Skip to main content

Some Functional Analytic Tools for Utility Maximization

  • Chapter
  • First Online:
Modern Stochastics and Applications

Abstract

The aim of the chapter is to extend the application of convex duality methods to the problem of maximizing expected utility from terminal wealth. More precisely, we restrict attention to a dual characterization of the value function of this problem and to a static setting. A general scheme to solve this problem is proposed. In the case where the utility function is finite on \(\mathbb{R}\), we use the approach, suggested by Biagini and Frittelli, based on using an Orlicz space constructed from an investor’s utility function. We reduce the original problem to an optimization problem in this space in a nontrivial way, which allows us to weaken essentially assumptions on the model. We also study the problem of utility maximization with random endowment considered by Cvitanić, Schachermayer, and Wang. Using the space ψ L with a weight function ψ constructed from a random endowment permits us to consider unbounded random endowments. Another important contribution is that in both problems under consideration, we provide versions of the dual problem that are free of singular functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attouch, H., Brezis, H.: Duality for the sum of convex functions in general Banach spaces. In: Barroso, J.A. (ed.) Aspects of Mathematics and its Applications, pp. 125–133. North-Holland, Amsterdam (1986)

    Chapter  Google Scholar 

  2. Biagini, S.: An Orlicz spaces duality for utility maximization in incomplete markets. In: Seminar on Stochastic Analysis, Random Fields and Applications V, Progress Probabability vol. 59, pp. 445–455. Birkhäuser, Basel (2008)

    Google Scholar 

  3. Biagini, S.: Expected utility maximization: Duality methods. In: Cont, R. (ed.) Encyclopedia of Quantitative Finance, pp. 638–645. Wiley, Chichester (2010)

    Google Scholar 

  4. Biagini, S., Černý, A.: Admissible strategies in semimartingale portfolio selection. SIAM J. Control Optim. 49, 42–72 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Biagini, S., Frittelli, M.: Utility maximization in incomplete markets for unbounded processes. Financ. Stoch. 9, 493–517 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Biagini, S., Frittelli, M.: The supermartingale property of the optimal wealth process for general semimartingales. Financ. Stoch. 11, 253–266 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Biagini, S., Frittelli, M.: A unified framework for utility maximization problems: an Orlicz space approach. Ann. Appl. Probab. 18, 929–966 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cvitanić, J., Schachermayer, W., Wang, H.: Utility maximization in incomplete markets with random endowment. Financ. Stoch. 5, 259–272 (2001)

    Article  MATH  Google Scholar 

  9. Gushchin, A.A.: On extension of f-divergence. Theory Probab. Appl. 52, 439–455 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gushchin, A.A.: A lemma from the theory of Orlicz spaces. Surv. Appl. Ind. Math. 16, 1056–1057 (2009) (in Russian)

    Google Scholar 

  11. Gushchin, A.A.: Dual characterization of the value function in the robust utility maximization problem. Theory Probab. Appl. 55, 611–630 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gushchin, A.A.: On the upper hedging price of nonnegative contingent claims. In: Shiryaev, A.N., Lebedev, A.V. (eds.) Contemporary Problems of Mathematics and Mechanics VIII, Mathematics, Issue 3, Probability Theory and Mathematical Statistics, pp. 60–72. MSU, Moscow (2013) (in Russian)

    Google Scholar 

  13. Hugonnier, J., Kramkov, D.: Optimal investment with random endowments in incomplete markets. Ann. Appl. Probab. 14, 845–864 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Khasanov R.V.: Utility maximization problem in the case of unbounded endowment. Moscow Univ. Math. Bull. 68, 138–147 (2013)

    Article  Google Scholar 

  15. Kozek, A.: Convex integral functionals on Orlicz spaces. Ann. Soc. Math. Polonae Ser. 1. Comm. Math. XXI, 109–134 (1979)

    Google Scholar 

  16. Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Prob. 9, 904–950 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Morozov, I.S.: An extension of the class of admissible strategies in the robust utility maximization problem with a utility function finite on R. Surv. Appl. Ind. Math. 17, 617–634 (2010) (in Russian)

    Google Scholar 

  18. Pliska, S.R.: A stochastic calculus model of continuous trading: optimal portfolios. Math. Oper. Res. 11, 371–382 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New-York (1991)

    MATH  Google Scholar 

  20. Rockafellar, R.T.: Extension of Fenchel’s duality theorem for convex functions. Duke Math. J. 33, 81–89 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rockafellar, R.T.: Integrals which are convex functionals. Pacific J. Math. 24, 525–539 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rockafellar, R.T.: Integrals which are convex functionals, II. Pacific J. Math. 39, 439–469 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rokhlin, D.B.: The Kreps–Yan theorem for L . Int. J. Math. Math. Sci. 2005, 2749–2756 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schachermayer, W.: Optimal investment in incomplete markets when wealth may become negative. Ann. Appl. Probab. 11, 694–734 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schachermayer, W.: A super-martingale property of the optimal portfolio process. Financ. Stoch., 4, 433–457 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Gushchin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gushchin, A.A., Khasanov, R.V., Morozov, I.S. (2014). Some Functional Analytic Tools for Utility Maximization. In: Korolyuk, V., Limnios, N., Mishura, Y., Sakhno, L., Shevchenko, G. (eds) Modern Stochastics and Applications. Springer Optimization and Its Applications, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-03512-3_15

Download citation

Publish with us

Policies and ethics