Skip to main content

Introduction to Renewable Energy Systems

  • Chapter
  • First Online:
Advanced and Intelligent Control in Power Electronics and Drives

Part of the book series: Studies in Computational Intelligence ((SCI,volume 531))

Abstract

In this chapter, the state-of-the-arts developments of renewable energy are reviewed in respect to the installed power and market share, where wind power and photovoltaic power generation are the main focuses due to the fast growing speed and large share of installed capacity. Some basic principles of operation, mission profiles, as well as power electronics solutions and corresponding controls are discussed respectively in the case of wind power and photovoltaic power systems. Finally a few development trends for renewable energy conversions are also given from a power electronics point of view. It is concluded that as the quick development of renewable energy, wind power and PV power both show great potential to be largely integrated into the power grid. Power electronics is playing essential role in both of the systems to achieve more controllable, efficient, and reliable energy production—which is crucial for the cost reduction and spread use of renewable energies, because their fluctuated and unpredicted features are un-preferred for the operation of the power grid. Meanwhile there are also some emerging challenges and considerations in the renewable energy conversion system, calling for more advanced controls as well as configurations of power electronics converter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wikipedia, Renewable Energy, Sep 2013. http://en.wikipedia.org/wiki/Renewable_energy

  2. Report of Danish Commission on Climate Change Policy, Green Energy - the road to a Danish energy system without fossil fuels, Sept 2010. http://www.klimakommissionen.dk/en-US/

  3. REN21 - Renewables 2012 Global Status Report, June 2012. http://www.ren21.net

  4. F. Blaabjerg, K. Ma, Future on power electronics for wind turbine systems. IEEE J. Emerg. Sel. Top. Power Electron. 1(3), 139–152 (2013)

    Article  Google Scholar 

  5. F. Blaabjerg, Z. Chen, S.B. Kjaer, Power Electronics as Efficient Interface in Dispersed Power Generation Systems. IEEE Trans. Power Electron. 19(4), 1184–1194 (2004)

    Article  Google Scholar 

  6. K. Ma, M. Liserre, F. Blaabjerg, Lifetime estimation for the power semiconductors considering mission profiles in wind power converter, in Proceedings of ECCE’ 2013, Sep 2013

    Google Scholar 

  7. E. Wolfgang, L. Amigues, N. Seliger, G. Lugert, Building-in reliability into power electronics systems. The World of Electronic Packaging and System Integration, pp. 246–252 (2005)

    Google Scholar 

  8. D. Hirschmann, D. Tissen, S. Schroder, R.W. De Doncker, Inverter design for hybrid electrical vehicles considering mission profiles, in IEEE Conference on Vehicle Power and Propulsion, pp. 1–6, 7–9 Sept 2005

    Google Scholar 

  9. C. Busca, R. Teodorescu, F. Blaabjerg, S. Munk-Nielsen, L. Helle, T. Abeyasekera, P. Rodriguez, An overview of the reliability prediction related aspects of high power IGBTs in wind power applications. Microelectron. Reliab. 51(9–11), 1903–1907 (2011)

    Article  Google Scholar 

  10. E. Wolfgang, Examples for failures in power electronics systems. Paper presented at ECPE Tutorial on Reliability of Power Electronic Systems, Nuremberg, Germany, April 2007

    Google Scholar 

  11. S. Yang, A.T. Bryant, P.A. Mawby, D. Xiang, L. Ran, P. Tavner, An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441–1451 (2011)

    Google Scholar 

  12. A. Isidori, F.M. Rossi, F. Blaabjerg, K. Ma, Thermal loading and reliability of 10 MW multilevel wind power converter at different wind roughness classes. IEEE Trans. Ind. Appl. (2013)

    Google Scholar 

  13. Z. Chen, J.M. Guerrero, F. Blaabjerg, A review of the state of the art of power electronics for wind turbines. IEEE Trans. Power Electron. 24(8), 1859–1875 (2009)

    Article  Google Scholar 

  14. F. Blaabjerg, M. Liserre, K. Ma, Power electronics converters for wind turbine systems. IEEE Trans. Ind. Appl. 48(2), 708–719 (2012)

    Article  Google Scholar 

  15. M. Altin, O. Goksu, R. Teodorescu, P. Rodriguez, B. Bak-Jensen, L. Helle, Overview of recent grid codes for wind power integration, in Proceedings of OPTIM’2010, pp. 1152–1160 (2010)

    Google Scholar 

  16. M. Tsili, A review of grid code technical requirements for wind farms. IET J. Renew. Power Gener. 3(3), 308–332 (2009)

    Article  Google Scholar 

  17. Energinet – Wind turbines connected to grids with voltages below 100 kV, Jan 2003

    Google Scholar 

  18. Energinet – Technical regulation 3.2.5 for wind power plants with a power output greater than 11 kW, Sept 2010

    Google Scholar 

  19. E.ON-Netz – Grid Code. Requirements for offshore grid connections in the E.ON Netz network, April 2008

    Google Scholar 

  20. F. Blaabjerg, K. Ma, High power electronics – Key technology for wind turbines, chapter 6, in Power electronics for renewable energy systems, transportation and industrial applications. (Wiley, New York, 2013)

    Google Scholar 

  21. S. Muller, M. Deicke, R.W. De Doncker, Doubly fed induction generator systems for wind turbines. IEEE Ind. Appl. Mag. 8(3), 26–33 (2002)

    Google Scholar 

  22. D. Xiang, L. Ran, P.J. Tavner, S. Yang, Control of a doubly fed induction generator in a wind turbine during grid fault ride-through. IEEE Trans. Energy Convers. 21(3), 652–662 (2006)

    Article  Google Scholar 

  23. F.K.A. Lima, A. Luna, P. Rodriguez, E.H. Watanabe, F. Blaabjerg, Rotor voltage dynamics in the doubly fed induction generator during grid faults. IEEE Trans. Power Electron. 25(1), 118–130 (2010)

    Google Scholar 

  24. D. Santos-Martin, J.L. Rodriguez-Amenedo, S. Arnaltes, Providing ride-through capability to a doubly fed induction generator under unbalanced voltage dips. IEEE Trans. Power Electron. 24(7), 1747–1757 (2009)

    Article  Google Scholar 

  25. R. Pena, J.C. Clare, G.M. Asher, Doubly fed induction generator using back-to-back PWM converters and its application to variable speed wind-energy generation. Electric Power Application 143(3), 231–241 (1996)

    Article  Google Scholar 

  26. J. Rodriguez, S. Bernet, W. Bin, J.O. Pontt, S. Kouro, Multilevel voltage-source-converter topologies for industrial medium-voltage drives. IEEE Trans. Ind. Electron. 54(6), 2930–2945 (2007)

    Google Scholar 

  27. S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L.G. Franquelo, B. Wu, J. Rodriguez, M.A. Perez, J.I. Leon, Recent advances and industrial applications of multilevel converters. IEEE Trans. Power Electron. 57(8), 2553–2580 (2010)

    Google Scholar 

  28. A. Faulstich, J.K. Stinke, F. Wittwer, Medium voltage converter for permanent magnet wind power generators up to 5 MW, in Proceedings of EPE 2005, pp. 1–9 (2005)

    Google Scholar 

  29. N. Celanovic, D. Boroyevich, A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters. IEEE Trans. Power Electron. 15(2), 242–249 (2000)

    Article  Google Scholar 

  30. S. Srikanthan, M.K. Mishra, DC capacitor voltage equalization in neutral clamped inverters for DSTATCOM application. IEEE Trans. Ind. Electron. 57(8), 2768–2775 (2010)

    Google Scholar 

  31. J. Zaragoza, J. Pou, S. Ceballos, E. Robles, C. Jaen, M. Corbalan, Voltage-balance compensator for a carrier-based modulation in the neutral-point-clamped converter. IEEE Trans. Ind. Electron. 56(2), 305–314 (2009)

    Article  Google Scholar 

  32. K. Ma, F. Blaabjerg, D. Xu, Power devices loading in multilevel converters for 10 MW wind turbines, in Proceedings of ISIE 2011, pp. 340–346, June 2011

    Google Scholar 

  33. K. Ma, F. Blaabjerg, Multilevel converters for 10 MW wind turbines, in Proceedings of EPE’2011, Birmingham, pp. 1–10 (2011)

    Google Scholar 

  34. J. Rodriguez, S. Bernet, P.K. Steimer, I.E. Lizama, A survey on neutral-point-clamped inverters. IEEE Trans. Ind. Electron. 57(7), 2219–2230 (2010)

    Article  Google Scholar 

  35. B. Andresen, J. Birk, A high power density converter system for the Gamesa G10x 4.5 MW wind turbine, in Proceedings of EPE’2007, pp. 1–7 (2007)

    Google Scholar 

  36. R. Jones, P. Waite, Optimised power converter for multi-MW direct drive permanent magnet wind turbines, in Proceedings of EPE’2011, pp. 1–10 (2011)

    Google Scholar 

  37. B. Engel, M. Victor, G. Bachmann, A. Falk, 15 kV/16.7 Hz energy supply system with medium frequency transformer and 6.5 kV IGBTs in resonant operation, in Proceedings of EPE’2003, Toulouse, France, 2–4 Sept 2003

    Google Scholar 

  38. S. Inoue, H. Akagi, A bidirectional isolated DC–DC converter as a core circuit of the next-generation medium-voltage power conversion system. IEEE Trans. Power Electron. 22(2), 535–542 (2007)

    Article  Google Scholar 

  39. F. Iov, F. Blaabjerg, J. Clare, O. Wheeler, A. Rufer, A. Hyde, UNIFLEX-PM-A key-enabling technology for future European electricity networks. EPE J. 19(4), 6–16 (2009)

    Google Scholar 

  40. M. Davies, M. Dommaschk, J. Dorn, J. Lang, D. Retzmann, D. Soerangr, HVDC PLUS – Basics and Principles of Operation, Siemens Technical articles (2008)

    Google Scholar 

  41. A. Lesnicar, R. Marquardt, An innovative modular multilevel converter topology suitable for a wide power range, in Proceedings of IEEE Bologna PowerTech Conference, pp. 1–6 (2003)

    Google Scholar 

  42. M.S. El-Moursi, B. Bak-Jensen, M.H. Abdel-Rahman, Novel STATCOM controller for mitigating SSR and damping power system oscillations in a series compensated wind park. IEEE Trans. Power Electron. 25(2), 429–441 (2010)

    Article  Google Scholar 

  43. J. Dai, D.D. Xu, B. Wu, A novel control scheme for current-source-converter-based PMSG wind energy conversion systems. IEEE Trans. Power Electron. 24(4), 963–972 (2009)

    Article  Google Scholar 

  44. X. Yuan, F. Wang, D. Boroyevich, Y. Li, R. Burgos, DC-link Voltage Control of a Full Power Converter for Wind Generator Operating in Weak-Grid Systems. IEEE Trans. on Power Electron. 24(9), 2178–2192 (2009)

    Article  Google Scholar 

  45. P. Rodriguez, A. Timbus, R. Teodorescu, M. Liserre, F. Blaabjerg, Reactive power control for improving wind turbine system behavior under grid faults. IEEE Trans. Power Electron. 24(7), 1798–1801 (2009)

    Article  Google Scholar 

  46. A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, F. Blaabjerg, Evaluation of current controllers for distributed power generation systems. IEEE Trans. Power Electron. 24(3), 654–664 (2009)

    Article  Google Scholar 

  47. M. Liserre, F. Blaabjerg, S. Hansen, Design and control of an LCL-filter-based three-phase active rectifier. IEEE Trans. Ind. Appl. 41(5), 1281–1291 (2005)

    Google Scholar 

  48. P. Rodriguez, A.V. Timbus, R. Teodorescu, M. Liserre, F. Blaabjerg, Flexible active power control of distributed power generation systems during grid faults. IEEE Trans. Ind. Electron. 54(5), 2583–2592 (2007)

    Article  Google Scholar 

  49. R. Teodorescu, M. Liserre, P. Rodriguez, in Grid Converters for Photovoltaic and Wind Power Systems. Wiley, New York (2011)

    Google Scholar 

  50. F. Blaabjerg, R. Teodorescu, M. Liserre, A.V. Timbus, Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398–1409 (2006)

    Article  Google Scholar 

  51. Website of Vestas Wind Power, Wind turbines overview, April 2011. http://www.vestas.com/

  52. UpWind project, Design limits and solutions for very large wind turbines, March 2011. http://www.ewea.org/fileadmin/ewea_documents/documents/upwind/21895_UpWind_Report_low_web.pdf

  53. Wikipedia Cost of electricity by source, April 2013. http://en.wikipedia.org/wiki/Cost_of_electricity_by_source

  54. Report of the International Renewable Energy Angency (IRENA), Renewable Power Generation Costs in 2012: An Overview, Released in 2013. http://www.irena.org/

  55. S. Faulstich, P. Lyding, B. Hahn, P. Tavner, Reliability of offshore turbines–identifying the risk by onshore experience, in Proceedings of European Offshore Wind, Stockholm (2009)

    Google Scholar 

  56. B. Hahn, M. Durstewitz, K. Rohrig, Reliability of wind turbines – experience of 15 years with 1500 WTs, in Wind Energy, ed. by J. Peinke, P. Schaumann S. Barth (Springer, Berlin, 2007), pp. 329–332

    Google Scholar 

  57. K.O. Kovanen, Photovoltaics and power distribution. Renew. Energy Focus 14(3), 20–21 (2013)

    Google Scholar 

  58. Y. Xue, K.C. Divya, G. Griepentrog, M. Liviu, S. Suresh, M. Manjrekar, Towards next generation photovoltaic inverters, in Proceedings of ECCE’11, pp. 2467–2474, 17–22 Sept 2011

    Google Scholar 

  59. C. Winneker, World’s solar photovoltaic capacity passes 100-gigawatt landmark after strong year [Online], Feb 2013. http://www.epia.org/news/

  60. J.D. van Wyk, F.C. Lee, On a future for power electronics. IEEE J. Emerg. Sel. Top. Power Electron. 1(2), 59–72 (2013)

    Google Scholar 

  61. M. Braun, T. Stetz, R. Brundlinger, C. Mayr, K. Ogimoto, H. Hatta, H. Kobayashi, B. Kroposki, B. Mather, M. Coddington, K. Lynn, G. Graditi, A. Woyte, I. MacGill, Is the distribution grid ready to accept large-scale photovoltaic deployment? State of the art, progress, and future prospects. Prog. Photovolt: Res. Appl. 20(6), 681–697 (2012)

    Article  Google Scholar 

  62. F. Blaabjerg, R. Teodorescu, M. Liserre, A.V. Timbus, Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398–1409 (2006)

    Article  Google Scholar 

  63. S.B. Kjaer, J.K. Pedersen, F. Blaabjerg, A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl. 41(5), 1292–1306 (2005)

    Google Scholar 

  64. S.B. Kjaer, Design and Control of an Inverter for Photovoltaic Applications, PhD Thesis, Department of Energy Technology, Aalborg University, Aalborg, Denmark, Jan 2005

    Google Scholar 

  65. Wikipedia, Solar cell, Sept 2013. http://en.wikipedia.org/wiki/Solar_cell

  66. A. Luque, S. Hegedus, in Handbook of Photovoltaic Science and Engineering, second version (Wiley, New York, 2011)

    Google Scholar 

  67. F. Iov, M. Ciobotaru, D. Sera, R. Teodorescu, F. Blaabjerg, Power electronics and control of renewable energy systems, in Proceedings of PEDS’07, pp. P-6–P-28, 27–30, Nov 2007

    Google Scholar 

  68. M. Ciobotaru, R. Teodorescu, F. Blaabjerg, Control of single-stage single-phase PV inverter, in Proceedings of EPE’05, pp. P.1–P.10 (2005)

    Google Scholar 

  69. E. Koutroulis, F. Blaabjerg, A New technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions. IEEE J. Photovoltaics 2(2), 184–190 (2012)

    Article  Google Scholar 

  70. H. Wang, M. Liserre, F. Blaabjerg, Toward reliable power electronics - challenges, design tools and opportunities. IEEE Ind. Electron. Mag. 7(2), 17–26 (2013)

    Article  Google Scholar 

  71. H. Huang, P.A. Mawby, A lifetime estimation technique for voltage source inverters. IEEE Trans. Power Electron. 28(8), 4113–4119 (2013)

    Article  Google Scholar 

  72. Y. Yang, H. Wang, F. Blaabjerg, and K. Ma, Mission profile based multi-disciplinary analysis of power modules in single-phase transformerless photovoltaic inverters, in Proceedings of EPE ECCE Europe’13, pp. P.1–P.10, Sept 2013

    Google Scholar 

  73. Photovoltaic Research Group, Department of Energy Technology, Aalborg University. http://www.et.aau.dk/research-programmes/

  74. IEEE-SA Standards Board, IEEE Std 929-2000: IEEE recommended practice for utility interface of photovoltaic (PV) systems, Jan 2000

    Google Scholar 

  75. Y. Yang, F. Blaabjerg, Z. Zou, Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems. IEEE Trans. Ind. Appl. 49(5), 2167–2176 (2013)

    Google Scholar 

  76. Y. Yang, F. Blaabjerg, H. Wang, Low voltage ride-through of single-phase transformerless photovoltaic inverters. IEEE Trans. Ind. Appl. May/Jun 2014. http://dx.doi.org/10.1109/1139TIA.2013.2282966

  77. N.P. Papanikolaou, Low-voltage ride-through concept in flyback inverter-based alternating current- photovoltaic modules. IET Power Electron. 6(7), 1436–1448 (2013)

    Article  Google Scholar 

  78. Y. Bae, T.-K. Vu, R.-Y. Kim, Implemental control strategy for grid stabilization of grid-connected PV system based on german grid code in symmetrical low-to-medium voltage network. IEEE Trans. Energy Convers. 28(3), 619–631 (2013)

    Article  Google Scholar 

  79. E. Koutroulis, F. Blaabjerg, Design optimization of transformer-less grid-connected pv inverters including reliability. IEEE Trans. Power Electron. 28(1), 325–335 (2013)

    Article  Google Scholar 

  80. D. Meneses, F. Blaabjerg, O. García, J.A. Cobos, Review and comparison of step-up transformerless topologies for photovoltaic AC-module application. IEEE Trans. Power Electron. 28(6), 2649–2663(2013)

    Google Scholar 

  81. SMA, SUNNY CENTRAL- High tech solution for solar power stations. Products Category Brochure. http://www.sma-america.com/

  82. M. Meinhardt, G. Cramer, Multi-string-converter: the next step in evolution of string-converter technology, in Proceedings of EPE’01, pp. P.1–P.9 (2001)

    Google Scholar 

  83. S.V. Araujo, P. Zacharias, R. Mallwitz, Highly efficient single-phase transformerless inverters for grid-connected PV systems. IEEE Trans. Ind. Electron. 57(9), 3118–3128 (2010)

    Article  Google Scholar 

  84. R. Gonzalez, J. Lopez, P. Sanchis, L. Marroyo, Transformerless inverter for single-phase photovoltaic systems. IEEE Trans. Power Electron. 22(2), 693–697 (2007)

    Article  Google Scholar 

  85. S.R. Gonzalez, C.J. Coloma, P.L. Marroyo, T.J. Lopez, G.P. Sanchis, Single-phase inverter circuit for conditioning and converting dc electrical energy into ac electrical, International Patent Application, Pub. No. WO/2008/015298, 7 Feb 2008

    Google Scholar 

  86. T. Kerekes, R. Teodorescu, P. Rodriguez, G. Vazquez, E. Aldabas, A new high-efficiency single-phase transformerless PV inverter topology. IEEE Trans. Ind. Electron. 58(1), 184–191 (2011)

    Article  Google Scholar 

  87. H. Schmidt, S. Christoph, J. Ketterer, Current inverter for direct/alternating currents, has direct and alternating connections with an intermediate power store, a bridge circuit, rectifier diodes and a inductive choke, German Patent DE10 221 592 A1, 4 Dec 2003

    Google Scholar 

  88. Sunways, Yield-oriented solar inverters with up to 98% peak efficiency. Product category. http://www.sunways.eu/en/

  89. M. Victor, F. Greizer, S. Bremicker, U. Hubler, Method of converting a direct current voltage from a source of direct current voltage, more specifically from a photovoltaic couse of direct current voltage, into a alternating current voltage, US Patent Application, Pub. No. US 2005/0286281 A1, 29 Dec 2005

    Google Scholar 

  90. A. Nabae, H. Magi, I. Takahashi, A new neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. 17(5), 518–523 (1981)

    Google Scholar 

  91. P. Knaup, International Patent Application, Pub. No. WO 2007/048420 A1, May 2007

    Google Scholar 

  92. M. Calais, V.G. Agelidis, M. Meinhardt, Multilevel converters for single-phase grid connected photovoltaic systems: an overview. Sol. Energy 66(5), 325–335 (1999)

    Article  Google Scholar 

  93. Kaco, Powador XP500-HV TL central inverter. http://www.kaco-newenergy.com/products/solar-inverters

  94. Wikipedia, List of photovoltaic power stations, Sept 2013. http://en.wikipedia.org/wiki/List_of_photovoltaic_power_stations

  95. SMA news, 114 Sunny Central 900CP XT inverters from SMA, May 2013. http://www.sma.de/en/newsroom/current-news.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ma, K., Yang, Y., Blaabjerg, F. (2014). Introduction to Renewable Energy Systems. In: Orłowska-Kowalska, T., Blaabjerg, F., Rodríguez, J. (eds) Advanced and Intelligent Control in Power Electronics and Drives. Studies in Computational Intelligence, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-319-03401-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03401-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03400-3

  • Online ISBN: 978-3-319-03401-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics