scholar 

  • Maudlin T (2010) Can the world be only wave function? In: Saunders S, Barrett J, Kent A, Wallace D (eds) Many worlds? Everett, quantum theory, and reality. Oxford University Press, Oxford pp 121–143

    Google Scholar 

  • Maudlin T (2011) Quantum non-locality and relativity. 3rd edn. Wiley-Blackwell, Chichester

    Google Scholar 

  • Monton B (2004) The problem of ontology for spontaneous collapse theories. Stud Hist Philos Mod Phys 35:407–421

    Google Scholar 

  • Monton B (2006) Quantum mechanics and 3N-dimensional space. Philos Sci 73:778–789

    Google Scholar 

  • Mulligan K (1998) Relations—through thick and thin. Erkenntnis 48:325–353

    Google Scholar 

  • Mulligan K, Simons P, Smith B (2006) What’s wrong with contemporary philosophy? Topoi 25:63–67

    Google Scholar 

  • Norsen T (2009) Local causality and completeness: Bell vs. Jarrett. Foundations Phys 39:273–294

    Google Scholar 

  • Price H (1996) Time’s arrow and Archimedes’ point. New directions for the physics of time. Oxford University Press, Oxford

    Google Scholar 

  • Putnam H (1965) A philosopher looks at quantum mechanics. In: Putnam H (ed) Mathematics, matter and method. Philosophical papers. vol 1. Cambridge University Press, Cambridge, pp 130–158

    Google Scholar 

  • Putnam H (2005) A philosopher looks at quantum mechanics (again). Br J Philos Sci 56:615–634

    Google Scholar 

  • Saunders S, Barrett J, Kent A, Wallace D (eds) (2010) Many worlds? Everett, quantum theory, and reality. Oxford University Press, Oxford

    Google Scholar 

  • Seevinck MP (2010) Can quantum theory and special relativity peacefully coexist? Invited white paper for quantum physics and the nature of reality, John Polkinghorne 80th birthday conference. St Annes College, Oxford, 26–29 September 2010. http://arxiv.org/abs/1010.3714

  • Teller P (1986) Relational holism and quantum mechanics. Br J Philos Sci 37:71–81

    Google Scholar 

  • Tittel W, Brendel J, Gisin B, Herzog T, Zbinden H, Gisin N (1998) Experimental demonstration of quantum-correlations over more than 10 km. Phys Rev A57:3229–3232

    Google Scholar 

  • Tumulka R (2006) A relativistic version of the Ghirardi–Rimini–Weber model. J Stat Phy 125:821–840

    Google Scholar 

  • Tumulka R (2009) The point processes of the GRW theory of wave function collapse. Rev Math Phy 21:155–227

    Google Scholar 

  • von Neumann J (1932) Mathematische Grundlagen der Quantenmechanik. Springer, Berlin. (English edition: von Neumann J (1955) Mathematical foundations of quantum mechanics (trans: Beyer R T). Princeton University Press, Princeton)

    Google Scholar 

  • Wallace D (2008) Philosophy of quantum mechanics. In: Rickles D (ed) The Ashgate companion to contemporary philosophy of physics. Ashgate, Aldershot, pp 16–98

    Google Scholar 

  • Wallace D (2012) The emergent multiverse. Quantum theory according to the Everett interpretation. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Esfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Esfeld, M. (2014). Science and Metaphysics: The Case of Quantum Physics. In: Reboul, A. (eds) Mind, Values, and Metaphysics. Springer, Cham. https://doi.org/10.1007/978-3-319-04199-5_20

Download citation

Publish with us

Policies and ethics