Skip to main content

Recent Advances on the Development of Antibacterial Polysaccharide-Based Materials

Chitosan , Cellulose , and Starch

  • Living reference work entry
  • First Online:
Polysaccharides

Abstract

This chapter aims at presenting a comprehensive overview of the latest advances in the development of antibacterial materials based on chitosan, cellulose, and starch, which being the most abundant polysaccharides have a high potential to be explored in large variety of applications (e.g., food or biomedical fields).

Owing to its intrinsic antibacterial and film-forming properties, chitosan can be directly used to create antibacterial materials. Thus, the first part of this chapter focuses mainly on the factors affecting its inherent bioactivity and the strategies potentially used to enhance it, in order to broaden chitosan-based materials applicability. Then the strategies developed to impart antibacterial properties to cellulose and starch, mainly through chemical modification or combination with bioactive natural and synthetic components and polymers as well as with metal and metal oxide nanoparticles, were screened in detail, pointing out their antibacterial profile and prospective applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abou-Zeid NY, Waly I, Rushdy A, Ibrahim HM (2011) Preparation, characterization and antibacterial properties of cyanoethylchitosan/cellulose acetate polymer blended films. Carbohydr Polym 84:223–230

    CAS  Google Scholar 

  • Ahmed NAAM (2012) Bacterial resistance and challenges of biocide plastics. In: Lagaron JM, Ocio MJ, Lopez-Rubio A (eds) Antimicrobial polymers, 1st edn. Wiley, Hoboken, pp 23–50

    Google Scholar 

  • Alonso D, Gimeno M, Olayo R, Vázquez-Torres H, Sepúlveda-Sánchez JD, Shirai K (2009) Cross-linking chitosan into UV-irradiated cellulose fibers for the preparation of antimicrobial-finished textiles. Carbohydr Polym 77:536–543

    CAS  Google Scholar 

  • Andresen M, Stenstad P, Møretrø T, Langsrud S, Syverud K (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8:2149–2155

    CAS  Google Scholar 

  • Angelova T, Rangelova N, Yuryev R, Georgieva N, Müller R (2012) Antibacterial activity of SiO 2/hydroxypropyl cellulose hybrid materials containing silver nanoparticles. Mater Sci Eng C 32:1241–1246

    CAS  Google Scholar 

  • Anklam E., Battaglia R (2001) Food analysis and consumer protection. Trends in Food Sci and Tech 12: 197–202

    CAS  Google Scholar 

  • Arancibia MY, Alemán A, Calvo MM, López-Caballero ME, Montero P, Gómez-Guillén MC (2014) Antimicrobial and antioxidant chitosan solutions enriched with active shrimp Litopenaeus vannamei waste materials. Food Hydrocoll 35:710–717

    CAS  Google Scholar 

  • Arfa AB, Preziosi-Belloy L, Chalier P, Gontard N (2007) Antimicrobial paper based on a soy protein isolate or modified starch coating including carvacrol and cinnamaldehyde. J Agric Food Chem 55:2155–2162

    Google Scholar 

  • Azevedo AN, Buarque PR, Cruz EMO, Blank AF, Alves PB, Nunes ML, Santana LCLDA (2014) Response surface methodology for optimisation of edible chitosan coating formulations incorporating essential oil against several foodborne pathogenic bacteria. Food Control 43:1–9

    CAS  Google Scholar 

  • Barbiroli A, Bonomi F, Capretti G, Iametti S, Manzoni M, Piergiovanni L, Rollini M (2012) Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control 26:387–392

    CAS  Google Scholar 

  • Barud HS, Regiani T, Marques RFC, Lustri WR, Messaddeq Y, Ribeiro SJL (2011) Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. J Nanomater 2011, article ID 721631

    Google Scholar 

  • Basch CY, Jagus RJ, Flores SK (2012) Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with nisin and/or potassium sorbate. Food Bioprocess Technol 6:2419–2428

    Google Scholar 

  • Basmaji P, de Olyveira GM, dos Santos ML, Guastaldi AC (2014) Novel antimicrobial peptides bacterial cellulose obtained by symbioses culture between polyhexanide biguanide (PHMB) and green tea. J Biomater Tissue Eng 4:59–64

    CAS  Google Scholar 

  • Belalia R, Grelier S, Benaissa M, Coma V (2008) New bioactive biomaterials based on quaternized chitosan. J Agric Food Chem 65:1582–1588

    Google Scholar 

  • Bie P, Liu P, Yu L, Li X, Chen L, Xie F (2013) The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix. Carbohydr Polym 98:959–966

    CAS  Google Scholar 

  • Bieser AM, Thomann Y, Tiller JC (2011) Contact-active antimicrobial and potentially self-polishing coatings based on cellulose. Macromol Biosci 11:111–121

    CAS  Google Scholar 

  • Bozic M, Gorgieva S, Kokol V (2012) Homogeneous and heterogeneous methods for laccase-mediated functionalization of chitosan by tannic acid and quercetin. Carbohydr Polym 89:854–864

    CAS  Google Scholar 

  • Bu G, Wang C, Fu S, Tian A (2012) Water-soluble cationic chitosan derivative to improve pigment-based inkjet printing and antibacterial properties for cellulose substrates. J Appl Polym Sci 125:1674–1680

    CAS  Google Scholar 

  • Bursali EA, Coskun S, Kizil M, Yurdakoc M (2011) Synthesis, characterization and in vitro antimicrobial activities of boron/starch/polyvinyl alcohol hydrogels. Carbohydr Polym 83:1377–1383

    CAS  Google Scholar 

  • Carvalho AJF (2008) Starch: major sources, properties and applications as thermoplastic materials. Elsevier, Amsterdam

    Google Scholar 

  • Casettari L, Vllasaliu D, Lam JK, Soliman M, Illum L (2012) Biomedical applications of amino acid-modified chitosans: a review. Biomaterials 33:7565–7583

    CAS  Google Scholar 

  • Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophy Acta Biomembr 9:1184–1202

    Google Scholar 

  • Chaurasia V, Chand N, Bajpai SK (2010) Water sorption properties and antimicrobial action of zinc oxide nanoparticles-loaded cellulose acetate films. J Macromol Sci A 47:309–317

    CAS  Google Scholar 

  • Chen Y, Niu M, Yuan S, Teng H (2013) Durable antimicrobial finishing of cellulose with QSA silicone by supercritical adsorption. Appl Surf Sci 264:171–175

    CAS  Google Scholar 

  • Cheng HN, Gross RA (2010) Green polymer chemistry: biocatalysis and biomaterials. Green polymer chemistry: biocatalysis and biomaterials. ACS Symposium Series, 1043, New York, pp 255–263

    Google Scholar 

  • Chiu P-E, Lai L-S (2010) Antimicrobial activities of tapioca starch/decolorized hsian-tsao leaf gum coatings containing green tea extracts in fruit-based salads, romaine hearts and pork slices. Int J Food Microbiol 139:23–30

    CAS  Google Scholar 

  • Chivrac F, Pollet E, Avérous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng R Rep 67:1–17

    Google Scholar 

  • Chung YC, Yeh JY, Tsai CF (2011) Antibacterial characteristics and activity of water-soluble chitosan derivatives prepared by the Maillard reaction. Molecules 16:8504–8514

    CAS  Google Scholar 

  • Coma V (2008) A review: bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci 78:90–103

    CAS  Google Scholar 

  • Coma V (2012) Recent developments in chitin and chitosan bio-based materials used for food preservation. In: Habibi Y, Lucia LA (eds) Polysaccharide building blocks: a sustainable approach to renewable materials. Wiley, Hoboken, pp 143–175

    Google Scholar 

  • Coma V, Olabarrieta I (2014) Advanced bioactive biopolymer-based materials in food packaging. In: Kontominas M (ed) Advanced bioactive biopolymer-based materials in food packaging, Destech. Publ. Inc., Lancaster, PA.,USA

    Google Scholar 

  • Coma V, Verestiuc L (2011) Chitosan-based antimicrobial materials to biomedical applications. In: Popa M, Ottenbritte RM, Uglea CV (eds) Medical applications of polymers. American Scientific Publishers, Stevenson Ranch, pp 64–108

    Google Scholar 

  • Coneski PN, Fulmer PA, Giles SL, Wynne JH (2014) Lyotropic self-assembly in electrospun biocidal polyurethane nanofibers regulates antimicrobial efficacy. Polymer 55:495–504

    CAS  Google Scholar 

  • Corrales M, Han JH, Tauscher B (2009) Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch films. Int J Food Sci Technol 44:425–433

    CAS  Google Scholar 

  • Csóka L, Božanić DK, Nagy V, Dimitrijević-Branković S, Luyt AS, Grozdits G, Djoković V (2012) Viscoelastic properties and antimicrobial activity of cellulose fiber sheets impregnated with Ag nanoparticles. Carbohydr Polym 90:1139–1146

    Google Scholar 

  • Cuero RG, Osuji G, Washington A (1991) N-carboxymethylchitosan inhibition of aflatoxin production: role of zinc. Biotechnol Lett 13:441–444

    CAS  Google Scholar 

  • Dawson PL, Harmon L, Sotthibandhu A, Han IY (2005) Antimicrobial activity of nisin-adsorbed silica and corn starch powders. Food Microbiol 22:93–99

    CAS  Google Scholar 

  • De Moura MR, Mattoso LH, Zucolotto V (2012) Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng 109:520–524

    Google Scholar 

  • Decraene V, Pratten J, Wilson M (2006) Cellulose acetate containing toluidine blue and rose bengal is an effective antimicrobial coating when exposed to white light. Appl Environ Microbiol 72:4436–4439

    CAS  Google Scholar 

  • Díez I, Eronen P, Österberg M, Linder MB, Ikkala O, Ras RH (2011) Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. Macromol Biosci 11:1185–1191

    Google Scholar 

  • Dobre ML, Stoica-Guzun A (2013) Antimicrobial Ag-polyvinyl alcohol-bacterial cellulose composite films. J Biobased Mater Bioenergy 7:157–162

    CAS  Google Scholar 

  • Dobre L-M, Dobre T, Ferdes M (2012) Biodegradation kinetics of antimicrobial composite films based on polyvinyl alcohol-bacterial cellulose. Rev Chim 63:540–544

    CAS  Google Scholar 

  • Dong Y, Deng F, Zhao J, He J, Ma M (2014) Environmentally friendly ultrosound synthesis and antibacterial activity of cellulose/Ag/AgCl hybrids. Carbohydr Polym 99:166–172

    CAS  Google Scholar 

  • Duan J, Park SI, Daeschel MA, Zhao Y (2007) Antimicrobial chitosan-lysozyme (CL) films and coatings for enhancing microbial safety of mozzarella cheese. J Food Sci 72:355–362

    Google Scholar 

  • Durango AM, Soares NFF, Benevides S, Teixeira J, Carvalho M, Wobeto C, Andrade NJ (2006) Development and evaluation of an edible antimicrobial film based on yam starch and chitosan. Packag Technol Sci 19:55–59

    CAS  Google Scholar 

  • Eaton P, Fernandes JC, Pereira E, Pintado ME, Malcata FX (2008) Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy 108:1128–1134

    CAS  Google Scholar 

  • EFSA, European Food Safety Authority, European Centre for Disease Prevention and Control (2011) The European Union Summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2009. Available online: www.efsa.europa.eu/efsajournal, EFSA J 9:378 pp

  • Ehivet FE, Min B, Park M-K, Oh J-H (2011) Characterization and antimicrobial activity of sweetpotato starch-based edible film containing origanum (Thymus capitatus) oil. J Food Sci 76:C178–84

    CAS  Google Scholar 

  • Elegir G, Kindl A, Sadocco P, Orlandi M (2008) Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzyme Microb Technol 43:84–92

    CAS  Google Scholar 

  • Fabra MJ, Sánchez-González L, Chiralt A (2014) Lysozyme release from isolate pea protein and starch based films and their antimicrobial properties. LWT Food Sci Technol 55:22–26

    CAS  Google Scholar 

  • Farouk R, Gaffer HE (2013) Simultaneous dyeing and antibacterial finishing for cotton cellulose using a new reactive dye. Carbohydr Polym 97:138–142

    CAS  Google Scholar 

  • Feese E, Sadeghifar H, Gracz HS, Argyropoulos DS, Ghiladi RA (2011) Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules 12:3528–3539

    CAS  Google Scholar 

  • Feng Y, Xia W (2011) Preparation, characterization and antibacterial activity of water-soluble > O-fumaryl-chitosan. Carbohydr Polym 83:1169–1173

    CAS  Google Scholar 

  • Fernandes SCM, Sadocco P, Alonso-Varona A, Palomares T, Eceiza A, Silvestre AJD, Mondragon I, Freire CSR (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297

    CAS  Google Scholar 

  • Fernandez-Saiz P, Lagaron JM, Ocio MJ (2009) Optimization of the film- forming and storage conditions of chitosan as an antimicrobial agent. J Agric Food Chem 57:3298–3307

    CAS  Google Scholar 

  • Focher B, Beltrame PL, Naggi A, Torri G (1990) Alkaline N-deacetylation of chitin enhanced by flash treatments. Reaction kinetics and structure modifications. Carbohydr Polym 12:405–418

    CAS  Google Scholar 

  • Fras L, Risti T, Tkavc T (2012) Adsorption and antibacterial activity of soluble and precipitated chitosan on cellulose viscose fibers. J Eng Fabr Fibers 7:50–57

    CAS  Google Scholar 

  • Gemili S, Yemenicioğlu A, Altınkaya SA (2009) Development of cellulose acetate based antimicrobial food packaging materials for controlled release of lysozyme. J Food Eng 90:453–462

    Google Scholar 

  • Gerasimenko DV, Avdienko ID, Bannikova GE, Zueva OY, Varlamov VP (2004) Antibacterial effects of water-soluble low-molecular-weight chitosans on different microorganisms. Applied Biochemistry and Microbiology 40:253–257

    CAS  Google Scholar 

  • Goswami N, Han JH, Holley RA (2009) Effectiveness of antimicrobial starch coating containing thyme oil against salmonella, listeria, campylobacter, and pseudomonas on chicken breast meat. Food Sci Biotechnol 18:425–431

    CAS  Google Scholar 

  • Govar CJ, Chen T, Liu NC, Harris MT, Payne GG (2003) In: Gross RA, Cheng HN (eds) Biocatalysis in polymer science. American Chemical Society, Washington, DC, p 231

    Google Scholar 

  • Grace M, Sc M, Chand N, Ph D, Bajpai SK (2009) Copper alginate-cotton cellulose (CACC) fibers with excellent antibacterial properties. J Eng Fiber Fabr 4:24–35

    CAS  Google Scholar 

  • Guan Y, Qian L, Xiao H, Zheng A (2008a) Preparation of novel antimicrobial-modified starch and its adsorption on cellulose fibers: part I. Optimization of synthetic conditions and antimicrobial activities. Cellulose 15:609–618

    CAS  Google Scholar 

  • Guan Y, Qian L, Xiao H, Zheng A, He B (2008b) Synthesis of a novel antimicrobial-modified starch and its adsorption on cellulose fibers: part II – adsorption behaviors of cationic starch on cellulose fibers. Cellulose 15:619–629

    CAS  Google Scholar 

  • Guibal E, Vincent T, Navarro R (2014) Metal ion biosorption on chitosan for the synthesis of advanced materials. J Mater Sci 49:5505–5518

    CAS  Google Scholar 

  • Harding JL, Reynolds MM (2014) Combating medical device fouling. Trends Biotechnol 32:140–146

    CAS  Google Scholar 

  • He JM, Wu YD, Wang FW, Cheng WL, Huang YD, Fu B (2014) Hemostatic, antibacterial and degradable performance of the water-soluble chitosan-coated oxidized regenerated cellulose gauze. Fibers Polym 15:504–509

    CAS  Google Scholar 

  • Hou A, Zhou M, Wang X (2009) Preparation and characterization of durable antibacterial cellulose biomaterials modified with triazine derivatives. Carbohydr Polym 75:328–332

    CAS  Google Scholar 

  • Huang M, Chen F, Jiang Z, Li Y (2013) Preparation of TEMPO-oxidized cellulose/amino acid/nanosilver biocomposite film and its antibacterial activity. Int J Biol Macromol 62:608–613

    CAS  Google Scholar 

  • Hyuk Jang K, Joon Yu Y, Ha Lee Y, Ok Kang Y, Ho Park W (2014) Antimicrobial activity of cellulose-based nanofibers with different Ag phases. Mater Lett 116:146–149

    Google Scholar 

  • Ifuku S, Miwa T, Morimoto M, Saimoto H (2011) Preparation of highly chemoselective N-phthaloyl chitosan in aqueous media. Green Chem 13:1499–1502

    CAS  Google Scholar 

  • Imani R, Talaiepour M, Dutta J, Ghobadinezhad MR, Hemmasi AH, Nazhad MM (2011) Production of antibacterial filter paper from wood cellulose. Bioresources 6:891–900

    Google Scholar 

  • Imran M, El-Fahmy S, Revol-Junelles A-M, Desobry S (2010) Cellulose derivative based active coatings: effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films. Carbohydr Polym 81:219–225

    CAS  Google Scholar 

  • Ishii D, Ohashi C, Hayashi H (2014) Facile enhancement of deacetylation degree of chitosan by hydrothermal treatment in imidazolium-based ionic liquid. Green Chem 16:1764–1767

    CAS  Google Scholar 

  • Iturriaga L, Olabarrieta I, Castellan A, Gardrat C, Coma V (2014) Active naringin-chitosan films: impact of UV irradiation. Carbohydr Polym 110:374–381

    CAS  Google Scholar 

  • Jagannath JH, Radhika M, Nanjappa C, Murali HS, Bawa AS (2006) Antimicrobial, mechanical, barrier, and thermal properties of starch–casein based, neem (Melia azardirachta) extract containing film. J Appl Polym Sci 101:3948–3954

    CAS  Google Scholar 

  • Jankauskaitė V, Abzalbekuly B, Lisauskaitė A, Procyčevas I, Fataraitė E, Vitkauskienė A, Janakhmetov U (2014) Silicone rubber and microcrystalline cellulose composites with antimicrobial properties. Mater Sci/Medzg 20:42–49

    Google Scholar 

  • Jia B, Mei Y, Cheng L, Zhou J, Zhang L (2012) Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl Mater Interfaces 4:2897–2902

    CAS  Google Scholar 

  • Jiang X, Cai K, Zhang J, Shen Y, Wang S, Tian X (2011) Synthesis of a novel water-soluble chitosan derivative for flocculated decolorization. J Hazard Mater 185:1482–1488

    CAS  Google Scholar 

  • Jiang L, Wang F, Han F, Prinyawiwatkul W, No HK, Ge B (2013) Evaluation of diffusion and dilution methods to determine the antimicrobial activity of water-soluble chitosan derivatives. J Appl Microbiol 114:956–963

    CAS  Google Scholar 

  • Jipa IM, Stoica-Guzun A, Stroescu M (2012a) Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT Food Sci Technol 47:400–406

    CAS  Google Scholar 

  • Jipa IM, Dobre L, Stroescu M, Stoica-Guzun A, Jinga S, Dobre T (2012b) Preparation and characterization of bacterial cellulose-poly(vinyl alcohol) films with antimicrobial properties. Mater Lett 66:125–127

    Google Scholar 

  • Jung R, Kim Y, Kim HS, Jin HJ (2009) Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles. J Biomater Sci Polym Ed 20:311–324

    CAS  Google Scholar 

  • Jung J, Cavender G, Zhao Y (2014) The contribution of acidulant to the antibacterial activity of acid soluble α-and β-chitosan solutions and their films. Appl Microbiol Biotechnol 98:425–435

    CAS  Google Scholar 

  • Kahrilas GA, Haggren W, Read RL, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE (2014) Investigation of antibacterial activity by silver nanoparticles prepared by microwave-assisted green syntheses with soluble starch, dextrose, and arabinose. ACS Sustain Chem Eng 2:590–598

    CAS  Google Scholar 

  • Kang Z-Z, Zhang B, Jiao Y-C, Xu Y-H, He Q-Z, Liang J (2012) High-efficacy antimicrobial cellulose grafted by a novel quaternarized N-halamine. Cellulose 20:885–893

    Google Scholar 

  • Kassaee MZ, Akhavan A, Sheikh N, Beteshobabrud R (2008) γ-Ray synthesis of starch-stabilized silver nanoparticles with antibacterial activities. Radiat Phys Chem 77:1074–1078

    CAS  Google Scholar 

  • Kenawy E, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8:1359

    CAS  Google Scholar 

  • Kim J, Kwon S, Ostler E (2009) Antimicrobial effect of silver-impregnated cellulose: potential for antimicrobial therapy. J Biol Eng 3:20

    Google Scholar 

  • Kim SS, Park JE, Lee J (2010) Properties and antimicrobial efficacy of cellulose fiber coated with silver nanoparticles and 3-mercaptopropyltrimethoxysilane (3-MPTMS). J Appl Polym Sci 119:2261–2267

    Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    CAS  Google Scholar 

  • Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol 35:126–139

    CAS  Google Scholar 

  • Kumar AB, Varadaraj MC, Gowda LR, Tharanathan RN (2005) Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against. Bacillus cereus and Escherichia coli. Biochem J 391:167–175

    Google Scholar 

  • Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2013) Migration of antimicrobial agents from starch-based films into a food simulant. LWT Food Sci Technol 50:432–438

    CAS  Google Scholar 

  • Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2014) Physico-mechanical properties of starch-based films containing naturally derived antimicrobial agents. Packag Technol Sci 27:149–159

    CAS  Google Scholar 

  • Lagaron JM, Ocio MJ, Lopez-Rubio A (2012) Antimicrobial packaging polymers. A general introduction. In: Lagaron JM, Ocio MJ, Lopez-Rubio A (eds) Antimicrobial polymers, 1st edn. Wiley, Hoboken, pp 1–22

    Google Scholar 

  • Lahmer RA, Williams AP, Townsend S, Baker S, Jones DL (2012) Antibacterial action of chitosan-arginine against Escherichia coli O157 in chicken juice. Food Control 26:206–211

    CAS  Google Scholar 

  • Lahmer RA, Jones DL, Townsend S, Baker S, Williams AP (2014) Susceptibility of Escherichia coli O157 to chitosan-arginine in beef liquid purge is affected by bacterial cell growth phase. Int J Food Sci Technol 49:515–520

    CAS  Google Scholar 

  • Lecomte P, Riva R, Jerome C (2012) Click chemistry to derived antimicrobial polymers. In: Lagaron JM, Ocio MJ, Lopez-Rubio A (eds) Antimicrobial polymers, 1st edn. Wiley, Hoboken, pp 51–70

    Google Scholar 

  • Li XF, Feng XQ, Yang S, Fu GQ, Wang TP, Su ZX (2010) Chitosan kills Escherichia coli through damage to be of cell membrane mechanism. Carbohydr Polym 79:493–499

    CAS  Google Scholar 

  • Li S-M, Jia N, Ma M-G, Zhang Z, Liu Q-H, Sun R-C (2011) Cellulose-silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86:441–447

    CAS  Google Scholar 

  • Li S-M, Fu L-H, Ma M-G, Zhu J-F, Sun R-C, Xu F (2012a) Simultaneous microwave-assisted synthesis, characterization, thermal stability, and antimicrobial activity of cellulose/AgCl nanocomposites. Biomass Bioenergy 47:516–521

    CAS  Google Scholar 

  • Li Y, Kadam S, Abee T, Slaghek TM, Timmermans JW, Cohen Stuart MA, Norde W, Kleijn MJ (2012b) Antimicrobial lysozyme-containing starch microgel to target and inhibit amylase-producing microorganisms. Food Hydrocoll 28:28–35

    CAS  Google Scholar 

  • Li D, Yang L, Wang P, Song W, Hou E, Zuo C (2013) Preparation, characterization and in vitro antimicrobial activities of Chinese herbs incorporated edible starch films. ASIAN J Chem 25:10470–10474

    CAS  Google Scholar 

  • Liu F, Qin B, He L, Song R (2009) Novel starch/chitosan blending membrane: antibacterial, permeable and mechanical properties. Carbohydr Polym 78:146–150

    CAS  Google Scholar 

  • Liu C, Yang D, Wang Y, Shi J, Jiang Z (2012a) Fabrication of antimicrobial bacterial cellulose-Ag/AgCl nanocomposite using bacteria as versatile biofactory. J Nanopart Res 14:1084

    Google Scholar 

  • Liu X, Lin T, Gao Y, Xu Z, Huang C, Yao G, Jiang L, Tang Y, Wang X (2012b) Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing. J Biomed Mater Res B Appl Biomater 100:1556–1565

    Google Scholar 

  • Liu X, Wang Q, Zhuang X, Wu B, Yang F, Zeng A (2012c) Study on antibacterial activity of O-carboxymethyl chitosan sodium salt and spinnability of O-carboxymethyl chitosan sodium salt/cellulose polyblends in N-methylmorpholine-N-oxide system. Carbohydr Polym 89:104–110

    CAS  Google Scholar 

  • Liu K, Lin X, Chen L, Huang L, Cao S (2013) Dual-functional chitosan–methylisothiazolinone/microfibrillated cellulose biocomposites for enhancing antibacterial and mechanical properties of agar films. Cellulose 21:519–528

    Google Scholar 

  • Liu Y, Zhang B, Javvaji V, Kim E, Lee ME, Raghavan SR, Wang Q, Payne GF (2014) Tyrosinase-mediated grafting and crosslinking of natural phenols confers functional properties to chitosan. Biochem Eng J 89:21–27

    CAS  Google Scholar 

  • Lochman P, Plodr M, Páral J, Smejkal K (2010) Nanofiber micro-dispersed oxidized cellulose as a carrier for topical antimicrobials: first experience. Surg Infect (Larchmt) 11:29–32

    Google Scholar 

  • Luan J, Wu J, Zheng Y, Song W, Wang G, Guo J, Ding X (2012) Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing. Biomed Mater 7:065006

    Google Scholar 

  • Lupei M, Bobu E, De Jeso B, Pichavant F, Coma V (2013) Interaction between water and chitosan film studied by NMR relaxometry. J Chitin Chitosan Sci 1:116–123

    Google Scholar 

  • Ma G, Yang D, Zhou Y, Xiao M, Kennedy JF, Nie J (2008) Preparation and characterization of water-soluble N-alkylated chitosan. Carbohydr Polym 74:121–126

    CAS  Google Scholar 

  • Macquarrie DJ, Bacheva A (2008) Efficient subtilisin immobilization in chitosan, and peptide synthesis using chitosan–subtilisin biocatalytic films. Green Chem 10:692–695

    CAS  Google Scholar 

  • Maizura M, Fazilah A, Norziah MH, Karim AA (2007) Antibacterial activity and mechanical properties of partially hydrolyzed sago starch-alginate edible film containing lemongrass oil. J Food Sci 72:C324–C330

    CAS  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    CAS  Google Scholar 

  • Maria LCS, Santos ALC, Oliveira PC, Valle ASS, Barud HS, Messaddeq Y, Ribeiro SJL (2010) Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polim Tecnol 20:72–77

    CAS  Google Scholar 

  • Martins NCT, Freire CSR, Pinto RJB, Fernandes SCM, Pascoal Neto C, Silvestre AJD, Causio J, Baldi G, Sadocco P, Trindade T (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19:1425–1436

    CAS  Google Scholar 

  • Martins NCT, Freire CSR, Neto CP, Silvestre AJD, Causio J, Baldi G, Sadocco P, Trindade T (2013) Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids Surf A Physicochem Eng Asp 417:111–119

    CAS  Google Scholar 

  • Mary G, Bajpai SK, Chand N (2009) Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Polym Sci 113:757–766

    CAS  Google Scholar 

  • Mayachiew P, Devahastin S, Mackey BM, Niranjan K (2010) Effect of drying methods and conditions on antimicrobial activity of edible chitosan films enriched with galangal extract. Food Res Int 43:125–132

    CAS  Google Scholar 

  • Mehyar GF, Han JH, Holley RA, Blank G, Hydamaka A (2007) Suitability of pea starch and calcium alginate as antimicrobial coatings on chicken skin. Poult Sci 86:386–393

    CAS  Google Scholar 

  • Mei J, Yuan Y, Guo Q, Wu Y, Li Y, Yu H (2013) Characterization and antimicrobial properties of water chestnut starch-chitosan edible films. Int J Biol Macromol 61:169–174

    CAS  Google Scholar 

  • Meng Q, Heuzey MC, Carreau PJ (2014) Hierarchical structure and physicochemical properties of plasticized chitosan. Biomacromolecules 15:1216–1224

    CAS  Google Scholar 

  • Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A (2012) An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine 8:916–924

    CAS  Google Scholar 

  • Mourya VK, Inamdar NN (2009) Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med 20:1057–1079

    CAS  Google Scholar 

  • Muzzarelli RA (2009). Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate polymers 76:167–182

    CAS  Google Scholar 

  • Muzzarelli RAA (2010) Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 8:292–312

    CAS  Google Scholar 

  • Muzzarelli RAA, Boudrant J, Meyer D, Manno N, DeMarchis M, Paoletti MG (2012) A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr Polym 87:995–1012

    CAS  Google Scholar 

  • Nafchi AM, Alias AK, Mahmud S, Robal M (2012) Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J Food Eng 113:511–519

    CAS  Google Scholar 

  • Nam S, Scanlon MG, Han JH, Izydorczyk MS (2007) Extrusion of pea starch containing lysozyme and determination of antimicrobial activity. J Food Sci 72:E477–E484

    CAS  Google Scholar 

  • Necula AM, Dunca S, Stoica I, Olaru N, Olaru L, Ioan S (2010) Morphological properties and antibacterial activity of nano-silver-containing cellulose acetate phthalate films. Int J Polym Anal Charact 15:341–350

    Google Scholar 

  • Ng S-F, Jumaat N (2014) Carboxymethyl cellulose wafers containing antimicrobials: a modern drug delivery system for wound infections. Eur J Pharm Sci 51:173–179

    CAS  Google Scholar 

  • Niu LN, Jiao K, Wang TD, Zhang W, Camilleri J, Bergeron BE, Feng HI, Mao J, Chen JH, Pashley DH, Tay FR (2014) A review of the bioactivity of hydraulic calcium silicate cements. J dentistry 42:517–533

    CAS  Google Scholar 

  • No HK, Young Park N, Ho Lee S, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65–72

    CAS  Google Scholar 

  • Nouri L, Mohammadi Nafchi A (2014) Antibacterial, mechanical, and barrier properties of sago starch film incorporated with betel leaves extract. Int J Biol Macromol 66:254–259

    CAS  Google Scholar 

  • Nutcha B, Ead S, Jangchud A, Chonhenchob V (2012) Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose – based packaging films. Packag Technol Sci 25:7–17

    Google Scholar 

  • Oporto GS, Tesfai AT, Armstrong J (2013) Antimicrobial properties of the hybrid copper nanoparticles-carboxymethyl cellulose. J Wood Fiber Sci 45:215–222

    Google Scholar 

  • Ordikhani F, Tamjid E, Simchi A (2014) Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections. Materials Science and Engineering C 41:240–248

    CAS  Google Scholar 

  • Park SY, Marsh KS, Rhim JW (2002) Characteristics of different molecular weight chitosan films affected by the type of organic solvents. J Food Sci 67:194–197

    CAS  Google Scholar 

  • Park SY, Chung JW, Priestley RD, Kwak S-Y (2012) Covalent assembly of metal nanoparticles on cellulose fabric and its antimicrobial activity. Cellulose 19:2141–2151

    CAS  Google Scholar 

  • Peila R, Vineis C, Varesano A, Ferri A (2013) Different methods for β-cyclodextrin/triclosan complexation as antibacterial treatment of cellulose substrates. Cellulose 20:2115–2123

    CAS  Google Scholar 

  • Pelissari FM, Grossmann MVE, Yamashita F, Pineda EAG (2009) Antimicrobial, mechanical, and barrier properties of cassava starch-chitosan films incorporated with oregano essential oil. J Agric Food Chem 57:7499–7504

    CAS  Google Scholar 

  • Peng ZX, Wang L, Du L, Guo SR, Wang XQ, Tang TT (2010) Adjustment of the antibacterial activity and biocompatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium. Carbohydr Polym 81:275–283

    CAS  Google Scholar 

  • Perera DHN, Nataraj SK, Thomson NM, Sepe A, Hüttner S, Steiner U, Qiblawey H, Sivaniah E (2014) Room-temperature development of thin film composite reverse osmosis membranes from cellulose acetate with antibacterial properties. J Membr Sci 453:212–220

    CAS  Google Scholar 

  • Pinto RJB, Daina S, Sadocco P, Pascoal Neto C, Trindade T (2013) Antibacterial activity of nanocomposites of copper and cellulose. Biomed Res Int 2013:280512

    Google Scholar 

  • Piozzi A, Francolini I (2013) Editorial of the special issue antimicrobial polymers. Int J Mol Sci 14:18002–18008

    Google Scholar 

  • Priya B, Gupta VK, Pathania D, Singha AS (2014) Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr Polym 109:171–179

    CAS  Google Scholar 

  • Puskas JE, Sen MY, Seo KS (2009) Green polymer chemistry using nature’s catalysts, enzymes. J Polym Sci A Polym Chem 47:2959–2976

    CAS  Google Scholar 

  • Pyla R, Kim T-J, Silva JL, Jung Y-S (2010) Enhanced antimicrobial activity of starch-based film impregnated with thermally processed tannic acid, a strong antioxidant. Int J Food Microbiol 137:154–160

    CAS  Google Scholar 

  • Qian L, Guan Y, He B, Xiao H (2008a) Synergy of wet strength and antimicrobial activity of cellulose paper induced by a novel polymer complex. Mater Lett 62:3610–3612

    CAS  Google Scholar 

  • Qian L, Guan Y, Ziaee Z, He B, Zheng A, Xiao H (2008b) Rendering cellulose fibers antimicrobial using cationic β-cyclodextrin-based polymers included with antibiotics. Cellulose 16:309–317

    Google Scholar 

  • Qian L, Dong C, Liang X, He B, Xiao H (2013) Polyelectrolyte complex containing antimicrobial guanidine-based polymer and its adsorption on cellulose fibers. Holzforschung 68:103–111

    Google Scholar 

  • Raafat D, Von Bargen K, Haas A, Sahl HG (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74:3764–3773

    CAS  Google Scholar 

  • Raghavendra GM, Jayaramudu T, Varaprasad K, Sadiku R, Ray SS, Mohana Raju K (2013) Cellulose-polymer-Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds. Carbohydr Polym 93:553–560

    CAS  Google Scholar 

  • Rajan A, Gnanasekaran G, Sathishkumar Y, Soo Y, Sang C (2014) Electrospun antibacterial polyurethane – cellulose acetate – zein composite mats for wound dressing. Carbohydr Polym 102:884–892

    Google Scholar 

  • Raji V, Chakraborty M, Parikh PA (2012) Synthesis of starch-stabilized silver nanoparticles and their antimicrobial activity. Part Sci Technol 30:565–577

    CAS  Google Scholar 

  • Ravindra S, Mohan YM, Reddy NN, Raju KM (2010) Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “green approach”. Colloids Surf A Physicochem Eng Asp 367:31–40

    CAS  Google Scholar 

  • Ren D, Fang J, Liu P, Sun X, Zhang RH (2012) Preparation and property characterization of chitosan/microcrystalline cellulose antimicrobial preservative films. Appl Mech Mater 200:416–422

    CAS  Google Scholar 

  • Rinaudo M (2013) Materials based on chitin and chitosan. Bio-based plastics: materials and applications. In: Stephan Kabasci (ed), Bio-based Plastics: Materials and Aplications, Wiley and Sons. pp 3–87

    Google Scholar 

  • Rodríguez FJ, Torres A, Peñaloza Á, Sepúlveda H, Galotto MJ, Guarda A, Bruna J (2014) Development of an antimicrobial material based on a nanocomposite cellulose acetate film for active food packaging. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31:342–353

    Google Scholar 

  • Rosa B, Quintero I, Rodriguez F, Bruna J, Guarda A, Galotto MJ (2013) Cellulose acetate butyrate nanocomposites with antimicrobial properties for food packaging. Packag Technol Sci 26:249–265

    Google Scholar 

  • Rouabhia M, Asselin J, Tazi N, Messaddeq Y, Levinson D, Zhang Z (2014) Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl Mater Interfaces 6:1439–1446

    CAS  Google Scholar 

  • Roy D, Knapp JS, Guthrie JT, Perrier S (2008) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9:91–99

    CAS  Google Scholar 

  • Royo M, Fernández-Pan I, Maté JI (2010) Antimicrobial effectiveness of oregano and sage essential oils incorporated into whey protein films or cellulose-based filter paper. J Sci Food Agric 90:1513–1519

    CAS  Google Scholar 

  • Salimpour Abkenar S, Mohammad Ali Malek R (2012) Preparation, characterization, and antimicrobial property of cotton cellulose fabric grafted with poly (propylene imine) dendrimer. Cellulose 19:1701–1714

    CAS  Google Scholar 

  • Sayanjali S, Ghanbarzadeh B, Ghiassifar S (2011) Evaluation of antimicrobial and physical properties of edible film based on carboxymethyl cellulose containing potassium sorbate on some mycotoxigenic Aspergillus species in fresh pistachios. LWT Food Sci Technol 44:1133–1138

    CAS  Google Scholar 

  • Scheeren CW, Hermes V, Bianchi O, Hertz PF, Dias SLP, Dupont J (2011) Antimicrobial membrane cellulose acetate containing ionic liquid and metal nanoparticles. J Nanosci Nanotechnol 11:5114–5122

    CAS  Google Scholar 

  • Schierholz JM, Beuth J (2001) Implant infections: a haven for opportunistic bacteria. J Hosp Infect 49:87–93

    CAS  Google Scholar 

  • Shchipunov Y, Sarin S, Kim I, Ha CS (2010) Hydrogels formed through regulated self-organization of gradually charging chitosan in solution of xanthan. Green Chem 12:1187–1195

    CAS  Google Scholar 

  • Shen XL, Wu JM, Chen Y, Zhao G (2010) Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocoll 24:285–290

    CAS  Google Scholar 

  • Simonc ÆB, Boris Æ, Lidija O (2008) Sol – gel coating of cellulose fibres with antimicrobial and repellent properties. J Sol-Gel Sci Technol 47:44–57

    Google Scholar 

  • Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434

    CAS  Google Scholar 

  • Song Y, Zhang J, Gan W, Zhou J, Zhang L (2010) Flocculation properties and antimicrobial activities of quaternized celluloses synthesized in NaOH/Urea aqueous solution. Ind Eng Chem Res 49:1242–1246

    CAS  Google Scholar 

  • Song W, Guo Z, Zhang L, Zheng H, Zhao Z (2013) Antibacterial activity of starch/acrylamide/allyl triphenyl phosphonium bromide copolymers synthesized by gamma irradiation. Radiat Phys Chem 91:114–119

    CAS  Google Scholar 

  • Sun Y, Chen Z, Braun M (2005) Preparation and physical and antimicrobial properties of a cellulose-supported chloromelamine derivative. Ind Eng Chem Res 44:7916–7920

    CAS  Google Scholar 

  • Sun X, Narciso J, Wang Z, Ference C, Bai J, Zhou K (2014) Effects of chitosan-essential oil coatings on safety and quality of fresh blueberries. J Food Sci 79:955–960

    Google Scholar 

  • Sureshkumar M, Siswanto DY, Lee C-K (2010) Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. J Mater Chem 20:6948–6955

    CAS  Google Scholar 

  • Taheri S, Baier G, Majewski P, Barton M, Förch R, Landfester K, Vasilev K (2014) Synthesis and antibacterial properties of a hybrid of silver–potato starch nanocapsules by miniemulsion/polyaddition polymerization. J Mater Chem B 2:1838

    CAS  Google Scholar 

  • Takahashia T, Imaia M, Suzukia I, Sawai J (2008) Growth inhibitory effect on bacteria of chitosan membranes regulated by the deacetylation degree. Biochem Eng J 40:485–491

    Google Scholar 

  • Tang F, Zhang L, Zhang Z, Cheng Z, Zhu X (2009) Cellulose filter paper with antibacterial activity from surface-initiated ATRP. J Macromol Sci A 46:989–996

    CAS  Google Scholar 

  • Tang H, Zhang P, Kieft TL, Ryan SJ, Baker SM, Wiesmann WP, Rogelj S (2010) Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria. Acta Biomater 6:2562–2571

    CAS  Google Scholar 

  • Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B Biointerfaces 69:164–168

    CAS  Google Scholar 

  • Teli MD, Sheikh J (2012) Antibacterial and acid and cationic dyeable bamboo cellulose (rayon) fabric on grafting. Carbohydr Polym 88:1281–1287

    CAS  Google Scholar 

  • Tin S, Sakharkar KR, Lim CS, Sakharkar MK (2009) Activity of chitosans in combination with antibiotics in Pseudomonas aeruginosa. Int J Biol Sci 5:153–160

    CAS  Google Scholar 

  • Tome LC, Fernandes SCM, Sadocco P, Causio J, Silvestre AJD, Pascoal Neto C, Freire CSR (2012) Antibacterial thermoplastic starch-chitosan based materials prepared by melt-mixing. Bioresources 7:3398–3409

    CAS  Google Scholar 

  • Tomé LC, Fernandes SCM, Perez DS, Sadocco P, Silvestre AJD, Neto CP, Marrucho IM, Freire CSR (2013) The role of nanocellulose fibers, starch and chitosan on multipolysaccharide based films. Cellulose 20:1807–1818

    Google Scholar 

  • Tu Z, Volk M, Shah K, Clerkin K, Liang JF (2009) Constructing bioactive peptides with pH-dependent activities. Peptides 30:1523–1528

    CAS  Google Scholar 

  • Tunç S, Duman O (2011) Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT Food Sci Technol 44:465–472

    Google Scholar 

  • Valappil SP, Yiu HHP, Bouffier L, Hope CK, Evans G, Claridge JB, Higham SM, Rosseinsky MJ (2013) Effect of novel antibacterial gallium-carboxymethyl cellulose on Pseudomonas aeruginosa. Dalton Trans 42:1778–1786

    CAS  Google Scholar 

  • Valencia GA, de Oliveira Vercik CL, Ferrari R, Vercik A (2013) Synthesis and characterization of silver nanoparticles using water-soluble starch and its antibacterial activity on Staphylococcus aureus. Starch Stärke 65:931–937

    CAS  Google Scholar 

  • Vallapa N, Wiarachai O, Thongchul N, Pan J, Tangpasuthadol V, Kiatkamjornwong S, Hoven VP (2011) Enhancing antibacterial activity of chitosan surface by heterogeneous quaternization. Carbohydr Polym 83:868–875

    CAS  Google Scholar 

  • Valodkar M, Rathore PS, Jadeja RN, Thounaojam M, Devkar RV, Thakore S (2012) Cytotoxicity evaluation and antimicrobial studies of starch capped water soluble copper nanoparticles. J Hazard Mater 201–202:244–249

    Google Scholar 

  • Vartiainen J, Ratto M, Lantto R, Nattinen K, Hurme E (2008) Tyrosinase-catalysed grafting of food-grade gallates to chitosan: surface properties of novel functional coatings. Packag Technol Sci 21:317–328

    CAS  Google Scholar 

  • Vásconez MB, Flores SK, Campos CA, Alvarado J, Gerschenson LN (2009) Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res Int 42:762–769

    Google Scholar 

  • Vimala K, Mohan YM, Sivudu K, Varaprasad K, Ravindra S, Reddy NN, Padmab Y, Sreedharc B, MohanaRaju K (2010) Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloids Surf B Biointerfaces 76:248–258

    CAS  Google Scholar 

  • Vytrasova J, Tylsova A, Brozkova I, Cervenka L, Pejchalova M, Havelka P (2008) Antimicrobial effect of oxidized cellulose salts. J Ind Microbiol Biotechnol 35:1247–1252

    CAS  Google Scholar 

  • Wang S, Niu R, Jia H, Wei L, Dai J, Liu X, Xu B (2011) Preparation of cellulose fibres with antibacterial Ag-loading nano-SiO2. Bull Mater Sci 34:629–634

    Google Scholar 

  • Wang Y, Li L, Li B, Wu G, Tang Q, Ibrahim M, Li H, Xie G, Sun G (2012) Action of chitosan against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima. Molecules 17:7028–7041

    CAS  Google Scholar 

  • Wang J, Dong Z, Huang J, Li J, Liu K, Jin J, Ma J (2013a) Synthesis of Ag nanoparticles decorated multiwalled carbon nanotubes using dialdehyde starch as complexant and reductant for antibacterial purposes. RSC Adv 3:918

    CAS  Google Scholar 

  • Wang J, Liu W, Li H, Wang H, Wang Z, Zhou W, Liu H (2013b) Preparation of cellulose fiber – TiO2 nanobelt – silver nanoparticle hierarchically structured hybrid paper and its photocatalytic and antibacterial properties. Chem Eng J 228:272–280

    CAS  Google Scholar 

  • Wang P, Zhao J, Xuan R, Wang Y, Zou C, Zhang Z, Wan Y, Xu Y (2014) Flexible and monolithic zinc oxide bionanocomposite foams by a bacterial cellulose mediated approach for antibacterial applications. Dalton Trans 43:6762–6768

    CAS  Google Scholar 

  • Westman E-H, Ek M, Wågberg L (2009) Antimicrobial activity of polyelectrolyte multilayer-treated cellulose films. Holzforschung 63:33–39

    CAS  Google Scholar 

  • Wiarachai O, Thongchul N, Kiatkamjornwong S, Hoven VP (2012) Surface-quaternized chitosan particles as an alternative and effective organic antibacterial material. Colloids Surf B 92:121–129

    CAS  Google Scholar 

  • Wu J-G, Wang P-J, Chen SC (2010) Antioxidant and antimicrobial effectiveness of catechin-impregnated PVA-starch film on red meat. J Food Qual 33:780–801

    CAS  Google Scholar 

  • Wu F, Meng G, He J, Wu Y, Wu F, Gu Z (2014a) Antibiotic-loaded chitosan hydrogel with superior dual functions: antibacterial efficacy and osteoblastic cell responses. ACS Appl Mater Interfaces 6:10005–10013

    CAS  Google Scholar 

  • Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S (2014b) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771

    CAS  Google Scholar 

  • Xianghua G, Huifang W, Haixia Z, Xiaoli C, Liqiao W, Bingshe X (2013) Simple preparation of silver nanoparticles coated by starch and its antibacterial property. RARE Met Mater Eng 42:2097–2100

    Google Scholar 

  • Xie Y, Liu X, Chen Q (2007) Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity. Carbohydr Polym 69:142–147

    CAS  Google Scholar 

  • Xiong R, Lu C, Wang Y, Zhou Z, Zhang X (2013) Nanofibrillated cellulose as the support and reductant for the facile synthesis of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity. J Mater Chem A 1:14910–14918

    CAS  Google Scholar 

  • Xu T, Xin MH, Li MC, Huang HL, Zhou SQ, Liu JZ (2011) Synthesis, characterization and antibacterial activity of N,O-quaternary ammonium chitosan. Carbohydr Res 346:2445–2450

    CAS  Google Scholar 

  • Yan Q, Zhang J, Dong H, Hou H, Guo P (2013) Properties and antimicrobial activities of starch-sodium alginate composite films incorporated with sodium dehydroacetate or rosemary extract. J Appl Polym Sci 127:1951–1958

    CAS  Google Scholar 

  • Yang G, Xie J, Deng Y, Bian Y, Hong F (2012a) Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohydr Polym 87:2482–2487

    CAS  Google Scholar 

  • Yang G, Xie J, Hong F, Cao Z, Yang X (2012b) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87:839–845

    CAS  Google Scholar 

  • Yang J, Liu X, Huang L, Sun D (2013) Antibacterial properties of novel bacterial cellulose nanofiber containing silver nanoparticles. Chin J Chem Eng 21:1419–1424

    CAS  Google Scholar 

  • Ying GQ, Xiong WY, Wang H, Sun Y, Liu HZ (2011) Preparation, water solubility and antioxidant activity of branched-chain chitosan derivatives. Carbohydr Polym 83:1787–1796

    CAS  Google Scholar 

  • Yoksan R, Chirachanchai S (2010) Silver nanoparticle-loaded chitosan–starch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Mater Sci Eng C 30:891–897

    CAS  Google Scholar 

  • Yuan S, Yin J, Jiang W, Liang B, Pehkonen SO, Choong C (2013) Enhancing antibacterial activity of surface-grafted chitosan with immobilized lysozyme on bioinspired stainless steel substrates. Colloids Surf B Biointerfaces 106:11–21

    CAS  Google Scholar 

  • Zemljic LF, Sauperl O, Kreze T, Strnad S (2012) Characterization of regenerated cellulose fibers antimicrobial functionalized by chitosan. Text Res J 83:185–196

    Google Scholar 

  • Zhang X, Fang Y, Chen W (2013) Preparation of silver/bacterial cellulose composite membrane and study on its antimicrobial activity. Synth React Inorg Met Nano-Metal Chem 43:907–913

    Google Scholar 

  • Zhao T, Sun G (2007) Antimicrobial finishing of cellulose with incorporation of aminopyridinium salts to reactive and direct dyed fabrics. J Appl Polym Sci 106:2634–2639

    CAS  Google Scholar 

  • Zhong Y, Song X, Li Y (2011) Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohydr Polym 84:335–342

    CAS  Google Scholar 

  • Zhou C, Wang M, Zou K, Chen J, Zhu Y, Du J (2013) Antibacterial polypeptide-grafted chitosan-based nanocapsules as an “armed” carrier of anticancer and antiepileptic drugs. ACS Macro Lett 2:1021–1025

    CAS  Google Scholar 

  • Zhu C, Xue J, He J (2009) Controlled in-situ synthesis of silver nanoparticles in natural cellulose fibers toward highly efficient antimicrobial materials. J Nanosci Nanotechnol 9:3067–3074

    CAS  Google Scholar 

  • Zhuo J, Sun G (2013) Antimicrobial functions on cellulose materials introduced by anthraquinone vat dyes. ACS Appl Mater Interfaces 5:10830–10835

    CAS  Google Scholar 

  • Ziaee Z, Qian L, Guan Y, Fatehi P, Xiao H (2010) Antimicrobial/antimold polymer-grafted starches for recycled cellulose fibers. J Biomater Sci Polym Ed 21:1359–1370

    CAS  Google Scholar 

Download references

Acknowledgments

C. S. R. Freire acknowledges FCT for the research grant under the program Investigador FCT 2012. The authors also acknowledge FCT for CICECO (PEst-C/CTM/LA0011/2013; FCOMP-01-0124-FEDER-037271) funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Coma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Coma, V., Freire, C.S.R., Silvestre, A.J.D. (2014). Recent Advances on the Development of Antibacterial Polysaccharide-Based Materials . In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-03751-6_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03751-6_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-03751-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics