Skip to main content

Pectic Polysaccharides and Their Functional Properties

  • Living reference work entry
  • First Online:
Polysaccharides

Abstract

Since their first discovery in 1790–1825, pectins are still fascinating plant and food scientists who continue to carry out numerous structural as well as functional studies on them. This great interest of scientists for pectins is accounted for by their large spectrum of (bio)functionalities, starting from their natural location in plant cell walls as bioactive components for cell growth, defense, and protection via diverse manufactured food and nonfood products as techno-functional (gelling, emulsifying, film-forming, etc.) agents to terminate in human welfare as health-benefit (prebiotic, anticomplementary, antioxidant, anticancer, etc.) agents. The extraordinary functional versatility of pectins is thought to be intimately related to fine structure. Unfortunately, structurally, pectins are extremely diversified that establishment of structure-function relationship appeared so far a difficult task to go through. On the other hand, the extended structural variability of pectins presages for the finding of new functions hitherto unknown. Nevertheless, for some structurally well-known pectic cobiopolymers such as homogalacturonan, solid evidence for structure-related functions, especially gelling properties, has been provided, including new insights very recently.

After a brief introduction on the “pectin structural repertoire,” the main sources of industrial pectins will be exposed, followed by a succinct structural description of the different pectic block cobiopolymers, commonly referred to as “pectic polysaccharides.” Finally, some remarkable structure-related functions, namely, gelling, emulsifying/emulsion-stabilizing, and antitumor properties of pectins will be revisited in the light of the latest work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Akhtar M, Dickinson E, Mazoyer J, Langendorff V (2002) Emulsion stabilizing properties of depolymerized pectin. Food Hydrocoll 16:249–256

    Article  CAS  Google Scholar 

  • Albersheim P, Darvill AG, O’Neill MA, Schols HA, Voragen AGJ (1996) An hypothesis: the same six polysaccharides are components of the primary cell walls of all higher plants. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Progress in biotechnology. Elsevier Science, Amsterdam, pp 47–55

    Chapter  Google Scholar 

  • Alonso-Mougan M, Meijide F, Jover A, Rodríguez-Núñez E, Vázquez-Tato J (2002) Rheological behaviour of an amide pectin. J Food Eng 55:123–129

    Article  Google Scholar 

  • Bagherian H, Ashtiani FZ, Fouladitajar A, Mohtashamy M (2011) Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem Eng Process Process Intensif 50:1237–1243

    Article  CAS  Google Scholar 

  • Baississe S, Ghannem H, Fahloul D, Lekbir A (2010) Comparison of structure and emulsifying activity of pectin extracted from apple pomace and apricot pulp. World J Dairy Food Sci 5:79–84

    Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  CAS  Google Scholar 

  • Coenen GJ, Bakx EJ, Verhoef RP, Schols HA, Voragen AGJ (2007) Identification of the connecting linkage between homo- or xylogalacturonan and rhamnogalacturonan type I. Carbohydr Polym 70:224–235

    Article  CAS  Google Scholar 

  • Dea ICM, Madden JK (1986) Acetylated pectic polysaccharides of sugar beet. Food Hydrocoll 1:71–88

    Article  CAS  Google Scholar 

  • Dickinson E (2009) Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll 23:1473–1482

    Article  CAS  Google Scholar 

  • Eliaz I (2002) The potential role of modified citrus pectin in the prevention of cancer metastasis. Clin Pract Altern Med 2:177–179

    Google Scholar 

  • Espitia PJP, Du WX, Avena-Bustillos RJ, Soares NFF, McHugh TH (2014) Edible films from pectin: physical-mechanical and antimicrobial properties-a review. Food Hydrocoll 35:287–296

    Article  CAS  Google Scholar 

  • Fishman ML, Cooke PH (2009) The structure of high-methoxyl sugar acid gels of citrus pectin as determined by AFM. Carbohydr Res 344:1792–1797

    Article  CAS  Google Scholar 

  • Fishman ML, Chau HK, Coffin DR, Hotchkiss JAT (2003) A comparison of lime and orange pectin which were rapidly extracted from albedo. In: Voragen AGJ, Schols H, Visser R (eds) Advances in pectin and pectinase research. Kluwer Academic, Dordrecht, pp 107–122

    Chapter  Google Scholar 

  • Fraeye I, Duvetter T, Doungla E, Loey AV, Hendrickx M (2010) Fine-tuning the properties of pectin-calcium gels by control of pectin fine structure, gel composition and environmental conditions. Trends Food Sci Technol 21:219–228

    Article  CAS  Google Scholar 

  • Funami T, Nakauma M, Ishihara S, Tanaka R, Inoue T, Phillips GO (2011) Structural modifications of sugar beet pectin and the relationship of structure to functionality. Food Hydrocoll 25:221–229

    Article  CAS  Google Scholar 

  • Glinsky VV, Raz A (2009) Modified citrus pectin anti-metastatic properties: one bullet, multiple targets. Carbohydr Res 344:1788–1791

    Article  CAS  Google Scholar 

  • Golovchenko VV, Ovodova RG, Shashkov AS, Ovodov YS (2002) Structural studies of the pectic polysaccharide from duckweed Lemna minor L. Phytochemistry 60:89–97

    Article  CAS  Google Scholar 

  • Grant GT, Morris ER, Rees DA, Smith PJC, Thom D (1973) Biological interactions between polysaccharides and divalent cations: the egg–box model. FEBS Lett 32:195–198

    Article  CAS  Google Scholar 

  • Gullón B, Gómez B, Martínez-Sabajanes M, Yáñez R, Parajó JC, Alonso JL (2013) Pectic oligosaccharides: manufacture and functional properties. Trends Food Sci Technol 30:153–161

    Article  Google Scholar 

  • Gunning AP, Bongaerts RJM, Morris VJ (2009) Recognition of galactan components of pectin by galectin-3. FASEB J 23:415–424

    Article  CAS  Google Scholar 

  • Herbstreith F (2014a) Confectionery gum and jelly products. http://www.herbstreith-fox.de/fileadmin/tmpl/pdf/broschueren/Suesswaren_e_13.pdf. Accessed 14 Jan 2014

  • Herbstreith F (2014b) Jams, jellies and marmalades. http://www.herbstreith-fox.de/fileadmin/tmpl/pdf/broschueren/Konfituere_englisch.pdf. Accessed 14 Jan 2014

  • Jackson CL, Dreaden TM, Theobald LK, Tran NM, Beal TL, Eid M et al (2007) Pectin induces apoptosis in human prostate cancer cells: correlation of apoptotic function with pectin structure. Glycobiology 17:805–819

    Article  CAS  Google Scholar 

  • Kirby AR, MacDougall AJ, Morris VJ (2008) Atomic force microscopy of tomato and sugar beet pectin molecules. Carbohydr Polym 71:640–647

    Article  CAS  Google Scholar 

  • Kohn R, Luknar O (1977) Intermolecular calcium-ion binding on polyuronates-Polygalacturonate and polyguluronate. Collect Czechoslovak Chem Commun 42:731–744

    Article  CAS  Google Scholar 

  • Maran JP, Sivakumar V, Thirugnanasambandham K, Sridhar R (2013) Optimization of microwave assisted extraction of pectin from orange peel. Carbohydr Polym 97:703–709

    Article  Google Scholar 

  • May CD (1990) Industrial pectins: sources, production and applications. Carbohydr Polym 12:79–99

    Article  CAS  Google Scholar 

  • Morris VJ, Gromer A, Kirby AR, Bongaerts RJM, Gunning AP (2011) Using AFM and force spectroscopy to determine pectin structure and (bio)functionality. Food Hydrocoll 25:230–237

    Article  CAS  Google Scholar 

  • Nakauma M, Funami T, Noda S, Ishihara S, Al-Assaf S, Nishinari K et al (2008) Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum arabic as emulsifiers. 1. Effect of concentration, pH and salts on the emulsifying properties. Food Hydrocoll 22:1254–1267

    Article  CAS  Google Scholar 

  • Nangia-Makker P, Hogan V, Honjo Y, Baccarini S, Tait L, Bresalier R et al (2002) Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst 94:1854–1862

    Article  CAS  Google Scholar 

  • O’Brien AB, Philp K, Morris ER (2009) Gelation of high-methoxy pectin by enzymic de-esterification in the presence of calcium ions: a preliminary evaluation. Carbohydr Res 344:1818–1823

    Article  Google Scholar 

  • O’Neill MA, York WS (2003) The composition and structure of plant primary cell walls. In: Rose JKC (ed) The plant cell wall. Blackwell/CRC, Boca Raton, pp 1–54

    Google Scholar 

  • O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan-II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139

    Article  Google Scholar 

  • Oosterveld A, Beldman G, Searle-van Leeuwen MJF, Voragen AGJ (2000) Effect of enzymatic deacetylation on gelation of sugar beet pectin in the presence of calcium. Carbohydr Polym 43:249–256

    Article  CAS  Google Scholar 

  • Ovodov YS (2009) Current views on pectin substances. Rus J Bioorg Chem 35:269–284

    Article  CAS  Google Scholar 

  • Ovodova RG, Popov SV, Bushneva OA, Golovchenko VV, Chizhov AO, Klinov DV et al (2006) Branching of the galacturonan backbone of comaruman, a pectin from the marsh cinquefoil Comarum palustre L. Biochemistry (Moscow) 71:538–542

    Article  CAS  Google Scholar 

  • Platt D, Raz A (1992) Modulation of the lung colonization of B16-F1 melanoma cells by citrus pectin. J Natl Cancer Inst 84:438–442

    Article  CAS  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  CAS  Google Scholar 

  • Round AN, Rigby NM, MacDougall AJ, Morris VJ (2010) A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy. Carbohydr Res 345:487–497

    Article  CAS  Google Scholar 

  • Schieber A, Stintzing FC, Carle R (2001) By-products of plant food processing as a source of functional compounds – recent developments. Trends Food Sci Technol 12:401–413

    Article  CAS  Google Scholar 

  • Schols HA, Voragen AGJ (1996) Complex pectins: structure elucidation using enzymes. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Progress in biotechnology. Elsevier Science, Amsterdam, pp 3–19

    Chapter  Google Scholar 

  • Sila DN, Van Buggenhout S, Duvetter T, Fraeye I, De Roeck A, Van Loey A et al (2009) Pectins in processed fruits and vegetables: part II. Structure–function relationships. Compr Rev Food Sci Food Saf 8:86–104

    Article  CAS  Google Scholar 

  • Silva DC, Freitas ALP, Barros FCN, Lins KOAL, Alves APNN, Alencar NMN et al (2012) Polysaccharide isolated from Passiflora edulis: characterization and antitumor properties. Carbohydr Polym 87:139–145

    Article  CAS  Google Scholar 

  • Sørensen I, Pedersen HL, Willats WGT (2009) An array of possibilities for pectin. Carbohydr Res 344:1872–1878

    Article  Google Scholar 

  • Sriamornsak P (2003) Chemistry of pectin and its pharmaceutical uses: a review. Silpak Univ Int J 3:206–228

    Google Scholar 

  • Srivastava P, Malviya R (2011) Sources of pectin, extraction and its applications in pharmaceutical industry – an overview. Indian J Nat Prod Res 2:10–18

    CAS  Google Scholar 

  • Taylor AJ (1982) Intramolecular distribution of carboxyl groups in low methoxyl pectins – a review. Carbohydr Polym 2:9–17

    Article  CAS  Google Scholar 

  • Thakur BR, Singh RK, Handa AK (1997) Chemistry and uses of pectins – a review. Crit Rev Food Sci Nutr 37:47–73

    Article  CAS  Google Scholar 

  • Vayssade M, Sengkhamparn N, Verhoef R, Delaigue C, Goundiam O, Vigneron P et al (2010) Antiproliferative and proapoptotic actions of okra pectin on B16F10 melanoma cells. Phytother Res 24:982–989

    CAS  Google Scholar 

  • Vincken JP, Schols HA, Oomen RJFJ, McCann MC, Ulvskov P, Voragen AGJ et al (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol 132:1781–1789

    Article  CAS  Google Scholar 

  • Voragen AGJ, Pilnik W, Thibault JF, Axelos MAV, Renard CMGC (1995) Pectins. In: Stephen AM (ed) Food polysaccharides and their applications. Marcel Dekker, New York, pp 287–339

    Google Scholar 

  • Voragen AGJ, Coenen GJ, Verhoef RP, Schols HA (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem 20:263–275

    Article  CAS  Google Scholar 

  • Wang S, Chen F, Wu J, Wang Z, Liao X, Hu X (2007) Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology. J Food Eng 78:693–700

    Article  CAS  Google Scholar 

  • Willats WGT, Knox JP, Mikkelsen JD (2006) Pectin: new insights into an old polymer are starting to gel. Trends Food Sci Technol 17:97–104

    Article  CAS  Google Scholar 

  • Williams PA, Sayers C, Viebke C, Senan C (2005) Elucidation of the emulsification properties of sugar beet pectin. J Agric Food Chem 53:3592–3597

    Article  CAS  Google Scholar 

  • Yapo BM (2009) Pineapple and banana pectins comprise fewer homogalacturonan building blocks with a smaller degree of polymerization as compared with yellow passion fruit and lemon pectins: implication for gelling properties. Biomacromolecules 10(4):717–721

    Article  CAS  Google Scholar 

  • Yapo BM (2011a) Rhamnogalacturonan-I: a structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages. Polym Rev 51(4):391–413

    Article  CAS  Google Scholar 

  • Yapo BM (2011b) Pectic substances: from simple pectic polysaccharides to complex pectins – a new hypothetical model. Carbohydr Polym 86(2):373–385

    Article  CAS  Google Scholar 

  • Yapo BM (2011c) Pectin rhamnogalacturonan-II: on the “small stem with four branches” in the primary cell walls of plants. Int J Carbohydr Chem 2011:1–11

    Article  Google Scholar 

  • Yapo BM, Koffi KL (2013a) Utilisation of model pectins reveals the effect of demethylated block size frequency on calcium gel formation. Carbohydr Polym 92(1):1–10

    Article  CAS  Google Scholar 

  • Yapo BM, Koffi KL (2013b) Extraction and characterization of gelling and emulsifying pectin fractions from cacao pod husk. J Food Nutr Res 1(4):46–51

    Google Scholar 

  • Yapo BM, Koffi KL (2014) Extraction and characterization of highly gelling low methoxy pectin from cashew apple pomace. Foods 3(1):1–12

    Article  CAS  Google Scholar 

  • Yapo BM, Robert C, Etienne I, Wathelet B, Paquot M (2007a) Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chem 100(4):1356–1364

    Article  CAS  Google Scholar 

  • Yapo BM, Lerouge P, Thibault JF, Ralet MC (2007b) Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan-I and rhamnogalacturonan-II. Carbohydr Polym 69(3):426–435

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beda M. Yapo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Yapo, B.M., Gnakri, D. (2014). Pectic Polysaccharides and Their Functional Properties. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-03751-6_62-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03751-6_62-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-03751-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics