Skip to main content

Millisecond-Range Liquid-Phase Processing of Silicon-Based Hetero-nanostructures

  • Chapter
Subsecond Annealing of Advanced Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 192))

Abstract

The downscaling and stressor technology of Si based devices is extending the performance of the silicon channel to its limits. Further downsizing of CMOS devices below 16 nm will need to solve some of the practical limits caused by one of the integration issues, such as chip performance, cost of development and production, power dissipation, reliability, etc. One solution for the performance progress which can overcome the downsizing limit in silicon technology is the integration of different functional optoelectronic elements within one chip.

We have realized a compact, CMOS compatible and fully integrated solution for the integration of III–V compound semiconductors with silicon technology for optoelectronic applications. The III–V nanostructured semiconductors are synthesized in either silicon or SOI wafers using the combined ion implantation and millisecond flash lamp annealing (FLA) techniques (Prucnal et al. in Nano Lett. 11:2814, 2011). The FLA appears to be the most suitable one for this purpose. The energy budget introduced to the sample during FLA is sufficient to recrystallize silicon amorphized during implantation and to form III–V nanocrystals (NCs). In this paper we will present research results of the microstructural, optical and electrical properties of III–V quantum dots (InAs, GaAs and InP) formed in silicon and on SOI wafers. The influence of the annealing conditions and the lattice mismatch between III–V semiconductors and silicon on the shape of the III–V quantum dots will be examined. The annealing is performed at temperatures by far exceeding the melting point of bulk compound semiconductors, which leads to the formation of III–V nanostructures due to liquid phase epitaxy and enhances the probability for the incorporation of silicon atoms into III–V NCs. Silicon atoms are commonly used as n-type dopants in most III–V semiconductors. Therefore, liquid phase processing leads to the formation of heavily n-type doped single crystalline III–V nanostructures on silicon. If we consider that the synthesized NCs are n-type, by using a p-type silicon substrate a heterojunction can be formed between the III–V NCs and p-type Si. Conventional selective etching has been used to form the n-III–V/p-Si heterojunction. Current-voltage measurements confirm the heterojunction diode formation between n-type III–V quantum dots and p-type Si. The main advantage of our method is its ability to be integrated into large-scale silicon technology, which also allows applying it to Si-based optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Prucnal, S. Facsko, C. Baumgart, H. Schmidt, M.O. Liedke, L. Rebohle, A. Shalimov, H. Reuther, A. Kanjilal, A. Mücklich, M. Helm, J. Zuk, W. Skorupa, Nano Lett. 11, 2814 (2011)

    Article  Google Scholar 

  2. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  Google Scholar 

  3. T. Canham, Appl. Phys. Lett. 57, 1046 (1990)

    Article  Google Scholar 

  4. S. Sapra, D.D. Sarma, Phys. Rev. B 69, 125304 (2004)

    Article  Google Scholar 

  5. J. Valenta, N. Lalic, J. Linnros, Appl. Phys. Lett. 84, 1459 (2004)

    Article  Google Scholar 

  6. J.H. Chen, T.F. Lei, D. Landheer, X. Wu, M.W. Ma, W.C. Wu, T.Y. Yang, T.S. Chao, Jpn. J. Appl. Phys. 46, 6586 (2007)

    Article  Google Scholar 

  7. X.J. Hao, E.-C. Cho, C. Flynn, Y.S. Shen, S.C. Park, G. Conibeer, M.A. Green, Sol. Energy Mater. Sol. Cells 93, 273 (2009)

    Article  Google Scholar 

  8. M.D. Dvorak, B.L. Justus, D.K. Daskill, D.G. Hendershot, Appl. Phys. Lett. 66, 804 (1995)

    Article  Google Scholar 

  9. T. Shmizu-Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita, N. Itoh, J. Appl. Phys. 75, 7779 (1994)

    Article  Google Scholar 

  10. G. Sęk, P. Podemski, A. Musiał, J. Misiewicz, S. Hein, S. Höfling, A. Forchel, J. Appl. Phys. 105, 086104 (2009)

    Article  Google Scholar 

  11. R. Ding, H. Wang, H. Yang, W. She, Z. Qiu, L. Luo, W.F. Lau, W.Y. Cheung, S.P. Wong, Mater. Chem. Phys. 76, 262 (2002)

    Article  Google Scholar 

  12. R.L. Wells, S.R. Aubuchon, S.S. Kher, M.S. Lube, Chem. Mater. 7, 793 (1995)

    Article  Google Scholar 

  13. A. Meldrum, L.A. Boatner, C.W. White, Nucl. Instrum. Methods Phys. Res. B 178, 7 (2001)

    Article  Google Scholar 

  14. E.F. Schubert, Light-Emitting Diode, 2nd edn. (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  15. W.Z. Shen, L.F. Jiang, H.F. Yang, F.Y. Meng, Appl. Phys. Lett. 80, 2063 (2002)

    Article  Google Scholar 

  16. H. Lu, W.J. Schaff, J. Hwang, H. Wu, G. Koley, L. Eastman, Appl. Phys. Lett. 79, 1489 (2001)

    Article  Google Scholar 

  17. J.A. del Alamo, Nature 479, 317 (2011)

    Article  Google Scholar 

  18. L. Stampoulidis, K. Vyrsokinos, K. Voigt, L. Zimmermann, F. Gomez-Agis, H.J.S. Dorren, Z. Sheng, D. Van Thourhout, L. Moerl, J. Kreissl, B. Sedighi, J.-C. Scheytt, A. Pagano, E. Riccardi, IEEE J. Sel. Top. Quantum Electron. 16, 1422 (2010)

    Article  Google Scholar 

  19. Z. Mia, Y.-L. Chang, J. Nanophotonics 3, 031602 (2009)

    Article  Google Scholar 

  20. G. Gaudin, G. Riou, D. Landru, C. Tempesta, I. Radu, M. Sadaka, K. Winstel, E. Kinser, R. Hannon, in International 3D Systems Integration Conference (3DIC), 16–18 Nov. 2010 (IEEE, Los Alamitos, 2010), p. 1

    Google Scholar 

  21. H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P.W. Leu, K. Ganapathi, E. Plis, H.S. Kim, S.-Y. Chen, M. Madsen, A. Ford, Y.-L. Chueh, S. Krishna, S. Salahuddin, A. Javey, Nature 468, 286 (2010)

    Article  Google Scholar 

  22. C.W. White, J.D. Budai, S.P. Withrow, J.G. Zhu, S.J. Pennycook, R.A. Zuhr, D.M. Hembree Jr., D.O. Henderson, R.H. Magruder, M.J. Yacaman, G. Mondragon, S. Prawer, Nucl. Instrum. Methods Phys. Res. B 127/128, 545–552 (1997)

    Article  Google Scholar 

  23. C.W. White, J.D. Budai, J.G. Zhu, S.P. Withrow, M.J. Aziz, Appl. Phys. Lett. 68, 2389 (1996)

    Article  Google Scholar 

  24. F. Komarov, L. Vlasukova, W. Wesch, A. Kamarou, O. Milchanin, S. Grachnyi, A. Mudryi, A. Ivaniukovich, Nucl. Instrum. Methods Phys. Res. B 266, 3557 (2008)

    Article  Google Scholar 

  25. S. Prucnal, M. Turek, A. Drozdziel, K. Pyszniak, S.Q. Zhou, A. Kanjilal, W. Skorupa, J. Zuk, Appl. Phys. B 101, 315 (2010)

    Article  Google Scholar 

  26. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, K. Chan, Appl. Phys. Lett. 68, 1377 (1996)

    Article  Google Scholar 

  27. M. Kanoun, C. Busseret, A. Poncet, A. Souifi, T. Baron, E. Gautier, Solid-State Electron. 50, 1310 (2006)

    Article  Google Scholar 

  28. J. Robertson, B. Falabretti, Mater. Sci. Eng. B 135, 267 (2006)

    Article  Google Scholar 

  29. A.H. van Ommen, J. Appl. Phys. 57, 1872 (1985)

    Article  Google Scholar 

  30. E. Uccelli, J. Arbiol, J.R. Morante, A. Fontcuberta i Morral, ACS Nano 4, 5985 (2010)

    Article  Google Scholar 

  31. A.L. Lin, L.F. Donaghey, J. Electron. Mater. 7, 383 (1977)

    Article  Google Scholar 

  32. W. Braun, V. Kaganer, A. Trampert, H. Schonherr, Q. Gong, R. Notzel, L. Daweritz, K. Ploog, J. Cryst. Growth 51, 227 (2001)

    Google Scholar 

  33. J.S. Lannin, Solid State Commun. 11, 1523 (1972)

    Article  Google Scholar 

  34. G. Armelles, T. Utzmeier, P.A. Postigo, F. Briones, J.C. Ferrer, P. Peiró, A. Cornet, J. Appl. Phys. 81, 6339 (1997)

    Article  Google Scholar 

  35. L. Artús, R. Cuscó, J. Ibánez, N. Blanco, G. González-Díaz, Phys. Rev. B 60, 5456 (1999)

    Article  Google Scholar 

  36. W. Richter, J.B. Renucci, M. Cardona, Solid State Commun. 16, 131 (1975)

    Article  Google Scholar 

  37. J. Haisma, J.L.C. Daams, A.F. de Jong, B.H. Koek, J.W.F. Maes, D. Mateika, J.A. Pistorius, P.J. Roksnoer, J. Cryst. Growth 102, 1014 (1990)

    Article  Google Scholar 

  38. J. Pastrgak, I. Gregora, J. Oswalu, Z. Chvoj, L. Pekárek, V. Vorlíček, Phys. Status Solidi A 126, 493 (1991)

    Article  Google Scholar 

  39. J.O. Plouchart, N. Zamdmer, J. Kim, M. Sherony et al., IBM J. Res. Dev. 47, 611 (2003)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Polish Ministry of Science and Higher Education, Grant No N N515 246637, and the Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF-VH-NG-713).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prucnal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prucnal, S., Skorupa, W. (2014). Millisecond-Range Liquid-Phase Processing of Silicon-Based Hetero-nanostructures. In: Skorupa, W., Schmidt, H. (eds) Subsecond Annealing of Advanced Materials. Springer Series in Materials Science, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-03131-6_11

Download citation

Publish with us

Policies and ethics