Skip to main content

Walking in Streets with Minimal Sensing

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8287))

Abstract

We consider the problem of walking in an unknown street, starting from a point s, to reach a target t by a robot which has a minimal sensing capability. The goal is to decrease the traversed path as short as possible. The robot cannot infer any geometric properties of the environment such as coordinates, angles or distances. The robot is equipped with a sensor that can only detect the discontinuities in the depth information (gaps) and can locate the target point as soon as it enters in its visibility region. In addition, a pebble as an identifiable point is available to the robot to mark some position of the street. We offer a data structure similar to Gap Navigation Tree to maintain the essential sensed data to explore the street. We present an online strategy that guides such a robot to navigate the scene to reach the target, based only on what is sensed at each point and is saved in the data structure. Although the robot has a limited capability, we show that the detour from the shortest path can be restricted such that generated path by our strategy is at most 11 times as long as the shortest path to target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baezayates, R.A., Culberson, J.C., Rawlins, G.J.: Searching in the plane. Information and Computation 106(2), 234–252 (1993)

    Google Scholar 

  2. Das, G., Heffernan, P.J., Narasimhan, G.: LR-visibility in polygons. Computational Geometry 7(1), 37–57 (1997)

    Google Scholar 

  3. Gfeller, B., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Counting targets with mobile sensors in an unknown environment. In: Kutyłowski, M., Cichoń, J., Kubiak, P. (eds.) ALGOSENSORS 2007. LNCS, vol. 4837, pp. 32–45. Springer, Heidelberg (2008)

    Google Scholar 

  4. Ghosh, S.K.: Visibility algorithms in the plane. Cambridge University Press (2007)

    Google Scholar 

  5. Guilamo, L., Tovar, B., LaValle, S.M.: Pursuit-evasion in an unknown environment using gap navigation trees. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), vol. 4, pp. 3456–3462. IEEE (September 2004)

    Google Scholar 

  6. Icking, C., Klein, R., Langetepe, E.: An optimal competitive strategy for walking in streets. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 110–120. Springer, Heidelberg (1999)

    Google Scholar 

  7. Klein, R.: Walking an unknown street with bounded detour. Computational Geometry 1(6), 325–351 (1992)

    Google Scholar 

  8. Kleinberg, J.M.: On-line search in a simple polygon. In: Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 8–15. Society for Industrial and Applied Mathematics (January 1994)

    Google Scholar 

  9. Lopez-Ortiz, A., Adviser-Ragde, P.: On-line target searching in bounded and unbounded domains. University of Waterloo (1996)

    Google Scholar 

  10. Lopez-Ortiz, A., Schuierer, S.: Simple, efficient and robust strategies to traverse streets. In: Proc. 7th Canad. Conf. on Computational Geometry (1995)

    Google Scholar 

  11. Lopez-Padilla, R., Murrieta-Cid, R., LaValle, S.M.: Optimal Gap Navigation for a Disc Robot. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X. STAR, vol. 86, pp. 123–138. Springer, Heidelberg (2013)

    Google Scholar 

  12. Mitchell, J.S.: Geometric shortest paths and network optimization. In: Handbook of computational geometry. Elsevier Science Publishers B.V. North-Holland, Amsterdam (1998)

    Google Scholar 

  13. Sachs, S., LaValle, S.M., Rajko, S.: Visibility-based pursuit-evasion in an unknown planar environment. The International Journal of Robotics Research 23(1), 3–26 (2004)

    Google Scholar 

  14. Suri, S., Vicari, E., Widmayer, P.: Simple robots with minimal sensing: From local visibility to global geometry. The International Journal of Robotics Research 27(9), 1055–1067 (2008)

    Google Scholar 

  15. Tovar, B., Murrieta-Cid, R., LaValle, S.M.: Distance-optimal navigation in an unknown environment without sensing distances. IEEE Transactions on Robotics 23(3), 506–518 (2007)

    Google Scholar 

  16. Tovar, B., La Valle, S.M., Murrieta, R.: Optimal navigation and object finding without geometric maps or localization. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2003, vol. 1, pp. 464–470. IEEE (September 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Tabatabaei, A., Ghodsi, M. (2013). Walking in Streets with Minimal Sensing. In: Widmayer, P., Xu, Y., Zhu, B. (eds) Combinatorial Optimization and Applications. COCOA 2013. Lecture Notes in Computer Science, vol 8287. Springer, Cham. https://doi.org/10.1007/978-3-319-03780-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03780-6_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03779-0

  • Online ISBN: 978-3-319-03780-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics