Skip to main content

On Complexities of Minus Domination

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8287))

Abstract

A function f: V → { − 1,0,1} is a minus-domination function of a graph G = (V,E) if the values over the vertices in each closed neighborhood sum to a positive number. The weight of f is the sum of f(x) over all vertices x ∈ V. In the minus-domination problem, one tries to minimize the weight of a minus-domination function. In this paper, we show that (1) the minus-domination problem is fixed-parameter tractable for d-degenerate graphs when parameterized by the size of the minus-dominating set and by d, where the size of a minus domination is the number of vertices that are assigned 1, (2) the minus-domination problem is polynomial for graphs of bounded rankwidth and for strongly chordal graphs, (3) it is NP-complete for splitgraphs, and (4) unless P = NP there is no fixed-parameter algorithm for minus-domination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, J., Bodlaender, H., Fernau, H., Kloks, T., Niedermeier, R.: Fixed-parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33, 461–493 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica 54, 544–556 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Damaschke, P.: Minus domination in small-degree graphs. Discrete Applied Mathematics 108, 53–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Demaine, E., Formin, F., Hajiaghayi, M., Thilikos, D.: Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Transactions on Algorithms 1, 33–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dunbar, J., Goddard, W., Hedetniemi, S., Henning, M., McRae, A.: The algorithmic complexity of minus domination in graphs. Discrete Applied Mathematics 68, 73–84 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Farber, M.: Domination, independent domination, and duality in strongly chordal graphs. Discrete Applied Mathematics 7, 115–130 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fomin, F., Lokshtanov, D., Saurabh, S., Thilikos, D.: Linear kernels for (connected) dominating set on graphs with excluded topological subgraphs. In: Proceedings STACS 2013, Schloss Dagstuhl-Leibniz-Zentrum für Informatik. LPIcs, vol. 20, pp. 92–103 (2013)

    Google Scholar 

  8. Frank, A.: Some polynomial algorithms for certain graphs and hypergraphs. In: Nash-Williams, C., Sheehan, J. (eds.) Proceedings 5th British Combinatorial Conference 1975. Congressus Numeratium XV, pp. 211–226 (1975)

    Google Scholar 

  9. Fulkerson, D., Hoffman, A., Oppenheim, R.: On balanced matrices. Mathematical Programming Study 1, 120–132 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hattingh, J., Henning, M., Slater, P.: The algorithmic complexity of signed domination in graphs. Australasian Journal of Combinatorics 12, 101–112 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Hoffman, A., Kolen, A., Sakarovitch, M.: Totally-balanced and greedy matrices. SIAM Journal on Algebraic and Discrete Methods 6, 721–730 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Howorka, E.: A characterization of distance-hereditary graphs. The Quarterly Journal of Mathematics 28, 417–420 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  14. Kloks, T., Liu, C., Poon, S.: Feedback vertex set on chordal bipartite graphs. Manuscript on arXiv: 1104.3915 (2012)

    Google Scholar 

  15. Kloks, T., Wang, Y.: Advances in graph algorithms (2013) (manuscript)

    Google Scholar 

  16. Kolen, A.: Location problems on trees and in the rectilinear plane, PhD Thesis, Mathematisch centrum, Amsterdam (1982)

    Google Scholar 

  17. Langer, A., Rossmanith, P., Sikdar, S.: Linear-time algorithms for graphs of bounded rankwidth: A fresh look using game theory. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 505–516. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Lee, C., Chang, M.: Variations of Y-dominating functions on graphs. Discrete Mathematics 308, 4185–4204 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liang, H.: Signed and minus domination in complete multipartite graphs. Manuscript on arXiv: 1205.0343 (2012)

    Google Scholar 

  20. Lubiw, A.: Γ-Free matrices, Master’s Thesis, University of Waterloo, Canada (1982)

    Google Scholar 

  21. Matoušek, J.: Lower bound on the minus-domination number. Discrete Mathematics 233, 361–370 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mellor, A., Prieto, E., Mathieson, L., Moscato, P.: A kernelisation approach for multiple d-hitting set and its application in optimal multi-drug therapeutic combinations. PLoS One 5, e13055 (2010)

    Google Scholar 

  23. Scheinerman, E., Ullman, D.: Fractional graph theory. Wiley (1997)

    Google Scholar 

  24. Thomason, A.: The extremal function for complete minors. Journal of Combinatorial Theory, Series B 81, 318–338 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yeh, H., Chang, G.: Algorithmic aspects of majority domination. Taiwanese Journal of Mathematics 1, 343–350 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Zheng, Y., Wang, J., Feng, Q.: Kernelization and lowerbounds of the signed domination problem. In: Fellows, M., Tan, X., Zhu, B. (eds.) FAW-AAIM 2013. LNCS, vol. 7924, pp. 261–271. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  27. Zheng, Y., Wang, J., Feng, Q., Chen, J.: FPT results for signed domination. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 572–583. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Faria, L., Hon, WK., Kloks, T., Liu, HH., Wang, TM., Wang, YL. (2013). On Complexities of Minus Domination. In: Widmayer, P., Xu, Y., Zhu, B. (eds) Combinatorial Optimization and Applications. COCOA 2013. Lecture Notes in Computer Science, vol 8287. Springer, Cham. https://doi.org/10.1007/978-3-319-03780-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03780-6_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03779-0

  • Online ISBN: 978-3-319-03780-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics