Skip to main content

Reduction of Electron Overflow Problem by Improved InGaN/GaN Based Multiple Quantum Well LEDs Structure with p- AlInGaN/AlGaN EBL Layer

  • Conference paper
Physics of Semiconductor Devices

Part of the book series: Environmental Science and Engineering ((ENVENG))

  • 186 Accesses

Abstract

InGaN/GaN-based Multi Quantum Well (MQW) LEDS with p-AlInGaN/AlGaN electron blocking layers (EBL) are studied using the SimuLED simulator. The simulation results specify the importance of p-AlInGaN/AlGaN electron blocking layers to suppress the electron overflow problem in the InGaN based MQW LED device structure for the further improvement in the optical and electrical performance of the device. The designed AlInGaN/AlGaN EBL was investigated by changing different Al and In concentrations and was analyzed. It shows a reduction in electron overflow and subsequent increase in Internal Quantum Efficiency by insertion of AlXInYGa1-X-YN-Al0.15Ga0.85N(X = 0.1, Y = 0.15) EBL instead of conventional AlGaN EBL. Structure shows a significant reduction in efficiency droop and aiding a supportive barrier for electron overflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Nakamura, Science 281, 956 (1998)

    Article  Google Scholar 

  2. T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. 38, 3976 (1999)

    Google Scholar 

  3. D. A. Zakheim, A. S. Pavluchenko, D. A. Bauman, K. A. Bulashevich, O. V. Khokhlev, and S. Yu. Karpov, Phys. Status Solidi A 209, 456 (2012)

    Article  Google Scholar 

  4. J. Piprek, Phys. Status Solidi A 207, 2217 (2010)

    Google Scholar 

  5. H. P. Zhao, G. Liu, R. A. Arif, N. Tansu, Solid-State Electronics 54,1119 (2010)

    Article  Google Scholar 

  6. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D.D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer. G. Thaler, and M. A. Banas, Appl. Phys. Lett. 91, 231114 (2007)

    Article  Google Scholar 

  7. J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, C. Sone, and Y. Park, Appl. Phys. Lett. 94, 011113 (2009)

    Article  Google Scholar 

  8. K. A. Bulashevich and S. Yu. Karpov, phys. stat. sol. (c) 5, No. 6, 2066 (2008)

    Google Scholar 

  9. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, Semiconductors 40, 605 (2006)

    Article  Google Scholar 

  10. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek and Y. Park, Appl. Phys. Lett. 91, 183507 (2007)

    Article  Google Scholar 

  11. M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong and Y. Park, Appl. Phys. Lett. 93, 041102 (2008)

    Article  Google Scholar 

  12. A. Y. Kim, W. Go, D. A. Steigerwald, J. J. Wierer, N. F. Gardner, J. Sun, S. A. Stockman, P. S. Martin, M. R. Krames, R. S. Kern and F. M. Steranka, Phys. Status Solidi A 188, 15 (2001)

    Google Scholar 

  13. A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, M. R. Krames, T. G. Mihopoulos and M. R. Krames, Appl. Phys. Lett. 92 053502 (2008)

    Article  Google Scholar 

  14. X. J. Pei, L. W. Guo, X. H Wang, Y. Wang, H. Q. Jia, H. Chen and J. M. Zhou, Chin. Phys. Lett. 26 028101 (2009)

    Google Scholar 

  15. C. H. Jang, J. K. Sheu, C. M. Tsai, S. C. Shei, W. C. Lai, and S. J. Chang, IEEE Photon. Technol. Lett. 20, 13 (2008)

    Article  Google Scholar 

  16. S. H. Yen, M. C. Tsai, M. L. Tsai, Y. J. Shen, T. C. Hsu, and Y. K. Kuo, IEEE Photon. Technol. Lett. 21, 975 (2009)

    Article  Google Scholar 

  17. C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo,T. C. Lu, and S. C. Wang, Appl. Phys. Lett. 97, 261103 (2010)

    Article  Google Scholar 

  18. C. S. Xia, Z. M. Simon Li, W. Lu, Z. H. Zhang, Y. Sheng, W. D. Hu, and L. W. Cheng, J. Appl. Phys. 111, 094503 (2012)

    Google Scholar 

  19. G. Franssen, P. Perlin, and Suski, Phys. Rev. B,69 045310 (2004)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Senior Research Fellowship (CSIR-SRF) from Council of Scientific and Industrial Research (CSIR), India for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipika Robidas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Robidas, D., Arivuoli, D. (2014). Reduction of Electron Overflow Problem by Improved InGaN/GaN Based Multiple Quantum Well LEDs Structure with p- AlInGaN/AlGaN EBL Layer. In: Jain, V., Verma, A. (eds) Physics of Semiconductor Devices. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-03002-9_47

Download citation

Publish with us

Policies and ethics