Skip to main content

The Artistic Geometry of Consensus Protocols

  • Chapter
  • First Online:
Controls and Art

Abstract

A large class of control problems in multi-agent systems use the so-called consensus protocol to achieve coordinated motion among a team of agents. Inspired by the “standard” consensus protocol = -Lx, in this paper we propose a decentralized control law for multi-agent formations in two dimensions that allows the participating vehicles to display intricate periodic and quasi-periodic geometric patterns. Similarly to the standard consensus protocol, these controls rely only on the relative position between the networked agents which are neighbors in the underlying communication graph. Several examples are presented, resulting in nontrivial geometric patterns described by trochoidal curves, similar to those generated using a spirograph. These paths can be useful for coordinated, distributed surveillance, and monitoring applications, as well as for the sake of their own esthetic beauty.

Mighty is geometry; joined with art, resistless. Euripides (480–406 BC)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Owing to the freedom in choosing \({\varvec{q}}_{12}\) and \({\varvec{q}}_{21}\), we define a “position orientation” such that \({\varvec{r}}_{12} \times {\varvec{q}}_{12} ={\varvec{r}}_{21} \times {\varvec{q}}_{21}\).

  2. 2.

    Not everyone is in agreement, of course, with the classical notion of beauty and symmetry. One can easily argue that nonsymmetric patterns may also be esthetically pleasing as long as they do not result in chaos [26]. Recent psychological studies of works of modern art actually claim that it is the cognitive processes themselves that are involved in understanding, classifying, and evaluating a work of art which determine positive, self-rewarding esthetic experiences [20]. Even so, good gestalts tend to give preference to symmetry over nonsymmetry [13].

References

  1. Arcak M (2007) Passivity as a design tool for group coordination. IEEE Trans Autom Control 52(8):1380–1390

    Article  MathSciNet  Google Scholar 

  2. Bense M (1969) Einführung in die informationstheoretische Asthetik. Grundlegung und Anwendung in der Texttheorie. Rowohlt Taschenbuch Verlag, Hamburg

    Google Scholar 

  3. Birkhoff GD (1933) Aesthetic measure. Harvard University Press, Cambridge

    Google Scholar 

  4. Bouleau C (1980) The painter’s secret geometry: a study of composition in art. Hacker Art Books, New York

    Google Scholar 

  5. Boyer CB (1968) A history of mathematics. Wiley, New York

    MATH  Google Scholar 

  6. Brewer J (1978) Kronecker products and matrix calculus in system theory. IEEE Trans Circ Syst 25(9):772–781

    Article  MATH  MathSciNet  Google Scholar 

  7. Coldstream JN (2003) Geometric Greece: 900–700 BC. Psychology Press, Abingdon

    Google Scholar 

  8. Dawson I (2013) Spirographs. http://www.iandawson.net/spiro.php. Accessed 20 May 2013

  9. Economou A (2011) The symmetry lessons from Froebel building gifts. Environ Plann B: Plann Des 26(1):75–90

    Article  MathSciNet  Google Scholar 

  10. El-Said I, El-Bouri T, Critchlow K, Damlūjī SS (1993) Islamic art and architecture: the system of geometric design. Garnet Publishing, London

    Google Scholar 

  11. Ettinghausen R, Grabar O, Jenkins M (2001) Islamic art and architecture: 650–1250, vol 51. Yale University Press, London

    Google Scholar 

  12. Fax JA, Murray RM (2004) Information flow and cooperative control of vehicle formations. IEEE Trans Autom Control 49(9):1465–1476

    Article  MathSciNet  Google Scholar 

  13. Frith CD, Nias DKB (1974) What determines aesthetic preferences? J Gen Psychol 91:163–173

    Google Scholar 

  14. Godsil CD, Royle G (2001) Algebraic graph theory. Springer, New York

    Google Scholar 

  15. Grünbaum B, Grünbaum Z, Shepard GC (1986) Symmetry in moorish and other ornaments. Comput Math Appl 12(3):641–653

    Article  MathSciNet  Google Scholar 

  16. Hall LM (1992) Trochoids, roses, and thorns-beyond the spirograph. Coll Math J 23(1):20–35

    Article  Google Scholar 

  17. Halliwell L (2013) http://www.lesleyhalliwell.co.uk/. Accessed 20 May 2013

  18. Knight TW (1995) Transformations in design: a formal approach to stylistic change and innovation in the visual arts. Cambridge University Press, Cambridge

    Google Scholar 

  19. Lawrence JD (1972) A catalog of special plane curves. Dover Publications, New York

    MATH  Google Scholar 

  20. Leder H, Belke B, Oeberst A, Augustin D (2004) A model of aesthetic appreciation and aesthetic judgments. Br J Psychol 95(4):489–508

    Article  Google Scholar 

  21. Leonard NE, Fiorelli E (2001) Virtual leaders, artificial potentials, and coordinated control of groups. 40th IEEE Conference on Decision and Control, pp 2968–2973, 4–7 Dec 2001

    Google Scholar 

  22. Leonard NE, Young GF, Hochgraf K, Swain DT, Trippe A, Chen W, Fitch K, Marshall S (2014) Controls and art. In the dance studio: an art and engineering exploration of human flocking. In: Lecture Notes in Computer Sciences. Springer-Verlag, New York, p xxx

    Google Scholar 

  23. Locher P, Nodine C (1989) The perceptual value of symmetry. Comput Math Appl 17(4):475–484

    Article  MathSciNet  Google Scholar 

  24. Locher P, Nodine C (1987) Eye movements: from physiology to cognition. Chapter Symmetry Catches the Eye. Elsevier, Holland, pp 353–361

    Google Scholar 

  25. Marshall JA, Broucke ME, Francis BA (2004) Formations of vehicles in cyclic pursuit. IEEE Trans Autom Control 49(11):1963–1974

    Article  MathSciNet  Google Scholar 

  26. McManus C (2005) Symmetry and asymmetry in aesthetics and the arts. Eur Rev 13:157–180

    Article  Google Scholar 

  27. Mesbahi M, Egerstedt M (2010) Graph theoretic methods in multiagent networks. Princeton University Press, Princeton

    MATH  Google Scholar 

  28. Mitchell WJ (1990) The logic of architecture: design, computation, and cognition. MIT Press, Cambridge

    Google Scholar 

  29. Moles A (1968) Information theory and esthetic perception. University of Illinois Press, Champaign

    Google Scholar 

  30. Olfati-Saber R (2006) Swarms on sphere: a programmable swarm with synchronous behaviors like oscillator networks. In: 45th IEEE Conference on Decision and Control, pp 5060–5066

    Google Scholar 

  31. Olfati-Saber R, Murray RM (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control 49(9):1520–1533

    Article  MathSciNet  Google Scholar 

  32. Olfati-Saber R, Fax JA, Murray RM (2006) Consensus and cooperation in multi-agent networked systems. Proc IEEE 97:215–233

    Google Scholar 

  33. Osborne H (1986) Symmetry as an aesthetic factor. Comput Math Appl 12(1):77–82

    Article  Google Scholar 

  34. Parchos EA, Sotiroudis P (1999) The schemata of the stars: Byzantine astronomy from A.D. 1300. World Scientific, Singapore

    Google Scholar 

  35. Park J-H, Joo Y, Yang J-G (2007) Cycloids in Louis I. Kahns Kimbell Art Museum at Fort Worth, Texas. Math Intell 29:42–48

    Google Scholar 

  36. Pavone M, Frazzoli E (2007) Decentralized policies for geometric pattern formation and path coverage. J Dyn Syst Meas Contr 129:633–643

    Article  Google Scholar 

  37. Pohl D (2013) The loop yoga drawing project. http://spirographart.blogspot.com/. Accessed 20 May 2013

  38. Public domain image “\({\rm File:Triquetra}\_{\rm on}\_{\rm book}\_{\rm cover.jpg}\)” from user Chameleon on the Wikimedia Commons. http://commons.wikimedia.org/wiki/File:Triquetra_on_book_cover.jpg;. Accessed 10 Sept 2013

  39. Public domain image ID \(289442\_{\rm WDC25C21}\) (acquisition date 01 Sept 2005). United States Geological Survey. http://earthexplorer.usgs.gov/;. Accessed 21 Nov 2013

  40. Ren W, Beard RW (2005) Consensus seeking in multi-agent systems using dynamically changing interaction topologies. IEEE Trans Autom Control 50(5):655–661

    Article  MathSciNet  Google Scholar 

  41. Rigau J, Feixas M, Sbert M (2008) Informational aesthetics measures. IEEE Comput Graph Appl 28(2):24–34

    Article  Google Scholar 

  42. Sarlette A, Sepulchre R (2009) Consensus optimization on manifolds. SIAM J Control Optim 48(1):56–76

    Article  MATH  MathSciNet  Google Scholar 

  43. Schattschneider D, Hofstadter D (2004) In: Escher MC (ed) Visions of symmetry. Thames & Hudson, London

    Google Scholar 

  44. Schoelling AP, Siegel H, Augugliaro F, D’Andrea R (2014) Controls and art. So you think you can dance? Rhythmic flight performances with quadrocopters. In: Lecture Notes in Computer Sciences. Springer-Verlag, New York, p xxx

    Google Scholar 

  45. Schweitzer B (1971) Greek geometric art. Phaidon, London

    Google Scholar 

  46. Simmons Jeffrey. Paintings: 1999–2000: Trochoid. http://jeffreysimmonsstudio.com/project/trochoids-paintings-1999/. Accessed 20 May 2013

  47. Simoson AJ (2008) Albrecht Dürer’s trochoidal woodcuts. Probl Resour Issues Math Undergraduate Stud (PRIMUS) 18(6):489–499

    Google Scholar 

  48. Stiny G, Gips J (1978) Algorithmic aesthetics: computer models for criticism and design in the arts. University of California Press, Berkeley

    Google Scholar 

  49. Suzuki I, Yamashita M (1999) Distributed anonymous mobile robots: formation of geometric patterns. SIAM J Comput 28(4):1347–1363

    Article  MATH  MathSciNet  Google Scholar 

  50. Tron R, Afsari B, René Vidal (2012) Riemannian consensus for manifolds with bounded curvature. IEEE Trans Autom Control

    Google Scholar 

  51. Tsiotras P, Reyes Castro LI. A note on the consensus protocol with some applications to agent orbit pattern generation. In: 10th Symposium on Distributed Autonomous Robotic Systems (DARS). Lausanne, Switzerland, 1–3 Nov 2010

    Google Scholar 

  52. Wang L-S, Krishnaprasad PS (1992) Gyroscopic control and stabilization. J Nonlinear Sci 2:367–415

    Article  MATH  MathSciNet  Google Scholar 

  53. Wessén E (1952) Det svenska runverket. http://fornvannen.se/pdf/1950talet/1952_193.pdf (in Swedish)

  54. Weyl H (1952) Symmetry. Princeton University Press, London

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Magnus Egerstedt and Amy LaViers for organizing the session on “Controls and Art” during the 2011 American Control Conference and for inviting the authors of this paper to contribute to the session. The authors would also like to thank Prof. Athanassios Economou from the College of Architecture at Georgia Tech for several informative discussions over the use of group symmetries in art and architecture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Tsiotras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsiotras, P., Reyes Castro, L.I. (2014). The Artistic Geometry of Consensus Protocols. In: LaViers, A., Egerstedt, M. (eds) Controls and Art. Springer, Cham. https://doi.org/10.1007/978-3-319-03904-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03904-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03903-9

  • Online ISBN: 978-3-319-03904-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics