Skip to main content

Interpreting Feature Tracking Through the Lens of Robustness

  • Conference paper
  • First Online:
Topological Methods in Data Analysis and Visualization III

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

A key challenge in the study of a time-varying vector fields is to resolve the correspondences between features in successive time steps and to analyze the dynamic behaviors of such features, so-called feature tracking. Commonly tracked features, such as volumes, areas, contours, boundaries, vortices, shock waves and critical points, represent interesting properties or structures of the data. Recently, the topological notion of robustness, a relative of persistent homology, has been introduced to quantify the stability of critical points. Intuitively, the robustness of a critical point is the minimum amount of perturbation necessary to cancel it. In this chapter, we offer a fresh interpretation of the notion of feature tracking, in particular, critical point tracking, through the lens of robustness. We infer correspondences between critical points based on their closeness in stability, measured by robustness, instead of just distance proximities within the domain. We prove formally that robustness helps us understand the sampling conditions under which we can resolve the correspondence problem based on region overlap techniques, and the uniqueness and uncertainty associated with such techniques. These conditions also give a theoretical basis for visualizing the piecewise linear realizations of critical point trajectories over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Bauer, R. Peikert, Vortex tracking in scale space, in Proceedings of the Symposium on Data Visualisation, Switzerland, 2002, pp. 233–240

    Google Scholar 

  2. P. Bendich, H. Edelsbrunner, D. Morozov, A. Patel, Homology and robustness of level and interlevel sets. Homol. Homotopy Appl. 15(1), 51–72 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Carlsson, A. Zomorodian, The theory of multidimensional persistence, in Proceedings of the 23rd Annual Symposium on Computational Geometry, Gyeongju, 2007, pp. 184–193

    Google Scholar 

  4. H. Carr, J. Snoeyink, U. Axen, Computing contour trees in all dimensions, in Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, 2000, pp. 918–926

    Google Scholar 

  5. F. Chazal, A. Patel, P. Skraba, Computing the robustness of roots. Manuscript. http://ailab.ijs.si/primoz_skraba/papers/fp.pdf,2011

  6. F. Chazal, P. Skraba, A. Patel, Computing well diagrams for vector fields on \({\mathbb{R}}^{n}\). Appl. Math. Lett. 25, 1725–1728 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Edelsbrunner, J. Harer, Jacobi sets of multiple Morse functions, in Foundations of Computational Mathematics, ed. by F. Cucker, R. DeVore, P. Olver, E. Sueli (Cambridge University Press, Cambridge, 2004), pp. 37–57

    Google Scholar 

  8. H. Edelsbrunner, J. Harer, A. Mascarenhas, V. Pascucci, Time-varying Reeb graphs for continuous space-time data, in Proceedings of the 20th Annual Symposium on Computational Geometry, Brooklyn, 2004, pp. 366–372

    Google Scholar 

  9. H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification. Discret. Comput. Geom. 28, 511–533 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Edelsbrunner, D. Morozov, A. Patel, The stability of the apparent contour of an orientable 2-manifold, in Topological Methods in Data Analysis and Visualization (Springer, Berlin/Heidelberg, 2010), pp. 27–41

    Google Scholar 

  11. H. Edelsbrunner, D. Morozov, A. Patel, Quantifying transversality by measuring the robustness of intersections. Found. Comput. Math. 11, 345–361 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Garth, X. Tricoche, G. Scheuermann, Tracking of vector field singularities in unstructured 3D time-dependent datasets, in IEEE Visualization, Washington, DC, 2004, pp. 329–336

    Google Scholar 

  13. A. Gerndt, T. Kuhlen, C. Cruz-Neira, Interactive tracking of three-dimensional critical points in unsteady, large-scale CFD datasets, in Proceedings of the International Conference on Computer Graphics and Virtual Reality, Las Vegas, 2008, pp. 22–28

    Google Scholar 

  14. A. Hatcher, Algebraic Topology (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  15. E. Hawkes, R. Sankaran, P. Pébay, J. Chen, Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: II. Parametric study. Combust. Flame 145, 145–159 (2006)

    Article  Google Scholar 

  16. M. in den Haak, H.J.W. Spoelder, F.C.A. Groen, Matching of images by using automatically selected regions of interest. Computer Science in the Netherlands, pp. 27–40, 1992

    Google Scholar 

  17. G. Ji, H.-W. Shen, R. Wenger, Volume tracking using higher dimensional isosurfacing, in IEEE Visualization, Seattle, 2003, pp. 209–216

    Google Scholar 

  18. H. King, K. Knudson, N. Mramor, Birth and death in discrete Morse theory. Manuscript, 2008

    Google Scholar 

  19. T. Klein, T. Ertl, Scale-space tracking of critical points in 3D vector fields. Topology-Based Methods in Visualization, Mathematics and Visualization (Springer, Berlin, 2007), pp. 35–49

    Google Scholar 

  20. M. Kraus, Visualization of uncertain contour trees. Proceedings of the International Conference on Information Visualization Theory and Applications, Angers, 2010, pp. 132–139

    Google Scholar 

  21. M. Maltrud, F. Bryan, S. Peacock, Boundary impulse response functions in a century-long eddying global ocean simulation. Environ. Fluid Mech. 10, 275–295 (2010)

    Article  Google Scholar 

  22. F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, H. Doleisch, The state of the art in flow visualization: feature extraction and tracking. Comput. Graph. Forum 22, 775–792 (2003)

    Article  Google Scholar 

  23. F. Reinders, F.H. Post, H.J.W. Spoelder, Attribute-based feature tracking, in Data Visualization, Vienna, 1999, pp. 63–72

    Google Scholar 

  24. F. Reinders, F.H. Post, H.J.W. Spoelder, Visualization of time-dependent data using feature tracking and event detection. Vis. Comput. 17, 55–71 (2001)

    Article  MATH  Google Scholar 

  25. F. Reinders, I.A. Sadarjoen, B. Vrolijk, F.H. Post, Vortex tracking and visualisation in a flow past a tapered cylinder. Comput. Graph. Forum 21, 675–682 (2002)

    Article  Google Scholar 

  26. J. Reininghaus, J. Kasten, T. Weinkauf, I. Hotz, Efficient computation of combinatorial feature flow fields. IEEE Trans. Vis. Comput. Graph. 18(9), 1563–1573 (2011)

    Article  Google Scholar 

  27. J. Reininghaus, C. Lowen, I. Hotz, Fast combinatorial vector field topology. IEEE Trans. Vis. Comput. Graph. 17(10), 1433–1443 (2011)

    Article  Google Scholar 

  28. R. Samtaney, D. Silver, N. Zabusky, J. Cao, Visualizing features and tracking their evolution. Computer 27, 20–27 (1994)

    Article  Google Scholar 

  29. A. Shamir, C. Bajaj, B.-S. Sohn, Progressive tracking of isosurfaces in time-varying scalar fields. Technical report, CS & TICAM Technical Report TR-02-4, University of Taxes Austin, 2002

    Google Scholar 

  30. D. Silver, X. Wang, Volume tracking, in IEEE Visualization, San Francisco, 1996, pp. 157–164

    Google Scholar 

  31. D. Silver, X. Wang, Tracking and visualizing turbulent 3D features. IEEE Trans. Vis. Comput. Graph. 3, 129–141 (1997)

    Article  Google Scholar 

  32. D. Silver, X. Wang, Visualizing evolving scalar phenomena. Future Gener. Comput. Syst. 15, 99–108 (1999)

    Article  Google Scholar 

  33. P. Skraba, B. Wang, G. Chen, P. Rosen, 2D vector field simplification based on robustness. SCI Technical report UUSCI-2013-004, 2013

    Google Scholar 

  34. B.-S. Sohn, C. Bajaj, Time-varying contour topology. IEEE Trans. Vis. Comput. Graph. 12, 14–25 (2006)

    Article  Google Scholar 

  35. H. Theisel, H. P. Seidel, Feature flow fields, in Proceedings of the Symposium on Data Visualisation, Switzerland, 2003, pp. 141–148

    Google Scholar 

  36. X. Tricoche, G. Scheuermann, H. Hagen, Topology-based visualization of time-dependent 2D vector fields. Data Visualization (Springer, Vienna, 2001), pp. 117–126

    Google Scholar 

  37. X. Tricoche, T. Wischgoll, G. Scheuermann, H. Hagen, Topology tracking for the visualization of time-dependent two-dimensional flows. Comput. Graph. 26, 249–257 (2002)

    Article  Google Scholar 

  38. B. Wang, P. Rosen, P. Skraba, H. Bhatia, V. Pascucci, Visualizing robustness of critical points for 2D time-varying vector fields. Comput. Graph. Forum 32(3), 221–230 (2013)

    Article  Google Scholar 

  39. G. Weber, P.-T. Bremer, M. Day, J. Bell, V. Pascucci, Feature tracking using Reeb graphs, in Topological Methods in Data Analysis and Visualization, ed. by V. Pascucci, X. Tricoche, H. Hagen, J. Tierny (Springer, Berlin/Heidelberg, 2011)

    Google Scholar 

  40. C. Weigle, D.C. Banks, Extracting iso-valued features in 4-dimensional scalar fields, in IEEE Symposium on Volume Visualization, New York, 1998, pp. 103–110

    Google Scholar 

  41. T. Weinkauf, H. Theisel, A.V. Gelder, A. Pang, Stable feature flow fields. IEEE Trans. Vis. Comput. Graph 17, 770–780 (2011)

    Article  Google Scholar 

  42. A. Yilmaz, O. Javed, M. Shah, Object tracking: A survey. ACM Comput. Surv. 38, 13 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the EU project TOPOSYS (FP7-ICT-318493-STREP), NSF OCI-0906379, NSF OCI- 0904631, DOE/NEUP 120341, DOE/MAPD DESC000192, DOE/LLNL B597476, DOE/Codesign P01180734, and DOE/SciDAC DESC0007446. The authors would like to thank Guoning Chen and Paul Rosen for developing the tool for robustness-based visualization. We thank Jackie Chen for the combustion dataset. We also thank Mathew Maltude from the Climate, Ocean and Sea Ice Modeling program at Los Alamos National Laboratory (LANL) and the BER Office of Science UV-CDAT team for providing us the ocean datasets. The authors would also like to thank the anonymous reviewers for many useful comments to improve the readability of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Skraba, P., Wang, B. (2014). Interpreting Feature Tracking Through the Lens of Robustness. In: Bremer, PT., Hotz, I., Pascucci, V., Peikert, R. (eds) Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-04099-8_2

Download citation

Publish with us

Policies and ethics