Skip to main content

The Utility of Thromboelastometry (ROTEM) or Thromboelastography (TEG) in Non-bleeding ICU Patients

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2014

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM,volume 2014))

  • 2240 Accesses

Abstract

A hypocoagulable state is highly prevalent in critically ill patients. An international normalized ratio (INR) of > 1.5 occurs in 30 % of patients and is associated with increased mortality [1]. Moreover, up to 40 % of critically ill patients develop thrombocytopenia during their intensive care unit (ICU) stay [2–4], associated with increased length of stay, need for transfusion of blood products and increased mortality [5]. Disseminated intravascular coagulation (DIC) develops in 10 to 20 % of ICU patients. A hypercoagulable state is associated with increased thromboembolic events [6], contributes to organ failure and is associated with a high mortality, ranging from 45 to 78 % [7].

Coagulopathy is thought to result from an imbalance between activation of coagulation and impaired inhibition of coagulation and fibrinolysis. Activation is triggered by tissue factor, which is expressed in reaction to cytokines or endothelial damage. Impaired inhibition of coagulation is the consequence of reduced plasma levels of antithrombin (AT), depressed activity of the protein C system and decreased levels of tissue factor pathway inhibitor (TFPI). A decrease in fibrinolysis is due to increased levels of plasminogen activator inhibitor type 1 (PAI-1) [8, 9]. This disturbance between components of the coagulation system leads to a variable clinical picture, ranging from patients with an increased bleeding tendency (hypocoagulable state) to those with DIC with (micro-) vascular thrombosis (hypercoagulable state).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walsh TS, Stanworth SJ, Prescott RJ, Lee RJ, Watson DM, Wyncoll D (2010) Prevalence, management, and outcomes of critically ill patients with prothrombin time prolongation in United Kingdom intensive care units. Crit Care Med 38:1939–1946

    PubMed  Google Scholar 

  2. Crowther MA, Cook DJ, Meade MO et al (2005) Thrombocytopenia in medical-surgical critically ill patients: prevalence, incidence, and risk factors. J Crit Care 20:348–353

    Article  PubMed  Google Scholar 

  3. Strauss R, Wehler M, Mehler K, Kreutzer D, Koebnick C, Hahn EG (2002) Thrombocytopenia in patients in the medical intensive care unit: bleeding prevalence, transfusion requirements, and outcome. Crit Care Med 30:1765–1771

    Article  PubMed  Google Scholar 

  4. Vanderschueren S, De Weerdt A, Malbrain M et al (2000) Thrombocytopenia and prognosis in intensive care. Crit Care Med 28:1871–1876

    Article  CAS  PubMed  Google Scholar 

  5. Hui P, Cook DJ, Lim W, Fraser GA, Arnold DM (2011) The frequency and clinical significance of thrombocytopenia complicating critical illness: a systematic review. Chest 139:271–278

    Article  PubMed  Google Scholar 

  6. Shackford SR, Davis JW, Hollingsworth-Fridlund P, Brewer NS, Hoyt DB, Mackersie RC (1990) Venous thromboembolism in patients with major trauma. Am J Surg 159:365–369

    Article  CAS  PubMed  Google Scholar 

  7. Singh B, Hanson AC, Alhurani R et al (2013) Trends in the incidence and outcomes of disseminated intravascular coagulation in critically ill patients (2004–2010): a population-based study. Chest 143:1235–1242

    Article  PubMed  Google Scholar 

  8. Dempfle CE (2004) Coagulopathy of sepsis. Thromb Haemost 91:213–224

    CAS  PubMed  Google Scholar 

  9. Levi M, Ten CH (1999) Disseminated intravascular coagulation. N Engl J Med 341:586–592

    Article  CAS  PubMed  Google Scholar 

  10. Levi M, Meijers JC (2011) DIC: which laboratory tests are most useful. Blood Rev 25:33–37

    Article  PubMed  Google Scholar 

  11. Reikvam H, Steien E, Hauge B et al (2009) Thrombelastography. Transfus Apher Sci 40:119–123

    Article  PubMed  Google Scholar 

  12. Bernard GR, Vincent JL, Laterre PF et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709

    Article  CAS  PubMed  Google Scholar 

  13. Afshari A, Wetterslev J, Brok J, Moller A (2007) Antithrombin III in critically ill patients: systematic review with meta-analysis and trial sequential analysis. BMJ 335:1248–1251

    Article  PubMed  Google Scholar 

  14. Abraham E, Reinhart K, Opal S et al (2003) Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA 290:238–247

    Article  CAS  PubMed  Google Scholar 

  15. Jaimes F, De La Rosa G, Morales C et al (2009) Unfractioned heparin for treatment of sepsis: A randomized clinical trial (The HETRASE Study). Crit Care Med 37:1185–1196

    Article  CAS  PubMed  Google Scholar 

  16. Schochl H, Solomon C, Schulz A et al (2011) Thromboelastometry (TEM) findings in disseminated intravascular coagulation in a pig model of endotoxinemia. Mol Med 17:266–272

    Article  PubMed Central  PubMed  Google Scholar 

  17. Spiel AO, Mayr FB, Firbas C, Quehenberger P, Jilma B (2006) Validation of rotation thrombelastography in a model of systemic activation of fibrinolysis and coagulation in humans. J Thromb Haemost 4:411–416

    Article  CAS  PubMed  Google Scholar 

  18. Zacharowski K, Sucker C, Zacharowski P, Hartmann M (2006) Thrombelastography for the monitoring of lipopolysaccharide induced activation of coagulation. Thromb Haemost 95:557–561

    CAS  PubMed  Google Scholar 

  19. Brenner T, Schmidt K, Delang M et al (2012) Viscoelastic and aggregometric point-of-care testing in patients with septic shock – cross-links between inflammation and haemostasis. Acta Anaesthesiol Scand 56:1277–1290

    Article  CAS  PubMed  Google Scholar 

  20. Durila M, Kalincik T, Jurcenko S, Pelichovska M, Hadacova I, Cvachovec K (2010) Arteriovenous differences of hematological and coagulation parameters in patients with sepsis. Blood Coagul Fibrinolysis 21:770–774

    Article  CAS  PubMed  Google Scholar 

  21. Altmann DR, Korte W, Maeder MT et al (2010) Elevated cardiac troponin I in sepsis and septic shock: no evidence for thrombus associated myocardial necrosis. PLoS One 5:e9017

    Article  PubMed Central  PubMed  Google Scholar 

  22. Daudel F, Kessler U, Folly H et al (2009) Thromboelastometry for the assessment of coagulation abnormalities in early and established adult sepsis: a prospective cohort study. Crit Care 13:R42

    Article  PubMed  Google Scholar 

  23. Gonano C, Sitzwohl C, Meitner E, Weinstabl C, Kettner SC (2006) Four-day antithrombin therapy does not seem to attenuate hypercoagulability in patients suffering from sepsis. Crit Care 10:R160

    Article  PubMed  Google Scholar 

  24. Viljoen M, Roux LJ, Pretorius JP, Coetzee IH, Viljoen E (1995) Hemostatic competency and elastase-alpha 1-proteinase inhibitor levels in surgery, trauma, and sepsis. J Trauma 39:381–385

    Article  CAS  PubMed  Google Scholar 

  25. Sivula M, Pettila V, Niemi TT, Varpula M, Kuitunen AH (2009) Thromboelastometry in patients with severe sepsis and disseminated intravascular coagulation. Blood Coagul Fibrinolysis 20:419–426

    Article  PubMed  Google Scholar 

  26. Collins PW, Macchiavello LI, Lewis SJ et al (2006) Global tests of haemostasis in critically ill patients with severe sepsis syndrome compared to controls. Br J Haematol 135:220–227

    Article  PubMed  Google Scholar 

  27. Ostrowski SR, Windelov NA, Ibsen M, Haase N, Perner A, Johansson PI (2013) Consecutive thrombelastography clot strength profiles in patients with severe sepsis and their association with 28-day mortality: a prospective study. J Crit Care 28:317 e1–e11

    Google Scholar 

  28. Adamzik M, Langemeier T, Frey UH et al (2011) Comparison of thrombelastometry with simplified acute physiology score II and sequential organ failure assessment scores for the prediction of 30-day survival: a cohort study. Shock 35:339–342

    Article  PubMed  Google Scholar 

  29. Sharma P, Saxena R (2010) A novel thromboelastographic score to identify overt disseminated intravascular coagulation resulting in a hypocoagulable state. Am J Clin Pathol 134:97–102

    Article  PubMed  Google Scholar 

  30. Massion PB, Peters P, Ledoux D et al (2012) Persistent hypocoagulability in patients with septic shock predicts greater hospital mortality: impact of impaired thrombin generation. Intensive Care Med 38:1326–1335

    Article  CAS  PubMed  Google Scholar 

  31. Hypothermia after Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556

    Article  Google Scholar 

  32. Bernard SA, Gray TW, Buist MD et al (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563

    Article  PubMed  Google Scholar 

  33. Spiel AO, Kliegel A, Janata A et al (2009) Hemostasis in cardiac arrest patients treated with mild hypothermia initiated by cold fluids. Resuscitation 80:762–765

    Article  PubMed  Google Scholar 

  34. Reed RL, Bracey AW Jr., Hudson JD, Miller TA, Fischer RP (1990) Hypothermia and blood coagulation: dissociation between enzyme activity and clotting factor levels. Circ Shock 32:141–152

    PubMed  Google Scholar 

  35. Nielsen N, Sunde K, Hovdenes J et al (2011) Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit Care Med 39:57–64

    Article  PubMed  Google Scholar 

  36. Cundrle I Jr, Sramek V, Pavlik M, Suk P, Radouskova I, Zvonicek V (2013) Temperature corrected thromboelastography in hypothermia: is it necessary? Eur J Anaesthesiol 30:85–89

    Article  PubMed  Google Scholar 

  37. Sun Y, Wang J, Wu X et al (2011) Validating the incidence of coagulopathy and disseminated intravascular coagulation in patients with traumatic brain injury – analysis of 242 cases. Br J Neurosurg 25:363–368

    Article  PubMed  Google Scholar 

  38. Lustenberger T, Talving P, Kobayashi L et al (2010) Time course of coagulopathy in isolated severe traumatic brain injury. Injury 41:924–928

    Article  PubMed  Google Scholar 

  39. Stein SC, Smith DH (2004) Coagulopathy in traumatic brain injury. Neurocrit Care 1:479–488

    Article  PubMed  Google Scholar 

  40. Nekludov M, Bellander BM, Blomback M, Wallen HN (2007) Platelet dysfunction in patients with severe traumatic brain injury. J Neurotrauma 24:1699–1706

    Article  PubMed  Google Scholar 

  41. Windelov NA, Welling KL, Ostrowski SR, Johansson PI (2011) The prognostic value of thrombelastography in identifying neurosurgical patients with worse prognosis. Blood Coagul Fibrinolysis 22:416–419

    Article  PubMed  Google Scholar 

  42. Park MS, Salinas J, Wade CE et al (2008) Combining early coagulation and inflammatory status improves prediction of mortality in burned and nonburned trauma patients. J Trauma 64:S188–S194

    Article  PubMed  Google Scholar 

  43. Gonzalez E, Kashuk JL, Moore EE, Silliman CC (2010) Differentiation of enzymatic from platelet hypercoagulability using the novel thrombelastography parameter delta (delta). J Surg Res 163:96–101

    Article  CAS  PubMed  Google Scholar 

  44. Schreiber MA, Differding J, Thorborg P, Mayberry JC, Mullins RJ (2005) Hypercoagulability is most prevalent early after injury and in female patients. J Trauma 58:475–480

    Article  PubMed  Google Scholar 

  45. Park MS, Martini WZ, Dubick MA et al (2009) Thromboelastography as a better indicator of hypercoagulable state after injury than prothrombin time or activated partial thromboplastin time. J Trauma 67:266–275

    Article  PubMed Central  PubMed  Google Scholar 

  46. Kaufmann CR, Dwyer KM, Crews JD, Dols SJ, Trask AL (1997) Usefulness of thrombelastography in assessment of trauma patient coagulation. J Trauma 42:716–720

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.P. Juffermans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Balvers, K., Muller, M., Juffermans, N. (2014). The Utility of Thromboelastometry (ROTEM) or Thromboelastography (TEG) in Non-bleeding ICU Patients. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2014. Annual Update in Intensive Care and Emergency Medicine, vol 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-03746-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03746-2_43

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03745-5

  • Online ISBN: 978-3-319-03746-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics