Skip to main content

Scheduling for Electricity Cost in Smart Grid

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8287))

Abstract

We study an offline scheduling problem arising in demand response management in smart grid. Consumers send in power requests with a flexible set of timeslots during which their requests can be served. For example, a consumer may request the dishwasher to operate for one hour during the periods 8am to 11am or 2pm to 4pm. The grid controller, upon receiving power requests, schedules each request within the specified duration. The electricity cost is measured by a convex function of the load in each timeslot. The objective of the problem is to schedule all requests with the minimum total electricity cost. As a first attempt, we consider a special case in which the power requirement and the duration a request needs service are both unit-size. For this problem, we present a polynomial time offline algorithm that gives an optimal solution and show that the time complexity can be further improved if the given set of timeslots is a contiguous interval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S.: Energy-efficient algorithms. Communication ACM 53(5), 86–96 (2010)

    Article  Google Scholar 

  2. Azar, Y.: On-line load balancing. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms 1996. LNCS, vol. 1442, pp. 178–195. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Caron, S., Kesidis, G.: Incentive-based energy consumption scheduling algorithms for the smart grid. In: IEEE Smart Grid Comm., pp. 391–396 (2010)

    Google Scholar 

  4. Chen, C., Nagananda, K.G., Xiong, G., Kishore, S., Snyder, L.V.: A communication-based appliance scheduling scheme for consumer-premise energy management systems. IEEE Trans. Smart Grid 4(1), 56–65 (2013)

    Article  Google Scholar 

  5. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)

    Article  MATH  Google Scholar 

  6. European Commission. Europen smartgrids technology platform (2006), ftp://ftp.cordis.europa.eu/pub/fp7/energy/docs/smartgrids_en.pdf

  7. Hamilton, K., Gulhar, N.: Taking demand response to the next level. IEEE Power and Energy Magazine 8(3), 60–65 (2010)

    Article  Google Scholar 

  8. Hochbaum, D.S., Shanthikumar, J.G.: Convex separable optimization is not much harder than linear optimization. J. ACM 37(4), 843–862 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ipakchi, A., Albuyeh, F.: Grid of the future. IEEE Power and Energy Magazine 7(2), 52–62 (2009)

    Article  Google Scholar 

  10. Kannberg, L.D., Chassin, D.P., DeSteese, J.G., Hauser, S.G., Kintner-Meyer, M.C., Pratt, R.G., Schienbein, L.A., Warwick, W.M.: GridWiseTM: The benefits of a transformed energy system. CoRR, nlin/0409035 (September 2004)

    Google Scholar 

  11. Karzanov, A.V., McCormick, S.T.: Polynomial methods for separable convex optimization in unimodular linear spaces with applications. SIAM J. Comput. 26(4), 1245–1275 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koutsopoulos, I., Tassiulas, L.: Control and optimization meet the smart power grid: Scheduling of power demands for optimal energy management. In: Proc. e-Energy, pp. 41–50 (2011)

    Google Scholar 

  13. Krishnan, R.: Meters of tomorrow (in my view). IEEE Power and Energy Magazine 6(2), 96–94 (2008)

    Google Scholar 

  14. Li, H., Qiu, R.C.: Need-based communication for smart grid: When to inquire power price? CoRR, abs/1003.2138 (2010)

    Google Scholar 

  15. Li, Z., Liang, Q.: Performance analysis of multiuser selection scheme in dynamic home area networks for smart grid communications. IEEE Trans. Smart Grid 4(1), 13–20 (2013)

    Article  Google Scholar 

  16. Martin, L.: SEELoadTMSolution, http://www.lockheedmartin.co.uk/us/products/energy-solutions/seesuite/seeload.html

  17. Logenthiran, T., Srinivasan, D., Shun, T.Z.: Demand side management in smart grid using heuristic optimization. IEEE Trans. Smart Grid 3(3), 1244–1252 (2012)

    Article  Google Scholar 

  18. Lui, T., Stirling, W., Marcy, H.: Get smart. IEEE Power and Energy Magazine 8(3), 66–78 (2010)

    Article  Google Scholar 

  19. Ma, C.Y.T., Yau, D.K.Y., Rao, N.S.V.: Scalable solutions of markov games for smart-grid infrastructure protection. IEEE Trans. Smart Grid 4(1), 47–55 (2013)

    Article  Google Scholar 

  20. Maharjan, S., Zhu, Q., Zhang, Y., Gjessing, S., Basar, T.: Dependable demand response management in the smart grid: A stackelberg game approach. IEEE Trans. Smart Grid 4(1), 120–132 (2013)

    Article  Google Scholar 

  21. Minoux, M.: A polynomial algorithm for minimum quadratic cost flow problems. European Journal of Operational Research 18(3), 377–387 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Minoux, M.: Solving integer minimum cost flows with separable convex cost objective polynomially. In: Gallo, G., Sandi, C. (eds.) Netflow at Pisa. Mathematical Programming Studies, vol. 26, pp. 237–239. Springer, Heidelberg (1986)

    Google Scholar 

  23. Mohsenian-Rad, A.-H., Wong, V., Jatskevich, J., Schober, R.: Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid. In: Innovative Smart Grid Technologies (ISGT) (2010)

    Google Scholar 

  24. REGEN Energy Inc. ENVIROGRIDTMSMART GRID BUNDLE., http://www.regenenergy.com/press/announcing-the-envirogrid-smart-grid-bundle/

  25. Salinas, S., Li, M., Li, P.: Multi-objective optimal energy consumption scheduling in smart grids. IEEE Trans. Smart Grid 4(1), 341–348 (2013)

    Article  Google Scholar 

  26. Sokkalingam, P.T., Ahuja, R.K., Orlin, J.B.: New polynomial-time cycle-canceling algorithms for minimum-cost flows. Networks 36(1), 53–63 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Toronto Hydro Corporation. Peaksaver Program, http://www.peaksaver.com/peaksaver_THESL.html

  28. UK Department of Energy & Climate Change. Smart grid: A more energy-efficient electricity supply for the UK (2013), https://www.gov.uk/smart-grid-a-more-energy-efficient-electricity-supply-for-the-uk

  29. US Department of Energy. The Smart Grid: An Introduction (2009), http://www.oe.energy.gov/SmartGridIntroduction.htm

  30. Végh, L.A.: Strongly polynomial algorithm for a class of minimum-cost flow problems with separable convex objectives. In: Proceedings of the 44th Symposium on Theory of Computing, STOC 2012, pp. 27–40. ACM, New York (2012)

    Google Scholar 

  31. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: Proceedings of IEEE Symposium on Foundations of Computer Science (FOCS), pp. 374–382 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Burcea, M., Hon, WK., Liu, HH., Wong, P.W.H., Yau, D.K.Y. (2013). Scheduling for Electricity Cost in Smart Grid. In: Widmayer, P., Xu, Y., Zhu, B. (eds) Combinatorial Optimization and Applications. COCOA 2013. Lecture Notes in Computer Science, vol 8287. Springer, Cham. https://doi.org/10.1007/978-3-319-03780-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03780-6_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03779-0

  • Online ISBN: 978-3-319-03780-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics