Skip to main content

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM,volume 2014))

Abstract

Ventilator-associated pneumonia (VAP) is defined as pneumonia that occurs 48–72 hours or thereafter following endotracheal intubation, characterized by the presence of a new or progressive infiltrate, signs of systemic infection (fever, altered white blood cell count), changes in sputum characteristics, and detection of a causative agent [1]. VAP contributes to approximately half of all cases of hospital-acquired pneumonia [1, 2]. VAP is estimated to occur in 9–27 % of all mechanically ventilated patients, with the highest risk being early in the course of hospitalization [1, 3]. It is the second most common nosocomial infection in the intensive care unit (ICU) and the most common in mechanically ventilated patients [4, 5]. VAP rates range from 1.2 to 8.5 per 1,000 ventilator days and are reliant on the definition used for diagnosis [6]. Risk for VAP is greatest during the first 5 days of mechanical ventilation (3 %) with the mean duration between intubation and development of VAP being 3.3 days [1, 7]. This risk declines to 2 %/day between days 5 to 10 of ventilation, and 1 %/day thereafter [1, 8]. Earlier studies placed the attributable mortality for VAP at between 33–50 %, but this rate is variable and relies heavily on the underlying medical illness [1]. Over the years, the attributable risk of death has decreased and is more recently estimated at 9–13 % [9, 10], largely because of implementation of preventive strategies. Approximately 50 % of all antibiotics administered in ICUs are for treatment of VAP [2, 4]. Early onset VAP is defined as pneumonia that occurs within 4 days and this is usually attributed to antibiotic sensitive pathogens whereas late onset VAP is more likely caused by multidrug resistant (MDR) bacteria and emerges after 4 days of intubation [1, 4]. Thus, VAP poses grave implications in endotracheally intubated adult patients in ICUs worldwide and leads to increased adverse outcomes and healthcare costs. Independent risk factors for development of VAP are male sex, admission for trauma and intermediate underlying disease severity, with odds ratios (OR) of 1.58, 1.75 and 1.47–1.70, respectively [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References:

  1. American Thoracic Society, Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416

    Article  Google Scholar 

  2. Vincent JL, Bihari DJ, Suter PM et al (1995) The prevalence of nosocomial infection in intensive care units in Europe. JAMA 274:639–644

    Article  CAS  PubMed  Google Scholar 

  3. Chastre J, Fagon JY (2002) State of the art: ventilator-associated pneumonia. Am J Respir Crit Care Med 165:867–903

    Article  PubMed  Google Scholar 

  4. Hunter JD (2012) Ventilator associated pneumonia. BMJ 344(e3325):e3325

    Article  PubMed  Google Scholar 

  5. Afshari A, Pagani L, Harbarth S (2012) Year in review 2011: Critical care – infection. Crit Care 16:242–247

    Article  PubMed  Google Scholar 

  6. Skrupky LP, McConnell K, Dallas J, Kollef MH (2012) A comparison of ventilator-associated pneumonia rates as identified according to the National Healthcare Safety Network and American College of Chest Physicians Criteria. Crit Care Med 40:281–284

    Article  PubMed  Google Scholar 

  7. Rello J, Ollendorf D, Oster G et al (2002) Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest 122:2115–2121

    Article  PubMed  Google Scholar 

  8. Cook DJ, Walter SD, Cook RJ et al (1998) Incidence of and risk factors for ventilator-associated pneumonia in critically ill patients. Ann Int Med 129:433–440

    Article  CAS  PubMed  Google Scholar 

  9. Melsen WG, Rovers MM, Koeman M, Bonten MJM (2011) Estimating the attributable mortality of ventilator-associated pneumonia from randomized prevention studies. Crit Care Med 39:2736–2742

    PubMed  Google Scholar 

  10. Melsen WG, Rovers MM, Groenwold RH et al (2013) Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies. Lancet Infect Dis 13:665–671

    Article  PubMed  Google Scholar 

  11. Zolfaghari PS, Wyncoll DL (2011) The tracheal tube: gateway to ventilator-associated pneumonia. Crit Care 15:310–317

    Article  PubMed  Google Scholar 

  12. Grgurich PE, Hudcova J, Lei Y, Sarwar A, Craven DE (2013) Diagnosis of ventilator-associated pneumonia: controversies and working toward a gold standard. Curr Opin Infect Dis 26:140–150

    Article  PubMed  Google Scholar 

  13. Mietto C, Pinciroli R, Patel N, Berra L (2013) Ventilator associated pneumonia: evolving definitions and preventive strategies. Respir Care 58:990–1007

    Article  PubMed  Google Scholar 

  14. Rocha LA, Marques Ribas R, da Costa Darini AL, Gontijo Filho PP (2013) Relationship between nasal colonization and ventilator-associated pneumonia and the role of the environment in transmission of Staphylococcus aureus in intensive care units. Am J Infect Control (in press)

    Google Scholar 

  15. Morris AC, Brittan M, Wilkinson TS et al (2011) C5a-mediated neutrophil dysfunction is RhoA-dependent and predicts infection in critically ill patients. Blood 117:5178–5188

    Article  CAS  PubMed  Google Scholar 

  16. Conway Morris A, Anderson N, Brittan M et al (2013) Combined dysfunctions of immune cells predict nosocomial infection in critically ill patients. Br J Anaesth 3:1–10

    Article  Google Scholar 

  17. National Healthcare Safety Network (NHSN) (2013) July 2013 CDC/NHSN Protocol Clarifications Available at: http://www.cdc.gov/nhsn/PDFs/pscManual/10-VAE_FINAL.pdf Accessed Oct 2013

    Google Scholar 

  18. Klompas M (2013) Clinician’s Corner: Does this patient have ventilator-associated pneumonia? JAMA 297:1583–1593

    Article  Google Scholar 

  19. Petersen IS, Aru A, Skødt V et al (1999) Evaluation of pneumonia diagnosis in intensive care patients. Scand J Infect Dis 31:299–303

    Article  CAS  PubMed  Google Scholar 

  20. Fàbregas N, Ewig S, Torres A et al (1999) Clinical diagnosis of ventilator associated pneumonia revisited: comparative validation using immediate post-mortem lung biopsies. Thorax 54:867–873

    Article  PubMed  Google Scholar 

  21. Johanson WG, Pierce AK, Sanford JP, Thomas GD (1972) Nosocomial respiratory infections with gram-negative bacilli. The significance of colonization of the respiratory tract. Ann Int Med 77:701–706

    Article  PubMed  Google Scholar 

  22. Pugin J, Auckenthaler R, Mili N, Janssens JP, Lew PD, Suter PM (1991) Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and nonbronchoscopic “blind” bronchoalveolar lavage fluid. Am Rev Respir Dis 143:1121–1129

    Article  CAS  PubMed  Google Scholar 

  23. Shan J, Chen HL, Zhu JH (2011) Diagnostic accuracy of clinical pulmonary infection score for ventilator-associated pneumonia: a meta-analysis. Respir Care 56:1087–1094

    Article  PubMed  Google Scholar 

  24. Zilberberg MD, Shorr AF (2010) Ventilator-associated pneumonia: the clinical pulmonary infection score as a surrogate for diagnostics and outcome. Clin Infect Dis 1(1):S131–S135

    Article  Google Scholar 

  25. Shorr AF, Cook D, Jiang X, Muscedere J, Heyland D (2008) Correlates of clinical failure in ventilator-associated pneumonia: insights from a large, randomized trial. J Crit Care 23:64–73

    Article  PubMed  Google Scholar 

  26. Singh N, Rogers P, Atwood CW, Wagener MM, Yu VL (2000) Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med 162:505–511

    Article  CAS  PubMed  Google Scholar 

  27. Luna CM, Vujacich P, Niederman MS, Vay C, Gherardi C (1996) Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 11:676–685

    Google Scholar 

  28. Canadian Critical Care Trials Group (2013) A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med 355:2619–2630

    Google Scholar 

  29. Berton DC, Kalil AC, Cavalcanti M, Teixeira PJ (2012) Quantitative versus qualitative cultures of respiratory secretions for clinical outcomes in patients with ventilator-associated pneumonia Chocrane Database Syst Rev 1:CD006482

    Google Scholar 

  30. Auerbach DI, Staiger DO, Muench U, Buerhaus PI (2013) The nursing workforce in an era of health care reform. N Engl J Med 368:1470–1472

    Article  CAS  PubMed  Google Scholar 

  31. Hayashi Y, Morisawa K, Klompas M et al (2013) Toward improved surveillance: the impact of ventilator-associated complications on length of stay and antibiotic use in patients in intensive care units. Clin Infect Dis 56:471–477

    Article  CAS  PubMed  Google Scholar 

  32. Berton DC, Kalil AC, Teixeira PJ (2012) Quantitative versus qualitative cultures of respiratory secretions for clinical outcomes in patients with ventilator-associated pneumonia. Cochrane Database Syst Rev CD006482

    Google Scholar 

  33. Klompas M (2013) Complications of mechanical ventilation – the CDC's new surveillance paradigm. N Engl J Med 368:1472–1475

    Article  CAS  PubMed  Google Scholar 

  34. Masterton RG (2011) Antibiotic de-escalation. Crit Care Clin 27:149–162

    Article  CAS  PubMed  Google Scholar 

  35. Torres A, Ewig S, Lode H, Carlet J (2009) Defining, treating and preventing hospital acquired pneumonia: European perspective. Intensive Care Med 35:9–29

    Article  PubMed  Google Scholar 

  36. Walkey AJ, O’Donnell MR, Wiener RS (2011) Linezolid vs glycopeptide antibiotics for the treatment of suspected methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a meta-analysis of randomized controlled trials. Chest 139:1148–1155

    Article  CAS  PubMed  Google Scholar 

  37. Munoz-Price LS, Weinstein RA (2008) Acinetobacter Infection. N Engl J Med 358:1271–1281

    Article  CAS  PubMed  Google Scholar 

  38. Martin-Loeches I, Deja M, Koulenti D et al (2013) Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors. Intensive Care Med 39:672–681

    Article  PubMed  Google Scholar 

  39. Pasquale TR, Jabrocki B, Salstrom SJ et al (2013) Emergence of methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of late-onset nosocomial pneumonia in intensive care patients in the USA. Inter J Infect Dis 17:e398–e403

    Article  Google Scholar 

  40. Capellier G, Mockly H, Charpentier C et al (2012) Early-onset ventilator-associated pneumonia in adults randomized clinical trial: comparison of 8 versus 15 days of antibiotic treatment. PloS one 7:e41290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Chastre J, Wolff M, Fagon J-Y et al (2003) Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 290:2588–2598

    Article  CAS  PubMed  Google Scholar 

  42. Dimopoulos G, Poulakou G, Pneumatikos IA, Armaganidis A, Kollef MH, Matthaiou DK (2013) Short- versus long-duration antibiotic regimens for ventilator-associated pneumonia: a systematic review and meta-analysis. Chest (in press)

    Google Scholar 

  43. Swoboda SM, Dixon T, Lipsett PA (2006) Can the clinical pulmonary infection score impact ICU antibiotic days ? Surg Infect (Larchmt) 7:331–339

    Article  Google Scholar 

  44. Morris AC, Hay AW, Swann DG et al (2011) Reducing ventilator-associated pneumonia in intensive care: impact of implementing a care bundle. Crit Care Med 39:2218–2224

    Article  PubMed  Google Scholar 

  45. Alhazzani W, Almasoud A, Jaeschke R et al (2013) Small bowel feeding and risk of pneumonia in adult critically ill patients: a systematic review and meta-analysis of randomized trials. Crit Care 17:R127

    Article  PubMed  Google Scholar 

  46. Muscedere J, Rewa O, McKechnie K, Jiang X, Laporta D, Heyland DK (2011) Subglottic secretion drainage for the prevention of ventilator-associated pneumonia: a systematic review and meta-analysis. Crit Care Med 39:1985–1991

    Article  PubMed  Google Scholar 

  47. Morrow LE, Kollef MH (2010) Recognition and prevention of nosocomial pneumonia in the intensive care unit and infection control in mechanical ventilation. Crit Care Med 38:S352–S362

    Article  PubMed  Google Scholar 

  48. Youngquist P, Carroll M, Farber M et al (2007) Implementing a ventilator bundle in a community hospital. Jt Comm J Qual Patient Saf 33:219–225

    PubMed  Google Scholar 

  49. Zilberberg MD, Shorr AF, Kollef MH (2009) Implementing quality improvements in the intensive care unit: Ventilator bundle as an example. Crit Care Med 37:305–309

    Article  PubMed  Google Scholar 

  50. Vallés J, Peredo R, Burgueño MJ et al (2013) Efficacy of single-dose antibiotic against early-onset pneumonia in comatose patients who are ventilated. Chest 143:1219–1225

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Ziai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland and BioMed Central Ltd.

About this chapter

Cite this chapter

Kalanuria, A.A., Mirski, M., Ziai, W. (2014). Ventilator-associated Pneumonia in the ICU. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2014. Annual Update in Intensive Care and Emergency Medicine, vol 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-03746-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03746-2_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03745-5

  • Online ISBN: 978-3-319-03746-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics