Skip to main content

Biomechanical Simulation of Lung Deformation from One CT Scan

  • Conference paper
  • First Online:
Bio-Imaging and Visualization for Patient-Customized Simulations

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 13))

Abstract

We present a biomechanical model based simulation method for examining the patient lung deformation induced by respiratory motion, given only one CT scan input. We model the lung stress-strain behavior using a sophisticated hyperelastic model, and solve the lung deformation problem through finite element (FE) analysis. We introduce robust algorithms to segment out the diaphragm control points and spine regions to carefully define the boundary conditions and loads. Experimental results through comparing with the manually labeled landmark points in real patient 4DCT data demonstrate that our lung deformation simulator is accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Mayah A, Moseley J, Velec M, Brock K (2009) Sliding characteristic and material compressibility of human lung: parametric and verification. Med Phys 36(10):4625–4633

    Article  Google Scholar 

  2. Castillo R, Castillo E, Guerra R, Johnson V, McPhail T, Garg A, Guerrero T (2009) A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys Med Biol 54:1849

    Article  Google Scholar 

  3. DiAngelo E, Loring S, Gioia M, Pecchiari M, Moscheni C (2004) Friction and lubrication of pleural tissues. Respir Physiol Neurobiol 142(1):55–68

    Article  Google Scholar 

  4. Didier A, Villard P, Bayle J, Beuve M, Shariat B (2007) Breathing thorax simulation based on pleura physiology and rib kinematics. In: IEEE international conference on medical information visualisation-biomedical visualisation

    Google Scholar 

  5. Didier A, Villard P, Saadé J, Moreau J, Beuve M, Shariat B (2009) A chest wall model based on rib kinematics. In: IEEE international conference on visualisation

    Google Scholar 

  6. Ehrhardt J, Werner R, Frenzel T, Lu W, Low D, Handels H (2007) Analysis of free breathing motion using artifact reduced 4DCT image data. In: SPIE medical imaging conference

    Google Scholar 

  7. Ellis B, Ateshian G, Weiss J (2012) FEBio: finite elements for biomechanics. J Biomech Eng 134(1):5–11

    Google Scholar 

  8. Eom J, Shi C, Xu X, De S (2009) Modeling respiratory motion for cancer radiation therapy based on patient-specific 4DCT data. In: MICCAI

    Google Scholar 

  9. Hostettler A, Nicolau S, Forest C, Soler L, Remond Y (2006) Real time simulation of organ motions induced by breathing: first evaluation on patient data. In: Biomedical simulation conference

    Google Scholar 

  10. Jia J, Sun J, Tang C, Shum H (2006) Drag-and-drop pasting. In: ACM SIGGRAPH conference

    Google Scholar 

  11. Norman W (1999) The anatomy lesson. Georgetown University, Washington

    Google Scholar 

  12. Ogden R (1972) Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond Ser A Math Phys Sci 326(1567):565–584

    Google Scholar 

  13. Saadé J, Didier A, Villard P, Buttin R, Moreau J, Beuve M, Shariat B (2010) A preliminary study for a biomechanical model of the respiratory system. In: International conference on computer vision theory and applications

    Google Scholar 

  14. Santhanam A, Fidopiastis C, Hamza-Lup F, Rolland J, Imielinska C (2004) Physically-based deformation of high-resolution 3d lung models for augmented reality based medical visualization. In: Medical image computing and computer aided intervention, AMI-ARCS, pp 21–32

    Google Scholar 

  15. Segars W, Lalush D, Tsui B (2001) Modeling respiratory mechanics in the MCAT and spline-based MCAT phantoms. IEEE Trans Nucl Sci 48(1):89–97

    Article  Google Scholar 

  16. Vidiâc B, Suarez F (1984) Photographic atlas of the human body. CV Mosby (St. Louis)

    Google Scholar 

  17. Villard P, Beuve M, Shariat B, Baudet V, Jaillet F (2005) Simulation of lung behaviour with finite elements: influence of biomechanical parameters. In: IEEE international conference on medical information visualisation-biomedical visualisation, 2005

    Google Scholar 

  18. Werner R, Ehrhardt J, Schmidt R, Handels H (2009) Patient-specific finite element modeling of respiratory lung motion using 4DCT image data. Med Phys 36(5):1500–1511

    Article  Google Scholar 

  19. West J (2008) Respiratory physiology: the essentials. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  20. Wilson P, Meyer J (2010) A spring-dashpot system for modelling lung tumour motion in radiotherapy. Comput Math Methods Med 11(1):13–26

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhang T, Orton N, Mackie T, Paliwal B (2004) Technical note: a novel boundary condition using contact elements for finite element based deformable image registration. Med Phys 31(9):2412–2415

    Google Scholar 

  22. Zordan V, Celly B, Chiu B, DiLorenzo P (2006) Breathe easy: model and control of simulated respiration for animation. Graph Models 68(2):113–132

    Article  Google Scholar 

  23. Zuckerman S (1963) A new system of anatomy. Oxford University Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Li or Fatih Porikli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, F., Porikli, F. (2014). Biomechanical Simulation of Lung Deformation from One CT Scan. In: Tavares, J., Luo, X., Li, S. (eds) Bio-Imaging and Visualization for Patient-Customized Simulations. Lecture Notes in Computational Vision and Biomechanics, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-03590-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03590-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03589-5

  • Online ISBN: 978-3-319-03590-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics