Skip to main content

NMR and Computational Methods in the Structural and Dynamic Characterization of Ligand-Receptor Interactions

  • Chapter
  • First Online:
Protein Conformational Dynamics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 805))

Abstract

The recurrent failures in drug discovery campaigns, the asymmetry between the enormous financial investments and the relatively scarce results have fostered the development of strategies based on complementary methods. In this context in recent years the rigid lock-and-key binding concept had to be revisited in favour of a dynamic model of molecular recognition accounting for conformational changes of both the ligand and the receptor. The high level of complexity required by a dynamic description of the processes underlying molecular recognition requires a multidisciplinary investigation approach. In this perspective, the combination of nuclear magnetic resonance spectroscopy with molecular docking, conformational searches along with molecular dynamics simulations has given new insights into the dynamic mechanisms governing ligand receptor interactions, thus giving an enormous contribution to the identification and design of new and effective drugs. Herein a succinct overview on the applications of both NMR and computational methods to the structural and dynamic characterization of ligand-receptor interactions will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macarron R (2006) Critical review of the role of HTS in drug discovery. Drug Discov Today 11:277–279

    PubMed  Google Scholar 

  2. Giersiefen H, Hilgenfeld R, Hillisch A (2003) Modern methods of drug discovery: an introduction. EXS 93:1–18

    CAS  PubMed  Google Scholar 

  3. Powers R (2009) Advances in nuclear magnetic resonance for drug discovery. Expert Opin Drug Discov 4:1077–1098

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Pellecchia M, Bertini I, Cowburn D et al (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7:738–745

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16

    CAS  PubMed  Google Scholar 

  6. Shuker SB, Hajduk PJ, Meadows RP et al (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    CAS  PubMed  Google Scholar 

  7. Takeuchi K, Wagner G (2006) NMR studies of protein interactions. Curr Opin Struct Biol 16:109–117

    CAS  PubMed  Google Scholar 

  8. Tugarinov V, Kay LE (2003) Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G. J Mol Biol 327:1121–1133

    CAS  PubMed  Google Scholar 

  9. Kay LE (2011) Solution NMR spectroscopy of supra-molecular systems, why bother? A methyl-TROSY view. J Magn Reson 210:159–170

    CAS  PubMed  Google Scholar 

  10. Lepre CA (2011) Practical aspects of NMR-based fragment screening. Methods Enzymol 493:219–239

    CAS  PubMed  Google Scholar 

  11. Lepre CA, Moore JM, Peng JW (2004) Theory and applications of NMR-based screening in pharmaceutical research. Chem Rev 104:3641–3676

    CAS  PubMed  Google Scholar 

  12. Dalvit C (2009) NMR methods in fragment screening: theory and a comparison with other biophysical techniques. Drug Discov Today 14:1051–1057

    CAS  PubMed  Google Scholar 

  13. Goldflam M, Tarrago T, Gairi M et al (2012) NMR studies of protein-ligand interactions. Methods Mol Biol 831:233–259

    CAS  PubMed  Google Scholar 

  14. Hajduk PJ, Olejniczak ET, Fesik SW (1997) One dimensional relaxation- and diffusion-edited NMR methods for screening compounds that bind to macromolecules. J Am Chem Soc 119:12257

    CAS  Google Scholar 

  15. Price SW (1997) Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. Concepts Magn Reson 9:299–366

    Google Scholar 

  16. Price SW (1998) Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part II. Experimental aspects. Concepts Magn Reson 10:197–197

    Google Scholar 

  17. Lin M, Shapiro MJ, Wareing JR (1997) Diffusion-edited NMR ± affinity NMR for direct observation of molecular interactions. Biophys J 119:5249–5250

    CAS  Google Scholar 

  18. Lin M, Shapiro MJ, Wareing JR (1997) Screening mixtures by affinity NMR. J Org Chem 62:8931

    Google Scholar 

  19. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 38:1784–1788

    CAS  Google Scholar 

  20. Claasen B, Axmann M, Meinecke R et al (2005) Direct observation of ligand binding to membrane proteins in living cells by a saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly higher affinity of integrin alpha(IIb)beta3 in native platelets than in liposomes. J Am Chem Soc 127:916–919

    CAS  PubMed  Google Scholar 

  21. Mari S, Serrano-Gómez D, Cañada FJ, Corbí AL, Jiménez-Barbero J (2005) 1D-STD NMR experiments on living cells. The DC-SIGN/oligomannose interaction. Angew Chem Int Ed 44:298

    Google Scholar 

  22. Angulo J, Nieto PM (2011) STD-NMR: application to transient interactions between biomolecules-a quantitative approach. Eur Biophys J 40:1357–1369

    CAS  PubMed  Google Scholar 

  23. Dalvit C, Fogliatto G, Stewart A et al (2001) WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR 21:349–359

    CAS  PubMed  Google Scholar 

  24. Clore GM, Gronenborn AM (1982) Theory and applications of the transferred nuclear Overhauser effect to the study of the conformations of small ligands bounds to proteins. J Magn Reson 48:402–417

    CAS  Google Scholar 

  25. Neuhaus D, Williamson MP (2000) The NOE in structural and conformational analysis. Methods in stereochemical analysis, vol 24. Wiley-VCH, New York

    Google Scholar 

  26. Post CB (2003) Exchange-transferred NOE spectroscopy and bound ligand structure determination. Curr Opin Struct Biol 13:581–588

    CAS  PubMed  Google Scholar 

  27. Fejzo J, Lepre CA, Peng JW et al (1999) The SHAPES strategy: an NMR-based approach for lead generation in drug discovery. Chem Biol 6:755–769

    CAS  PubMed  Google Scholar 

  28. Sanchez-Pedregal VM, Reese M, Meiler J et al (2005) The INPHARMA method: protein-mediated interligand NOEs for pharmacophore mapping. Angew Chem Int Ed Engl 44:4172–4175

    CAS  PubMed  Google Scholar 

  29. Becattini B, Pellecchia M (2006) SAR by ILOEs: an NMR-based approach to reverse chemical genetics. Chemistry 12:2658–2662

    CAS  PubMed  Google Scholar 

  30. Becattini B, Culmsee C, Leone M et al (2006) Structure-activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid. Proc Natl Acad Sci USA 103:12602–12606

    CAS  PubMed  Google Scholar 

  31. Vulpetti A, Hommel U, Landrum G et al (2009) Design and NMR-based screening of LEF, a library of chemical fragments with different local environment of fluorine. J Am Chem Soc 131:12949–12959

    CAS  PubMed  Google Scholar 

  32. Dalvit C, Fagerness PE, Hadden DT et al (2003) Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. J Am Chem Soc 125:7696–7703

    CAS  PubMed  Google Scholar 

  33. Rognan D (2013) Proteome-scale docking: myth and reality. Drug Discov Today Technol 10:e403–e409

    PubMed  Google Scholar 

  34. Kuntz ID, Blaney JM, Oatley SJ et al (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288

    CAS  PubMed  Google Scholar 

  35. Meng XY, Zhang HX, Mezei M et al (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput-Aided Drug Des 7:146–157

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Kitchen DB, Decornez H, Furr JR et al (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    CAS  PubMed  Google Scholar 

  37. Lexa KW, Carlson HA (2012) Protein flexibility in docking and surface mapping. Q Rev Biophys 45:301–343

    CAS  PubMed  Google Scholar 

  38. Feher M, Williams CI (2009) Effect of input differences on the results of docking calculations. J Chem Inf Model 49:1704–1714

    CAS  PubMed  Google Scholar 

  39. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737

    CAS  PubMed  Google Scholar 

  41. de Vries SJ, van Dijk AD, Krzeminski M et al (2007) HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69:726–733

    PubMed  Google Scholar 

  42. Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

    CAS  PubMed  Google Scholar 

  43. Chemical CGI (2012) Molecular operating environment (MOE) 2013.08. Chemical Computing Group Inc., Montreal

    Google Scholar 

  44. Tirado-Rives J, Jorgensen WL (2006) Contribution of conformer focusing to the uncertainty in predicting free energies for protein-ligand binding. J Med Chem 49:5880–5884

    CAS  PubMed  Google Scholar 

  45. Schlick T, Collepardo-Guevara R, Halvorsen LA et al (2011) Biomolecular modeling and simulation: a field coming of age. Q Rev Biophys 44:191–228

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    CAS  PubMed  Google Scholar 

  47. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    CAS  PubMed  Google Scholar 

  48. Sammond DW, Bosch DE, Butterfoss GL et al (2011) Computational design of the sequence and structure of a protein-binding peptide. J Am Chem Soc 133:4190–4192

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    CAS  Google Scholar 

  50. Ostermeir K, Zacharias M (2013) Advanced replica-exchange sampling to study the flexibility and plasticity of peptides and proteins. Biochim Biophys Acta 1834:847–853

    CAS  PubMed  Google Scholar 

  51. Macaluso NJ, Pitkin SL, Maguire JJ et al (2011) Discovery of a competitive apelin receptor (APJ) antagonist. ChemMedChem 6:1017–1023

    CAS  PubMed  Google Scholar 

  52. Okumura H, Gallicchio E, Levy RM (2010) Conformational populations of ligand-sized molecules by replica exchange molecular dynamics and temperature reweighting. J Comput Chem 31:1357–1367

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Frenkel D, Smit B (1996) Understanding molecular simulation: from algorithms to applications. Academic, San Diego

    Google Scholar 

  54. Grzybowski BA, Ishchenko AV, Kim CY et al (2002) Combinatorial computational method gives new picomolar ligands for a known enzyme. Proc Natl Acad Sci USA 99:1270–1273

    CAS  PubMed  Google Scholar 

  55. Mohamadi F, Richards NG, Guida WC et al (1990) Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11:440–467

    CAS  Google Scholar 

  56. Forti F, Cavasotto CN, Orozco M et al (2012) A multilevel strategy for the exploration of the conformational flexibility of small molecules. J Chem Theory Comput 8:1808–1819

    CAS  Google Scholar 

  57. Doi T, Muraoka T, Ohshiro T et al (2012) Conformationally restricted analog and biotin-labeled probe based on beauveriolide III. Bioorg Med Chem Lett 22:696–699

    CAS  PubMed  Google Scholar 

  58. Watts KS, Dalal P, Murphy RB et al (2010) ConfGen: a conformational search method for efficient generation of bioactive conformers. J Chem Inf Model 50:534–546

    CAS  PubMed  Google Scholar 

  59. Huang JJ, Wu XW, Jia JM et al (2013) Novel IKKbeta inhibitors discovery based on the co-crystal structure by using binding-conformation-based and ligand-based method. Eur J Med Chem 63C:269–278

    Google Scholar 

  60. Anonymous (2008) MOE; Chemical Computing Group: 1010 Sherbrooke St. W, Suite 910, Montreal, Quebec, Canada H3A 2R7

    Google Scholar 

  61. Hawkins PC, Nicholls A (2012) Conformer generation with OMEGA: learning from the data set and the analysis of failures. J Chem Inf Model 52:2919–2936

    CAS  PubMed  Google Scholar 

  62. Soliman MH (2013) A hybrid structure/pharmacophore-based virtual screening approach to design potential leads: a computer-aided design of South African HIV-1 subtype C protease inhibitors. Drug Dev Res 74:283–295

    Google Scholar 

  63. Levy Y, Becker OM (2001) Energy landscapes of conformationally constrained peptides. J Chem Phys 114:993–1009

    CAS  Google Scholar 

  64. Mitsutake A, Mori Y (2013) Enhanced sampling algorithms. Methods Mol Biol 924:153–195

    Google Scholar 

  65. Huber T, Torda AE, van Gunsteren WF (1994) Local elevation: a method for improving the searching properties of molecular dynamics simulation. J Comput Aided Mol Des 8:695–708

    CAS  PubMed  Google Scholar 

  66. Cvijovicacute D, Klinowski J (1995) Taboo search: an approach to the multiple minima problem. Science 267:664–666

    CAS  PubMed  Google Scholar 

  67. Wang F, Landau DP (2001) Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett 86:2050–2053

    CAS  PubMed  Google Scholar 

  68. Darve E, Rodriguez-Gomez D, Pohorille A (2008) Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys 128:144120

    PubMed  Google Scholar 

  69. Grubmuller H (1995) Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 52:2893–2906

    PubMed  Google Scholar 

  70. Patey GN, Valleau JP (1975) Monte-Carlo method for obtaining interionic potential of mean force in ionic solution. J Chem Phys 63:2334–2339

    CAS  Google Scholar 

  71. Ferrenberg AM, Swendsen RH (1988) New Monte Carlo technique for studying phase transitions. Phys Rev Lett 61:2635–2638

    CAS  PubMed  Google Scholar 

  72. Bolhuis PG, Chandler D, Dellago C et al (2002) Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu Rev Phys Chem 53:291–318

    CAS  PubMed  Google Scholar 

  73. Zhou T, Caflisch A (2012) Free energy guided sampling. J Chem Theory Comput 8:2134–2140

    CAS  Google Scholar 

  74. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99:12562–12566

    CAS  PubMed  Google Scholar 

  75. Oborsky P, Tvaroska I, Kralova B et al (2013) Toward an accurate conformational modeling of iduronic acid. J Phys Chem B 117:1003–1009

    CAS  PubMed  Google Scholar 

  76. Spiwok V, Hlat-Glembova K, Tvaroska I et al (2012) Conformational free energy modeling of druglike molecules by metadynamics in the WHIM space. J Chem Inf Model 52:804–813

    CAS  PubMed  Google Scholar 

  77. Garate JA, Oostenbrink C (2013) Free-energy differences between states with different conformational ensembles. J Comput Chem 34:1398–1408

    CAS  PubMed  Google Scholar 

  78. Hansen HS, Hunenberger PH (2011) A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. J Comput Chem 32:998–1032

    CAS  PubMed  Google Scholar 

  79. McGaughey GB, Sheridan RP, Bayly CI et al (2007) Comparison of topological, shape, and docking methods in virtual screening. J Chem Inf Model 47:1504–1519

    CAS  PubMed  Google Scholar 

  80. Wong CF, McCammon JA (2003) Protein flexibility and computer-aided drug design. Annu Rev Pharmacol Toxicol 43:31–45

    CAS  PubMed  Google Scholar 

  81. Carlson HA, McCammon JA (2000) Accommodating protein flexibility in computational drug design. Mol Pharmacol 57:213–218

    CAS  PubMed  Google Scholar 

  82. Seeliger D, de Groot BL (2010) Conformational transitions upon ligand binding: holo-structure prediction from apo conformations. PLoS Comput Biol 6:e1000634

    PubMed Central  PubMed  Google Scholar 

  83. Berendsen HJ, Hayward S (2000) Collective protein dynamics in relation to function. Curr Opin Struct Biol 10:165–169

    CAS  PubMed  Google Scholar 

  84. Bahar I, Lezon TR, Bakan A et al (2010) Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem Rev 110:1463–1497

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Brooks B, Karplus M (1985) Normal modes for specific motions of macromolecules: application to the hinge-bending mode of lysozyme. Proc Natl Acad Sci USA 82:4995–4999

    CAS  PubMed  Google Scholar 

  86. Brooks B, Karplus M (1983) Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci USA 80:6571–6575

    CAS  PubMed  Google Scholar 

  87. Levitt M, Sander C, Stern PS (1985) Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J Mol Biol 181:423–447

    CAS  PubMed  Google Scholar 

  88. Petrone P, Pande VS (2006) Can conformational change be described by only a few normal modes? Biophys J 90:1583–1593

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Xu C, Tobi D, Bahar I (2003) Allosteric changes in protein structure computed by a simple mechanical model: hemoglobin TR2 transition. J Mol Biol 333:153–168

    CAS  PubMed  Google Scholar 

  90. Delarue M, Sanejouand YH (2002) Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model. J Mol Biol 320:1011–1024

    CAS  PubMed  Google Scholar 

  91. Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng 14:1–6

    CAS  PubMed  Google Scholar 

  92. Dietzen M, Zotenko E, Hildebrandt A et al (2012) On the applicability of elastic network normal modes in small-molecule docking. J Chem Inf Model 52:844–856

    CAS  PubMed  Google Scholar 

  93. Roux B (2002) Computational studies of the gramicidin channel. Acc Chem Res 35:366–375

    CAS  PubMed  Google Scholar 

  94. Suhre K, Sanejouand YH (2004) ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res 32:W610–W614

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Lu HP (2005) Probing single-molecule protein conformational dynamics. Acc Chem Res 38:557–565

    CAS  PubMed  Google Scholar 

  96. Harms GS, Orr G, Montal M et al (2003) Probing conformational changes of gramicidin ion channels by single-molecule patch-clamp fluorescence microscopy. Biophys J 85:1826–1838

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Cavasotto CN, Kovacs JA, Abagyan RA (2005) Representing receptor flexibility in ligand docking through relevant normal modes. J Am Chem Soc 127:9632–9640

    CAS  PubMed  Google Scholar 

  98. Kruger DM, Ahmed A, Gohlke H (2012) NMSim web server: integrated approach for normal mode-based geometric simulations of biologically relevant conformational transitions in proteins. Nucleic Acids Res 40:W310–W316

    PubMed Central  PubMed  Google Scholar 

  99. Mashiach E, Schneidman-Duhovny D, Peri A et al (2010) An integrated suite of fast docking algorithms. Proteins 78:3197–3204

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Ming D, Cohn JD, Wall ME (2008) Fast dynamics perturbation analysis for prediction of protein functional sites. BMC Struct Biol 8:5–15

    PubMed Central  PubMed  Google Scholar 

  101. Bahar I, Erman B, Haliloglu T et al (1997) Efficient characterization of collective motions and interresidue correlations in proteins by low-resolution simulations. Biochemistry 36:13512–13523

    CAS  PubMed  Google Scholar 

  102. Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77:1905–1908

    CAS  PubMed  Google Scholar 

  103. Atilgan AR, Durell SR, Jernigan RL et al (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80:505–515

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Vashisth H, Brooks CL 3rd (2012) Conformational sampling of maltose-transporter components in Cartesian collective variables is governed by the low-frequency normal modes. J Phys Chem Lett 3:3379–3384

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Korkut A, Hendrickson WA (2012) Structural plasticity and conformational transitions of HIV envelope glycoprotein gp120. PLoS One 7:e52170

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Rader AJ, Anderson G, Isin B et al (2004) Identification of core amino acids stabilizing rhodopsin. Proc Natl Acad Sci USA 101:7246–7251

    CAS  PubMed  Google Scholar 

  107. Isin B, Rader AJ, Dhiman HK et al (2006) Predisposition of the dark state of rhodopsin to functional changes in structure. Proteins 65:970–983

    CAS  PubMed  Google Scholar 

  108. Perryman AL, Forli S, Morris GM et al (2010) A dynamic model of HIV integrase inhibition and drug resistance. J Mol Biol 397:600–615

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Schames JR, Henchman RH, Siegel JS et al (2004) Discovery of a novel binding trench in HIV integrase. J Med Chem 47:1879–1881

    CAS  PubMed  Google Scholar 

  110. Maertens GN, Hare S, Cherepanov P (2010) The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468:326–329

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Hare S, Gupta SS, Valkov E et al (2010) Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464:232–236

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci USA 108:10184–10189

    CAS  PubMed  Google Scholar 

  113. Seeliger MA, Ranjitkar P, Kasap C et al (2009) Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations. Cancer Res 69:2384–2392

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Skjaerven L, Grant B, Muga A et al (2011) Conformational sampling and nucleotide-dependent transitions of the GroEL subunit probed by unbiased molecular dynamics simulations. PLoS Comput Biol 7:e1002004

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Amadei A, Linssen AB, Berendsen HJ (1993) Essential dynamics of proteins. Proteins 17:412–425

    CAS  PubMed  Google Scholar 

  116. Lange OF, Grubmuller H (2006) Can principal components yield a dimension reduced description of protein dynamics on long time scales? J Phys Chem B 110:22842–22852

    CAS  PubMed  Google Scholar 

  117. Cheng X, Ivanov I, Wang H et al (2007) Nanosecond time scale conformational dynamics of the human α7 nicotinic acetylcholine receptor. Biophys J 93:2622–2634

    Google Scholar 

  118. Grottesi A, Domene C, Hall B et al (2005) Conformational dynamics of M2 helices in KirBac channels: helix flexibility in relation to gating via molecular dynamics simulations. Biochemistry 44:14586–14594

    CAS  PubMed  Google Scholar 

  119. Brigo A, Lee KW, Iurcu Mustata G et al (2005) Comparison of multiple molecular dynamics trajectories calculated for the drug-resistant HIV-1 integrase T66I/M154I catalytic domain. Biophys J 88:3072–3082

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Lee MC, Deng J, Briggs JM et al (2005) Large-scale conformational dynamics of the HIV-1 integrase core domain and its catalytic loop mutants. Biophys J 88:3133–3146

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Lange OF, Lakomek NA, Fares C et al (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475

    CAS  PubMed  Google Scholar 

  122. Lou H, Cukier RI (2006) Molecular dynamics of apo-adenylate kinase: a principal component analysis. J Phys Chem B 110:12796–12808

    CAS  PubMed  Google Scholar 

  123. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    CAS  PubMed  Google Scholar 

  124. Curnis F, Longhi R, Crippa L et al (2006) Spontaneous formation of L-isoaspartate and gain of function in fibronectin. J Biol Chem 281:36466–36476

    CAS  PubMed  Google Scholar 

  125. Spitaleri A, Mari S, Curnis F et al (2008) Structural basis for the interaction of isoDGR with the RGD-binding site of alphavbeta3 integrin. J Biol Chem 283:19757–19768

    CAS  PubMed  Google Scholar 

  126. Spitaleri A, Ghitti M, Mari S et al (2011) Use of metadynamics in the design of isoDGR-based alphavbeta3 antagonists to fine-tune the conformational ensemble. Angew Chem Int Ed Engl 50:1832–1836

    CAS  PubMed  Google Scholar 

  127. Frank AO, Otto E, Mas-Moruno C et al (2010) Conformational control of integrin-subtype selectivity in isoDGR peptide motifs: a biological switch. Angew Chem Int Ed Engl 49:9278–9281

    CAS  PubMed  Google Scholar 

  128. Mari S, Invernizzi C, Spitaleri A et al (2010) 2D TR-NOESY experiments interrogate and rank ligand-receptor interactions in living human cancer cells. Angew Chem Int Ed Engl 49:1071–1074

    CAS  PubMed  Google Scholar 

  129. Xiao T, Takagi J, Coller BS et al (2004) Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432:59–67

    CAS  PubMed  Google Scholar 

  130. Puklin-Faucher E, Vogel V (2009) Integrin activation dynamics between the RGD-binding site and the headpiece hinge. J Biol Chem 284:36557–36568

    CAS  PubMed  Google Scholar 

  131. Meadows TA, Bhatt DL (2007) Clinical aspects of platelet inhibitors and thrombus formation. Circ Res 100:1261–1275

    CAS  PubMed  Google Scholar 

  132. Quinn MJ, Byzova TV, Qin J et al (2003) Integrin alphaIIbbeta3 and its antagonism. Arterioscler Thromb Vasc Biol 23:945–952

    CAS  PubMed  Google Scholar 

  133. Du X, Gu M, Weisel JW et al (1993) Long range propagation of conformational changes in integrin alpha IIb beta 3. J Biol Chem 268:23087–23092

    CAS  PubMed  Google Scholar 

  134. Bassler N, Loeffler C, Mangin P et al (2007) A mechanistic model for paradoxical platelet activation by ligand-mimetic alphaIIb beta3 (GPIIb/IIIa) antagonists. Arterioscler Thromb Vasc Biol 27:e9–e15

    CAS  PubMed  Google Scholar 

  135. Du XP, Plow EF, Frelinger AL et al (1991) Ligands “activate” integrin alpha IIb beta 3 (platelet GPIIb-IIIa). Cell 65:409–416

    CAS  PubMed  Google Scholar 

  136. Ahrens I, Peter K (2008) Therapeutic integrin inhibition: allosteric and activation-specific inhibition strategies may surpass the initial ligand-mimetic strategies. Thromb Haemost 99:803–804

    CAS  PubMed  Google Scholar 

  137. Ghitti M, Spitaleri A, Valentinis B et al (2012) Molecular dynamics reveal that isoDGR-containing cyclopeptides are true alphavbeta3 antagonists unable to promote integrin allostery and activation. Angew Chem Int Ed Engl 51:7702–7705

    CAS  PubMed  Google Scholar 

  138. Zhu J, Zhu J, Negri A et al (2010) Closed headpiece of integrin alphaIIbbeta3 and its complex with an alphaIIbbeta3-specific antagonist that does not induce opening. Blood 116:5050–5059

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Fondazione Telethon and the Italian Association against Cancer (AIRC) for continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Musco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghitti, M., Musco, G., Spitaleri, A. (2014). NMR and Computational Methods in the Structural and Dynamic Characterization of Ligand-Receptor Interactions. In: Han, Kl., Zhang, X., Yang, Mj. (eds) Protein Conformational Dynamics. Advances in Experimental Medicine and Biology, vol 805. Springer, Cham. https://doi.org/10.1007/978-3-319-02970-2_12

Download citation

Publish with us

Policies and ethics