Skip to main content

Performance Evaluation of Gibbs Sampling for Bayesian Extracting Sinusoids

  • Chapter
  • First Online:
Computational Problems in Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 307))

  • 1119 Accesses

Abstract

This chapter involves problems of estimating parameters of sinusoids from white noisy data by using Gibbs sampling (GS) in a Bayesian inferential framework which allows us to incorporate prior knowledge about the nature of sinusoidal data into the model. Modifications of its algorithm is tested on data generated from synthetic signals and its performance is compared with conventional estimators such as Maximum Likelihood (ML) and Discrete Fourier Transform (DFT) under a variety of signal to noise ratio (SNR) conditions and different lengths of data sampling (N), regarding to Cramér–Rao lower bound (CRLB) that is a limit on the best possible performance achievable by an unbiased estimator given a dataset. All simulation results show its effectiveness in frequency and amplitude estimation of noisy sinusoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreiu C, Doucet A (1999) Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC, IEEE Transactions on Signal Processing, 47: 2667–2676

    Article  Google Scholar 

  2. Bernardo JM, Smith AFM (2000) Bayesian theory, Willey Series in Probability and Statistics New York

    Google Scholar 

  3. Box GEP, Tiao C (1992) Bayesian inference in statistical analysis, New York

    Google Scholar 

  4. Bretthorst GL (1997) Bayesian spectrum analysis and parameter estimation, Lecture Notes in Statistics, Springer-Verlag Berlin Heidelberg New York

    Google Scholar 

  5. Brooks SP, Gelman A (1997) General methods for monitoring convergence of iterative simulations, Journal of Computational and Graphical Statistics, 7: 434–455

    MathSciNet  Google Scholar 

  6. Cevri M, Ustundag D (2012) Bayesian recovery of sinusoids from noisy data with parallel tempering, IET Signal Process., 6 (7): 673–683

    Google Scholar 

  7. Cevri M, Ustundag D (2013) Performance analysis of Gibbs sampling for Bayesian extracting sinusoids, Proceedings of the 2013 International Conference on Systems, Control, Signal Processing and Informatics, Rhodes Island, Greece, 128–134

    Google Scholar 

  8. Cooley JW, Tukey, JW (1965) An algorithm for the machine calculation of complex Fourier series, Mathematics of Computation, 19: 297–301

    Article  MATH  MathSciNet  Google Scholar 

  9. Cox RT (1946) Probability, frequency, and reasonable expectation, American Journal of Physics, 14: 1–13

    Article  MATH  MathSciNet  Google Scholar 

  10. Diaconis P, Khare K, Coste LS (2008) Gibbs sampling, exponential families and orthogonal polynomials, Statistical Science, 23(2): 151–178

    Article  MathSciNet  Google Scholar 

  11. Dou L, Hodgson RJW (1995a) Bayesian inference and Gibbs sampling in spectral analysis and parameter estimation I, Inverse Problem, 11:1069–1085

    Article  MATH  MathSciNet  Google Scholar 

  12. Dou L, Hodgson RJW (1995b) Bayesian inference and Gibbs sampling in spectral analysis and parameter estimation II, Inverse Problem, 11:121–137

    Article  Google Scholar 

  13. Gelfand AE, Smith AFM (1990) Sampling based approaches to calculating marginal densities. J. Amer. Statist. Assoc., 85:398–409

    Article  MATH  MathSciNet  Google Scholar 

  14. Gelman AB, Stern HS, Rubin DB (1995) Bayesian data analysis, Chapman & Hall/CRC

    Google Scholar 

  15. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distribution and Bayesian restoration of images. IEE Transactions on Pattern Analysis and machine Intelligence, 6:721–741

    MATH  Google Scholar 

  16. Gregory P (2005) Bayesian logical data analysis for the physical science, Cambridge University Press, United Kingdom

    Google Scholar 

  17. Händel P (2008) Parameter estimation employing a dual-channel sine-wave model under a Gaussian assumption, IEEE Transactions on Instrumentation and Measurement, 57(8): 1661–1669

    Google Scholar 

  18. Harney HL (2003) Bayesian inference: Parameter estimation and decisions, Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  19. Hastings, W K (1970) Monte carlo sampling methods using Markov chains, and their applications, Biometrika, 57:97–109

    Article  MATH  Google Scholar 

  20. Jackman S (2000) American journal of political science, 44(2):375–404

    Google Scholar 

  21. Jaynes ET (1987) Bayesian Spectrum and Chirp Analysis, In Proceedings of the Third Workshop on Maximum Entropy and Bayesian Methods, Ed. C. Ray Smith and D. Reidel, Boston, pp. 1–37

    Google Scholar 

  22. Jaynes ET (2003) Probability theory: The logic of science, Cambridge University Press, United Kingdom

    Book  Google Scholar 

  23. Kay SM (1984) Accurate frequency estimation at low signal-to-noise ratio, IEEE Trans. Acoust., Speech, Signal Processing, ASSP-32, pp. 540–547

    Google Scholar 

  24. Kay SM (1993) Fundamentals of statistical signal processing: Estimation theory, Prentice-Hall, Englewood Cliffs, NJ, pp. 56–57

    Google Scholar 

  25. Kenefic RJ, Nuttall AH (1987) Maximum likelihood estimation of the parameters of tone using real discrete data, IEEE J. Oceanic Eng., 12 (1): 279–280

    Google Scholar 

  26. MacKay D (2003) Information theory, inference and learning algorithms, Cambridge University Press

    Google Scholar 

  27. Metropolis N, Rosenbluth A, Rosenbluth, M, Teller A, Teller E (1953) Equation of states calculations by fast computing machines, Journal of chemical physics, 21: 1087–1092

    Google Scholar 

  28. Michalopouloua ZH, Picarelli M (2005) Gibbs sampling for time-delay-and amplitude estimation in underwater acoustics, J. Acoust. Soc. Am., 117:799–808

    Article  Google Scholar 

  29. Quinn BG (1994) Estimating frequency by interpolation using Fourier coefficients, IEEE Trans. Signal Process., 42 (5): 1264–1268

    Google Scholar 

  30. Rife DC, Boorstyn RR (1974) Single-tone parameter estimation from discrete-time observations, IEEE Transactions on Information Theory, 20:591–598

    Article  MATH  Google Scholar 

  31. Ristic B, Arulampalam S, Gordon N (2004) Beyond the Kalman filter particle filters for tracking applications, Artech House, London

    Google Scholar 

  32. Stoica P, Moses RL (2005) Spectral analysis of signals, Prentice Hall

    Google Scholar 

  33. Swendsen RH, Wang JS (1986) Physical review of letters, 57:2607–2609

    Google Scholar 

  34. Tanner, MA (1996) Tools for Statistical Inference, 3rd ed. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  35. Tanner M, Wong W (1987) The calculation of posterior distributions by data augmentation (with discussion), J. Amer. Statist. Assoc., 82:528–550

    Article  MATH  MathSciNet  Google Scholar 

  36. Üstündağ D, Cevri M (2008) Estimating parameters of sinusoids from noisy data using Bayesian inference with simulated annealing, Wseas Transactions On Signal Processing, 7: 432–441

    Google Scholar 

  37. Üstündağ D, Cevri M (2011) Recovering sinusoids from noisy data using Bayesian inference with simulated annealing, Mathematical & Computational Applications, 16(2): 382–391

    Google Scholar 

  38. Ustundag D, Cevri M (2012) Simulated annealing—advances, applications and hybridizations, In Tech, Croatia, ISBN: 978-953-51-0710-1. pp. 67–90

    Google Scholar 

  39. Ustundag D, Cevri M (2013) Comparison of Bayesian methods for recovering sinusoids, Proceedings of the 2013 International Conference on Systems, Control, Signal Processing and Informatics, Rhodes Island, Greece, 120–127

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Research Fund of Istanbul University with project numbers are UDP-33672 and YADOP-19681.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cevri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cevri, M., Üstündag, D. (2014). Performance Evaluation of Gibbs Sampling for Bayesian Extracting Sinusoids. In: Mastorakis, N., Mladenov, V. (eds) Computational Problems in Engineering. Lecture Notes in Electrical Engineering, vol 307. Springer, Cham. https://doi.org/10.1007/978-3-319-03967-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03967-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03966-4

  • Online ISBN: 978-3-319-03967-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics